

1 Covariates of Neonatal and Post-Neonatal Mortality in 2 Bangladesh

3 Dr. Abdul Hamid Chowdhury¹ and Prof. Dr. S.M. Shafiqul Islam²

4 ¹ International Islamic University Chittagong

5 *Received: 11 December 2012 Accepted: 31 December 2012 Published: 15 January 2013*

6 **Abstract**

7 This paper investigates covariates of neonatal and post-neonatal mortality in Bangladesh. The
8 study uses the data extracted from the 2007 Bangladesh Demographic and Health Survey
9 (BDHS). Multivariate proportional hazards models are employed to study the determinants of
10 neonatal and post-neonatal mortality. The results show that father's education, place of
11 residence, housing materials, number of children under five years of age, and previous death of
12 sibling have significant influence on neonatal mortality. The findings also indicate that
13 mother's education, toilet facility, number of children under five and breastfeeding have
14 significant effect on post-neonatal mortality in Bangladesh.

17 **Index terms**— neonatal and post-neonatal mortality, hazard models, demographic variable.

18 **1 Introduction**

19 neonatal and post-neonatal mortality are important indicators of social and economic development of a nation.
20 Like most developing countries, Bangladesh experienced a decline in neonatal and postneonatal mortality rates.
21 BDHS data indicate that neonatal mortality rate in Bangladesh has declined from 57 deaths per 1000 live
22 births in 1993 to 37 births in 2007 and post-neonatal mortality rate has declined from 32 deaths per 1000 live
23 births in 1993 to 15 births in 2007. Though neonatal and post-neonatal mortality rates have been decreased
24 remarkably but they are still very high. It is well established by several studies that there is an inverse
25 relationship between socioeconomic variables of the parents and neonatal and post-neonatal mortality (Muhuri,
26 1995;Forste, 1994;Doctor, 2004;Machado and Hill, 2005). The risk of deaths of infants is closely associated
27 with their mother's characteristics as well as environment in which they live ??Rajna et al., 1998). Father's
28 education, mother's education and their work status each has independent significant influence on neonatal and
29 post-neonatal mortality in developing countries (Sandiford et al., 1995 andForste, 1994). ??aldwell (1979) found
30 that maternal education was the most important determinant of neonatal and postneonatal mortality in Nigeria.
31 ??aise (1980) found neonatal and post-neonatal mortality differentials among geographical and administrative
32 units and subdivisions of population in tropical Africa.

33 Maternal factors, which are biological attributes of birth, such as age of mother at child birth, birth order and
34 the preceding birth interval of an index child have significant influence on neonatal and post-neonatal mortality
35 (Forste, 1994). Past studies show a curvilinear relationship between in the maternal age at birth and neonatal and
36 post-neonatal mortality, high risks having infant mortality at very young and old ages (Bhalotra and Van Soest,
37 2008;Maitra, 2004). Breastfeeding practices have at least three mechanisms by which breastfeeding contribute
38 to infant health and survival. First, it is nutritious. Second, breast provides immunity to infections. Third,
39 breast milk is clean and hygienic since the substances it includes prevent the growth of bacteria (Cabigon,
40 1997). The objective of this paper is to identify the factors (proximate determinants, such as demographic
41 factors, environmental factors, nutritional factors and health seeking behavior) which influence neonatal and
42 post-neonatal mortality in Bangladesh by using ??osley and Chen Framework (1984). This framework proposes
43 that socioeconomic factors do not directly influence the outcome variable but rather must operate through
44 proximate determinants to affect neonatal and post-neonatal mortality.

6 A) COVARIATES OF NEONATAL MORTALITY

45 2 II.

