Some Indefinite Integrals in the Light of Hypergeometric Function

By Salahuddin & Intazar Husain

P.D.M College of Engineering, India

Abstract - In this paper we have evaluated some indefinite integrals associated to Hypergeometric function. The results represent here are assume to be new.

Keywords : pochhammer symbol; gaussian hypergeometric function; kampé de fériet double hypergeometric function and srivastava’s triple hypergeometric function.

GJSFR-F Classification : MSC NO: 33C05,33C45,33C15,33D50,33D60

Strictly as per the compliance and regulations of:

© 2013. Salahuddin & Intazar Husain. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Some Indefinite Integrals in the Light of Hypergeometric Function

Salahuddin & Intazar Husain

Abstract - In this paper we have evaluated some indefinite integrals associated to Hypergeometric function. The results represent here are assume to be new.

Keywords : pochhammer symbol; gaussian hypergeometric function; kampé de Fériet double hypergeometric function and srivastava’s triple hypergeometric function.

1. Introduction and Preliminaries

The Pochhammer’s symbol or Appell’s symbol or shifted factorial or rising factorial or generalized factorial function is defined by

\[(b, k) = (b)_k = \frac{\Gamma(b + k)}{\Gamma(b)} = \begin{cases}
\frac{b(b + 1)(b + 2) \cdots (b + k - 1)}{1} & \text{if } k = 1, 2, 3, \cdots \\
\frac{1}{k!} & \text{if } k = 0 \\
\frac{b}{k!} & \text{if } b = 1, k = 1, 2, 3, \cdots
\end{cases}
\]

where \(b\) is neither zero nor negative integer and the notation \(\Gamma\) stands for Gamma function.

a) Generalized Gaussian Hypergeometric Function

Generalized ordinary hypergeometric function of one variable is defined by

\[A_F B \left[\begin{array}{c} a_1, a_2, \cdots, a_A \\ b_1, b_2, \cdots, b_B \end{array} ; z \right] = \sum_{k=0}^{\infty} \frac{(a_1)_k(a_2)_k \cdots (a_A)_k z^k}{(b_1)_k(b_2)_k \cdots (b_B)_k k!} \]

or

\[A_F B \left[\begin{array}{c} (a_A) \\ (b_B) \end{array} ; z \right] \equiv A_F B \left[\begin{array}{c} (a_j)_{j=1}^A \\ (b_j)_{j=1}^B \end{array} ; z \right] = \sum_{k=0}^{\infty} \frac{((a_A))_k z^k}{((b_B))_k k!} \tag{1.1}
\]

where denominator parameters \(b_1, b_2, \cdots, b_B\) are neither zero nor negative integers and \(A, B\) are non-negative integers.

b) Kampé de Fjeriet’s General Double Hypergeometric Function

In 1921, Appell’s four double hypergeometric functions \(F_1, F_2, F_3, F_4\) and their confluent forms \(\Phi_1, \Phi_2, \Phi_3, \Psi_1, \Psi_2, \Xi_1, \Xi_2\) were unified and generalized by Kampé de Fériet.

Author a: P.D.M College of Engineering, Bahadurgarh, Haryana, India.
Author b: Delhi Institute of Technology, Management and Research, Ballabhgarh, Haryana, India. E-mail : vsludn@gmail.com
We recall the definition of general double hypergeometric function of Kampé de Fériet in slightly modified notation of H.M.Srivastava and R.Panda:

\[
\begin{align*}
F_{E;G;H}^{A_{1};B_{1};D_{1}} \left[\begin{array}{c}
(a_{A_{1}}); (b_{B_{1}}); (d_{D_{1}}) \\
(e_{E_{1}}); (g_{G_{1}}); (h_{H_{1}})
\end{array} \right] x, y = \sum_{m,n=0}^{\infty} \frac{(a_{A_{1}})_{m+n} (b_{B_{1}})_{m} (d_{D_{1}})_{m} x^{m} y^{n}}{(e_{E_{1}})_{m+n} (g_{G_{1}})_{m} (h_{H_{1}})_{m} m! n!}
\end{align*}
\]