46 3 Data and Methods

47 The data analyzed in this study have been derived from the Bangladesh Demographic and Health Survey (BDHS)
48 conducted from March to August 2007. The BDHS, 2007 data comprise a total of 6150 births that occurred 5
49 years preceding the survey. Multiple births are excluded because they experience a higher risk of death linked
50 with their multiplicity, which could distort the results (Curtis et al., 1993). Births happening during the month
51 of interview are also excluded because their disclosure to neonatal is censored. To avoid the violations of the
52 independence assumption, only the last births are included in the analysis. Therefore, this analysis is limited to
53 singleton births, born 1-59 months before the survey. To include the survival status of the older siblings of the
54 analysis, only women who have at least two births are considered. Finally, we have considered 4003 births, which
55 are about 65 percent of total sample for analyzing neonatal and post-neonatal mortality.

56 The study uses the framework of Mosley and Chen ??1984) The present study has employed Cox's proportional
57 hazards model to assess the effects of selected variables on mortality rates. In this study, neonatal and post-
58 neonatal survival time are considered as dependent variables. Age of dead children is calculated by subtracting
59 date of birth of children from the date of death whereas; age of survived children is computed by subtracting date
60 of birth from date of interview. Numbers of children who are surviving at the time of interview are considered
61 as censored cases because their true duration of surviving could not be followed till death as the survey is
62 retrospective. To evaluate the impact of covariates on different rates of mortality, proportional hazard models
63 are employed to the data separately.

64 4 III.

65 5 Results and Discussion

66 6 a) Covariates of Neonatal Mortality

67 Chi-square is used to study the association of independent variables under different broad heads with neonatal
68 mortality. Except religion of the respondents, sex of child, parity, body mass index of mothers, drinking water,
69 toilet facility, and prenatal care, all other variables have shown significant association with neonatal mortality.
70 To examine the effect of explanatory variables on neonatal deaths, five models are fitted to the data considering
71 all the explanatory variables found significant in bivariate analysis. Model-1 is employed to evaluate the effects
72 of socioeconomic variables. After including environmental factors with socioeconomic variables, model-2 is fitted.
73 Again with environmental and socioeconomic factors adding demographic variables, model-3 has been fitted.
74 Finally, including all factors considered in the study framework, model-4 is fitted to the data. As revealed by log
75 likelihood ratios and the associated chi-squares, all the models are found to be statistically significant.

76 Table 1 presents the proportional hazard estimates of relative risk of selected factors on neonatal mortality of
77 model-1 through model-4. The results of model-1, which includes all socioeconomic variables show that father's
78 education with secondary and above level has an inverse significant effect on neonatal mortality. The hazard of
79 neonatal mortality of babies whose fathers have secondary and higher levels of education is about 60 percent
80 lower as compared to babies whose fathers have no education.

81 Rural-urban differentials of vital events are pronounced in Bangladesh due to marked variations of opportunities
82 and resources among the citizens. The findings of the hazard analysis of this study show higher neonatal mortality
83 for babies born to the residents of rural areas as compared to those born to residents of urban areas. It shows
84 that relative risk of neonatal mortality for children in rural area is almost 53 percent higher than those in urban
85 areas. It is observed from the results of model-2 that father's education with secondary background and place of
86 residence are still maintaining its significance. Housing material, as an environmental factor has been found to
87 be a significant covariate in influencing neonatal mortality. Improved household environmental conditions play
88 a major role in the decline of childhood mortality. Table 1 shows that babies born to mothers living in houses
89 constructed with tin have 4 folds more likelihood of neonatal mortality than babies born to mothers living in
90 cement constructed houses. It also shows that the risk of neonatal mortality is 3.07 times higher among children
91 whose mothers are living in other low quality materials built houses compared to babies of mothers who are living
92 in houses constructed with cement.

93 It has been observed from model-3 that fathers with secondary and above level of education, place of residence,
94 and housing materials have their dominance in affecting neonatal mortality. Babies born to mothers within the
95 interval of 25-48 months have 64 percent lower risk of neonatal mortality than those born within 24 months of a
96 previous child.