where for convergence

(i) \(A + B < E + G + 1, A + D < E + H + 1; |x| < \infty, |y| < \infty, \) or

(ii) \(A + B = E + G + 1, A + D = E + H + 1, \) and

\[
\left\{ \begin{array}{ll}
|x| < \frac{1}{(A-E)} & \text{if } E < A \\
\max\{|x|,|y|\} < 1 & \text{if } E \geq A
\end{array} \right.
\]

c) Srivastava's General Triple Hypergeometric Function

In 1967, H. M. Srivastava defined a general triple hypergeometric function \(F^{(3)} \) in the following form

\[
F^{(3)} \left[\begin{array}{c}
(a_{A_{1}}); (b_{B_{1}}); (d_{D_{1}}); (e_{E_{1}}); (g_{G_{1}}); (h_{H_{1}}); (l_{L_{1}}); \\
(m_{M_{1}}); (n_{N_{1}}); (p_{P_{1}}); (q_{Q_{1}}); (r_{R_{1}}); (s_{S_{1}}); (t_{T_{1}})
\end{array} \right] x, y, z
\]

\[
= \sum_{i,j,k=0}^{\infty} \frac{(a_{A_{1}})_{i+j+k} (b_{B_{1}})_{i+j} (d_{D_{1}})_{j+k} (e_{E_{1}})_{k+i} (g_{G_{1}})_{i} (h_{H_{1}})_{j} (l_{L_{1}})_{k} x^{i} y^{j} z^{k}}{(m_{M_{1}})_{i+j+k} (n_{N_{1}})_{i+j} (p_{P_{1}})_{j+k} (q_{Q_{1}})_{k+i} (r_{R_{1}})_{i} (s_{S_{1}})_{j} (t_{T_{1}})_{k} i! j! k!}
\]

d) Wright's Generalized Hypergeometric Function

\[
\begin{align*}
p_{\Psi_{q}} \left[\begin{array}{c}
(\alpha_{1}, A_{1}), \cdots, (\alpha_{p}, A_{p}) \\
(\lambda_{1}, B_{1}), \cdots, (\lambda_{q}, B_{q})
\end{array} \right] x &= \sum_{m=0}^{\infty} \frac{\Gamma(\alpha_{1} + mA_{1}) \Gamma(\alpha_{2} + mA_{2}) \cdots \Gamma(\alpha_{p} + mA_{p}) x^{m}}{\Gamma(\lambda_{1} + mB_{1}) \Gamma(\lambda_{2} + mB_{2}) \cdots \Gamma(\lambda_{q} + mB_{q}) m!} \\
p_{\Psi_{q}^{*}} \left[\begin{array}{c}
(\alpha_{1}, A_{1}), \cdots, (\alpha_{p}, A_{p}) \\
(\lambda_{1}, B_{1}), \cdots, (\lambda_{q}, B_{q})
\end{array} \right] x &= \sum_{m=0}^{\infty} \frac{(\alpha_{1})_{m} (\alpha_{2})_{mA_{2}} \cdots (\alpha_{p})_{mA_{p}} x^{m}}{(\lambda_{1})_{m} (\lambda_{2})_{mB_{2}} \cdots (\lambda_{q})_{mB_{q}} m!}
\end{align*}
\]

II. Main Integrals

\[
\int \frac{dy}{\sqrt{1 - \left(\frac{1+z}{2}\right) \sin^{3} y}} = \int_{0}^{1} y^{1/2} \left[\begin{array}{c}
\frac{1}{2}; \frac{1}{2}, \frac{1-3m}{2}; \frac{1+z}{2}, \cos^{2} y
\end{array} \right]
\]

\[
= - \cos y \sin^{3m+1} y \left(\sin^{2} y \right)^{-1/2} \left[\begin{array}{c}
\frac{1}{2}; \frac{1}{2}, \frac{1-3m}{2}; \frac{1+z}{2}, \cos^{2} y
\end{array} \right] + \text{Constant}
\]
\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \cos^3 y}} = \]
\[= \sqrt{-\sin^2 y \csc y \cos^{3m+1} y} \frac{3m+1}{3m+1} \]
\[F_{1:2}^{1:2} \left[\begin{array}{c} \frac{1}{2} \ 1; \frac{1}{2}, \frac{3m+1}{2} \\ -; \frac{3m+3}{2} \end{array} ; \frac{1+x}{2}, \cos^2 y \right] + \text{Constant} \quad (2.2) \]