97 The results also show that the hazard of neonatal mortality of babies born within the interval of 49 months
98 and above is 40 percent lower as compared to babies born within 2 years. The findings are consistent with
99 those of previous studies. Short preceding birth intervals are associated with an increased risk of dying in the
100 neonatal period and at 1-6 months of age, and to a much lesser extent at 7-23 months of age (Boerma and Bicego,
101 1992). In a longitudinal study in Bangladesh, Koenig et al. (1990) showed that the effects of short preceding
102 birth intervals were limited to the neonatal period. Retherford et al. (1989) observed an association between

103 short birth intervals (less than 2 years) and increased mortality, even after controlling for other demographic and
104 socioeconomic variables.

105 More number of children under five years of age of a mother is significantly associated with short birth intervals
106 among children. Hobcraft et al. (1985) showed that short birth intervals increase mortality risks among children.
107 The odds ratios of this study show that babies born to mothers who have more than one children under five years
108 of age have 1.43 times higher risk of neonatal mortality as compared to babies whose mothers have only index
109 child.

110 Findings of model-3 in Table 1 show that babies born to mothers who experienced previous child death have
111 about 35 percent higher risk as compared to babies of mothers who never experienced a child death earlier. The
112 influence of the survival status of the preceding child on the mortality risk of the index child has been explained
113 in terms of the existence or lack of sibling competition for maternal attention and household resources (Koenig
114 et al., 1990). Das Gupta (1990) found that the probability of a child's death was significantly increased if the
115 child has siblings who died in childhood. She argued that the women who had experienced multiple child deaths
116 were also often less resourceful and differed in use of basic child health care. However, Guo (1993) argued that
117 a family's environment is likely to remain same throughout the time when all children are born and raised.

118 Model-4 is fitted to investigate the effect of all variables including broad heads of health care, socioeconomic,
119 demographic and environmental factors. It is observed from the results of model-4 of the Table 1 that father's
120 education with secondary and higher background, rural residence, preceding birth interval, number of children
121 under five years of age, previous death of siblings and housing materials still hold their significant role accordingly
122 in the variations of neonatal mortality in Bangladesh.

123 Contraceptive use may play an important role in reducing neonatal mortality by lengthening duration of
124 birth intervals. The hazard analysis of this study shows that children born to mothers who have ever used
125 contraceptives have lower chances of neonatal mortality compared to babies of mothers who never used any
126 contraceptive methods. The hazard of neonatal mortality of babies of mothers of ever users is about 39 percent
127 lower relative to babies of mothers who are never users.

128 **7 b) Covariates of Post-Neonatal Mortality**

129 Attempts have been made to investigate the effects of covariates on post-neonatal mortality by employing five
130 proportional hazards models. Table 2 presents proportional hazard estimates of relative risk of selected factors
131 on post-neonatal mortality of model-1 through model-5. Educated mothers are expected to experience lower
132 post-neonatal mortality than illiterate mothers. Education improves the ability to deal with new ideas, and to
133 accept the concepts that appear contrary to common sense. Schooling may lessen reliance on the opinions of
134 elders, giving educated family members the freedom to follow a more independent course in efforts to improve
135 their well-being. Table 2 reveals that secondary and above educated mother have 61 percent lower likelihood of
136 post-neonatal mortality compared to their illiterate counterparts. It is observed from the results of model-2 that
137 mothers with at least secondary level of education play a vital role in bringing down the postneonatal mortality.

138 Toilet facility as one of the important environmental factors shows significant effect on postneonatal mortality.
139 To avoid intestinal infectious diseases and parasitosis, hygienic removal of faeces is important for good health of
140 mothers and child survival (Sixl et al., 1988). Children whose families have no toilet facilities have 4.44 times
141 more likelihood of postneonatal mortality relative to children residing in houses with flush system.

142 Proportional hazard model-3 is constructed to investigate the effect of demographic, socioeconomic and
143 environmental factors on post-neonatal mortality in Bangladesh. It can be noted from the Table 2 that the
144 influence of previous birth interval on post-neonatal mortality is significant and follows the same pattern as
145 observed in the case of neonatal mortality. The hazard of post-neonatal mortality of children born within the
146 birth interval of 25-48 months is 64 percent lower mortality as compared to the babies born within 24 months.
147 Babies born within 4 or more years have about 53 percent lower chances of postneonatal mortality than children
148 born within 2 years. The U-shaped pattern of previous birth interval and postneonatal mortality is observed in
149 developing countries. It has been observed that children born within an interval of less than 2 years experienced
150 higher mortality risks during infancy than those born in an interval of two or more years (Winikoff, 1983).

151 More number of children under five years of age of a mother may increase risk of post-neonatal mortality. The
152 proportional hazard co-efficients show that babies born to mothers who have more than one child under five years
153 of age have about 82 percent higher risk of post-neonatal mortality as compared to children whose mothers have
154 only index child.

155 The chance of post-neonatal mortality is 1.61 times higher of mothers who have experienced a preceding child
156 death compared to babies of mothers who did not experience a sibling death earlier. The index children whose
157 next older siblings died when they were born have significantly higher risk of post-neonatal mortality than those
158 whose next older siblings survived, because of genetic characteristics, environmental conditions, family behavior
159 and child care practices that affect both children (Zenger, 1993).

160 Like neonatal mortality, the effect of contraceptive use is found significant in reducing postneonatal mortality.
161 The results of model-4 indicate that babies born to mothers who have ever used contraceptives have lower
162 likelihood of post-neonatal mortality as compared to babies of mothers who never used contraceptives. The risk
163 of post-neonatal mortality of babies of contraceptive ever users is 56 percent lower relative to their non-user
164 counterparts.

8 CONCLUSION

165 Hazards model-5 is fitted to the data to investigate the effect of all factors considered in the analysis including
166 breastfeeding and body mass index on post-neonatal mortality. The hazard analysis shows a significant negative
167 effect of breastfeeding on postneonatal mortality. Breastfed children have lower likelihood of post-neonatal
168 mortality compared to children who are not breastfed. The hazard of postneonatal mortality is found 77
169 percent lower among the babies who are breastfed than their counterparts. Earlier studies have also documented
170 positive effects of breastfeeding on infants' health ??Da Vanzo et al., 1983;Goldberg et al., 1984;Millman, 1985).
171 Van Ginneken (1974) showed that prolonged lactation induced longer postpartum amenorrhea, increasing the
172 likelihood of longer intervals between births. Early cessation of breastfeeding may expose the child to greater risks
173 of illness from contaminated water and food in conditions where proper substitutes of food are scarce (Manda,
174 1999).

175 IV.

176 8 Conclusion

177 The multivariate proportional hazards models employed in this study show that father's education, place of
178 residence, housing materials, number of children under-five years of age, and previous death of sibling have
179 significant influence on neonatal mortality. The findings also reveal that mother's education, toilet facility,
180 number of children under five, and breastfeeding have significant effect on post-neonatal mortality. Furthermore,
181 contraceptive use and preceding birth interval have highly significant influence on neonatal and post-neonatal
182 mortality. The findings of this analysis do not fully support the hypothesis that socioeconomic factors affect
183 neonatal and post-neonatal mortality only through the proximate determinants as proposed in the framework.
184 However, it has been observed that socioeconomic factors have both their independent and indirect effect in
185 reducing neonatal and post-neonatal mortality in Bangladesh. Moreover, the findings reveal that the proximate
186 determinants have stronger impact on neonatal and post-neonatal mortality than that of the socioeconomic
187 factors.

188 Hence, on the basis of the results, it can be suggested that the rise in parental education, ensure more civic
189 facilities in vast rural areas, persuasion of mothers for full breastfeeding practices and improvements in the quality
190 of water supply may be important steps to be taken to reduce infant mortality in Bangladesh. The findings also
191 show that neonatal and post-neonatal mortality can significantly be reduced if the interval between births be
expanded more than two ^{1 2 3}

188 Chen (1984) framework, the socio-economic variables
189 affect the outcome (Survival Status) through the four
190 proximate determinants namely, demographic factors,
environmental factors, nutritional factors and health
seeking behavior factors. The variables included in the
framework under five broad heads are as follows:

Socioeconomic Variables : Parental education;
socioeconomic status; place of residence; region of
residence and religion of respondents.

Demographic Factors : Age of the mother at the
time of birth; birth order; birth interval; sex of the child;
previous sibling death; and number of children under
five years of age.

Environmental Contamination : Source of
drinking water; toilet facilities; and housing construction
material.

Nutritional Factor : Breastfeeding and body
mass index.

Health-seeking Behavior : Prenatal care; place
of birth; tetanus injection before birth; and contraceptive
use.

() C

Figure 1:

Factor	Independent variables	Model-1	Model-2	Model-3	Model-4
Maternal Education					
No education	1.000	1.000	1.000	1.000	
Primary	0.892	0.835	0.877	0.782	
Secondary and above	0.814	0.769	0.774	0.772	
Father's Education					
No education	1.000	1.000	1.000	1.000	
Primary	0.903	0.894	0.882	0.901	
Secondary and above	0.391	0.370	0.406 ***	0.378 **	
	***	***			
Socioeconomic Status	Lower	1.000	1.000	1.000	1.000
Medium	0.976	0.987	0.992	1.000	1.000
Higher					
Place of Residence	Urban	0.872	0.892		
		1.000	1.000		
Rural	1.526 *	1.688 *	1.679 **	1.609 *	
Region of Residence					
Barisal	1.000	1.000	1.000	1.000	
Chittagong	0.909	0.902	0.763	0.676	
Dhaka	0.795	0.747	0.731	0.692	
Khulna	0.559	0.636	0.728	0.701	
Rajshahi	1.341	1.366	1.396	1.324	
Sylhet	1.590	1.747	1.290	1.036	
Environmental material	Cement	1.000	1.000	3.575	1.000
	Tin	4.000	*** 2.802 **	*** 2.763 **	3.566
	Others				

		3.071 **			
Preceding birth Interval (in months)					
?24		1.000	1.000		
25-48		0.363 ***	0.345 ***		
49 & above		0.600 **	0.596 **		
Demographic	Children under five	1.000	1.429	1.000	2.430
	2 and above	***	1.000	***	1.000
Mother's age (in years)	15-19				
	20-34	0.713	0.717		
	35-49	0.689	0.699		
Previous death of sibling					
No		1.000	1.000		
Yes		1.348 **	1.697 **		

Figure 2: Table 1 :

8 CONCLUSION

1

Factors	Independent variables	Model					
		1	2	3	4		
Contraceptive Use							
0=No					1.000		
Health care	1=Yes	Place of Delivery 1=Home 2=Hospital			0.608 ** 1.000		
	/other places	Tetanus injection before birth			0.874		
0=No					1.000		
1=Yes					0.781		
-2 log likelihood				1694.47	1684.22	1622.30	1613.44

Figure 3: Table 1 :

¹()C

²© 2013 Global Journals Inc. (US)

³Covariates of Neonatal and Post-Neonatal Mortality in Bangladesh© 2013 Global Journals Inc. (US)