\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \tan^3 y}} = \tan^{3m+1} y (3m+1) \]
\[= \cot^{3m+1} y \frac{3m+1}{3m+1} \]
\[F_{0:1}^{1:2} \left[\begin{array}{c} \frac{1}{2} \ 1; \frac{1}{2}, \frac{3m+1}{2} \\ -; \frac{3m+3}{2} \end{array} ; \frac{1+x}{2}, -\tan^2 y \right] + \text{Constant} \quad (2.3) \]

\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \cot^3 y}} = \]
\[= -\cot^{3m+1} y \frac{3m+1}{3m+1} \]
\[F_{0:1}^{1:2} \left[\begin{array}{c} \frac{1}{2} \ 1; \frac{1}{2}, \frac{3m+1}{2} \\ -; \frac{3m+3}{2} \end{array} ; \frac{1+x}{2}, -\cot^2 y \right] + \text{Constant} \quad (2.4) \]

\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \sec^3 y}} = \]
\[= \sin(y) \cos^2(y) \frac{3m+1}{3m+1} \sec^{3m+1}(y) \]
\[F_{0:1}^{1:2} \left[\begin{array}{c} \frac{1}{2} \ 1; \frac{1}{2}, \frac{1+3m}{2} \\ -; \frac{3}{2} \end{array} ; \frac{1+x}{2}, \sin^2 y \right] + \text{Constant} \quad (2.5) \]

\[\int \frac{dx}{\sqrt{(1 - \left(\frac{1+x}{2}\right) \cosec^3 y)}} = \]
\[= -\cos(y) \sin^2(y) \frac{3m+1}{3m+1} \cosec^{3m+1} y \]
\[F_{0:1}^{1:2} \left[\begin{array}{c} \frac{1}{2} \ 1; \frac{1}{2}, \frac{1+3m}{2} \\ -; \frac{3}{2} \end{array} ; \frac{1+x}{2}, \cos^2 y \right] + \text{Constant} \quad (2.6) \]

III. Derivation of Integrals

Derivation of integral (2.1)

\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \sin^3 y}} = \int \left[1 - \left(\frac{1+x}{2}\right) \sin^3 y \right]^{-\frac{1}{2}} dy \]

\[\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)_m}{m!} \sin^{3m} y \ dy = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)_m}{m!} \int \sin^{3m} y \ dy \]

\[= \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)_m}{m!} \left[-\cos y \right] \sin^{3m+1} y \sin^2 y \frac{1-3m}{2} F_{1:2}^{1:2} \left[\begin{array}{c} \frac{1}{2} \ 1; \frac{1}{2}, \frac{1-3m}{2} \\ -; \frac{3}{2} \end{array} ; \frac{1+x}{2}, \cos^2 y \right] + \text{Constant} \quad (3.1) \]
Derivation of integral (2.2)

\[
\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \cos^3 y}} = \int \left[1 - \left(\frac{1+x}{2}\right) \cos^3 y \right]^{-\frac{1}{2}} dy
\]

\[
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \cos^m y \ dy = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \int \cos^m y \ dy
\]

\[
= \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \sqrt{-\sin^2 y \cos^{m+1} y \cosec y} \left(\frac{3m+1}{3m+1}\right) F_{1,2} \left[\begin{array}{c} \frac{1}{2}, \frac{3m+1}{2} \\ \frac{3m+3}{2} \end{array} ; \cos^2 y \right] + \text{Constant}
\]

\[
= \frac{-\sqrt{-\sin^2 y \cosec y \cos^{m+1} y}}{\sqrt{1 - \left(\frac{1+x}{2}\right) \tan^3 y}} + \text{Constant}
\]