BDHS, 2007						
Factors	Independent Variables	Model-1	Model-2	Model-3	Model-4	Model-5
Maternal Education						
No education	1.000	1.000	1.000	1.000	1.000	1.000
Primary	0.672	0.839	0.846	0.857	0.816	
Secondary & above	0.391	0.547 *	0.537 *	0.522 *	0.519 *	
	**					
Father's Education						
No education	1.000	1.000	1.000	1.000	1.000	1.000
Socioeconomic Status	Primary Secondary & above	0.972	0.960	0.978 0.942	0.982 0.945	0.989
Place of Residence	Urban Rural Region of Residence	0.820	0.849	1.000 1.019	1.000 1.125	0.941
	1.000	1.000			1.000	
	1.353	1.137			1.125	
Barisal	1.000	1.000	1.000	1.000	1.000	1.000
Chittagong	0.688	0.592	0.539	0.466	0.464	
Dhaka	0.644	0.607	0.627	0.598	0.615	
Khulna	0.735	0.701	0.830	0.821	0.819	
Rajshahi	0.465	0.412	0.461	0.480	0.465	
Sylhet	1.812	1.911 *	1.709	1.297	1.288	
	*					
Drinking Water						
River/Pond/Unprotected	1.000	1.000	1.000	1.000	1.000	1.000
Environment	Household/Pipe Toilet Facility	0.510	0.503 1.000	0.568 1.000	0.561	
Flush Pit/Hanging toilet	No facility	1.000	1.758 4.598	1.796 4.414	1.000	
Housing Material	Cement	1.637	**	***	1.805	
		4.441			4.365 **	
	**					
Cement	1.000	1.000	1.000	1.000	1.000	1.000
Tin	1.023	1.038	1.045	1.027		
Others	1.057	1.066	1.087	1.059		
Preceding Birth Interval						
(in months)						
?24		1.000	1.000	1.000	1.000	1.000
25-48		0.391 ***	0.361 ***	0.365 ***		
49 & above		0.503 **	0.465 **	0.471 **		
Demographic	Children Under Five 1 2 & above Previous Death Of Sibling	1.000 1.815	1.000 1.715	1.000		
	No Yes	** 1.000	* 1.000	1.615 *		
		1.606 **	1.585	1.506		
Mother's Age (in years)						
15-19		1.000	1.000	1.000	1.000	1.000
20-34		0.908	0.947	0.969		
35-49		1.223	1.298	1.258		

Figure 4: Table 2 :

2

Factors	Independent Variables	Model-1	Model-2	Model-3	Model-4	Model-5
	Contraceptive Use					
Health care	0=No 1=Yes	Tetanus Injec-	1.000	0.438	1.000	0.426
		tion before Birth	0=No	*** 1.000	*** 1.000	
	1=Yes			0.962		0.973

Figure 5: Table 2 :

192 [Bhalotra and Van Soest ()] S Bhalotra , Van Soest . *Birth Spacing, Fertility and Neonatal Mortality in India: Dynamics, Frailty and Fecundity*, 2008. 16 p. .

193

194 [Curtis et al. ()] 'Birth Interval and Family Effects on Post-neonatal Mortality in Brazil'. S L Curtis , I Diamond , J W McDonald . *Demography* 1993. 30 (1) p. .

195

196 [Koenig et al. ()] 'Birth Intervals and Childhood Mortality in Rural Bangladesh'. M A Koenig , J F Phillips , O M Campbell , S D'souza . *Demography* 1990. 27 (2) p. .

197

198 [Manda ()] 'Birth Intervals, Breastfeeding and Determinants of Childhood Mortality in Malawi'. S O M Manda . *Social Science and Medicine* 1999. 48 (3) p. .

199

200 [Pebley and Millman ()] 'Birth Spacing and Child Survival'. A R Pebley , S Millman . *International Family Planning Perspectives* 1986. 12 (3) p. .

201

202 [Millman ()] 'Breastfeeding and Infant Mortality: Untangling the Complex Web of Causality'. S Millman . *Sociological Quarterly* 1985. 26 (1) p. .

203

204 [Martin et al. ()] 'Co-variates of Child Mortality in the Philippines, Indonesia, and Pakistan: An Analysis Based on Hazard Models'. L G Martin , J Trussell , F R Salvail , N M Shah . *Population Studies* 1983. 37 (3) p. .

205

206 [Das Gupta ()] 'Death Clustering, Mothers' Education and the Determinants of Child Mortality in Rural Punjab, India'. M Das Gupta . *Population Studies* 1990. 44 p. .

207

208 [Hobcraft et al. ()] 'Demographic Determinants of Infant and