Derivation of integral (2.3)

\[
\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \tan^3 y}} = \int \left[1 - \left(\frac{1+x}{2}\right) \tan^3 y \right]^{-\frac{1}{2}} dy
\]

\[
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \tan^m y \ dy = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \int \tan^m y \ dy
\]

\[
= \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \tan^{m+1} y \left(\frac{3m+1}{3m+1}\right) F_{1,1} \left[\begin{array}{c} \frac{1}{2} ; \frac{3m+1}{2} \\ \frac{3m+3}{2} \end{array} ; -\tan^2 y \right] + \text{Constant}
\]

\[
= \frac{\tan^{m+1} y}{(3m+1)} F_{0,1}^{1,2} \left[\begin{array}{c} \frac{1}{2} ; 1, \frac{3m+1}{2} \\ \frac{3m+3}{2} \end{array} ; \frac{1+x}{2}, -\tan^2 y \right] + \text{Constant}
\]

Derivation of integral (2.4)

\[
\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right) \cot^3 y}} = \int \left[1 - \left(\frac{1+x}{2}\right) \cot^3 y \right]^{-\frac{1}{2}} dy
\]

\[
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \cot^m y \ dy = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \int \cot^m y \ dy
\]

\[
= -\sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_m \left(\frac{1+x}{2}\right)^m}{m!} \cot^{m+1} y \left(\frac{3m+1}{3m+1}\right) F_{1,2} \left[\begin{array}{c} 1, \frac{3m+1}{2} \\ \frac{3m+3}{2} \end{array} ; -\cot^2 y \right] + \text{Constant}
\]

\[
= -\frac{\cot^{m+1} y}{(3m+1)} F_{0,1}^{1,2} \left[\begin{array}{c} \frac{1}{2} ; 1, \frac{3m+1}{2} \\ \frac{3m+3}{2} \end{array} ; \frac{1+x}{2}, -\cot^2 y \right] + \text{Constant}
\]
Derivation of integral (2.5)
\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right)\sec^3 y}} = \int \left[1 - \left(\frac{1+x}{2}\right)\sec^3 y\right]^{-\frac{1}{2}} dy \]
\[
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)m \left(\frac{1+x}{2}\right)^m}{m!} \sec^3 y \, dy = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)m \left(\frac{1+x}{2}\right)^m}{m!} \int \sec^3 y \, dy \\
= \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)m \left(\frac{1+x}{2}\right)^m}{m!} \sin y \cos^2(y) \sec^{3m+1} y \, _2F_1 \left[\frac{1}{2}, \frac{3m+1}{2}; \frac{1+x}{2}, \sin^2 y \right] + \text{Constant} \]
\[
= \sin(y) \cos^2(y) \sec^{3m+1} y \, _2F_1 \left[\frac{1}{2}, \frac{3m+1}{2}; \frac{1+x}{2}, \sin^2 y \right] + \text{Constant} \quad (3.5) \]

Derivation of integral (2.6)
\[\int \frac{dy}{\sqrt{1 - \left(\frac{1+x}{2}\right)\cosec^3 y}} = \int \left[1 - \left(\frac{1+x}{2}\right)\cosec^3 y\right]^{-\frac{1}{2}} dy \]
\[
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)m \left(\frac{1+x}{2}\right)^m}{m!} \cosec^3 y \, dy = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)m \left(\frac{1+x}{2}\right)^m}{m!} \int \cosec^3 y \, dy \\
= \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)m \left(\frac{1+x}{2}\right)^m}{m!} \left(-\cos y \right) \left(\sin^2(y)\right) \sec^{3m+1} y \, _2F_1 \left[\frac{1}{2}, \frac{3m+1}{2}; \cos^2 y \right] + \text{Constant} \\
= -\cos y (\sin^2(y)) \cosec^{3m+1} y \, _2F_1 \left[\frac{1}{2}, \frac{3m+1}{2}; \frac{1+x}{2}, \cos^2 y \right] + \text{Constant} \quad (3.6) \]

IV. Conclusion

In our work we have established hypergeometric form of some indefinite integrals. We can only expect that the development presented in this work will stimulate further interest and research in this important area of classical special functions. Just as the mathematical properties of the Gauss hypergeometric function are already of immense and significant utility in mathematical sciences and numerous other areas of pure and applied mathematics, the elucidation and discovery of the formula of hypergeometric functions considered herein should certainly eventually prove useful to further developments in the broad areas alluded to above.

References Références Referencias

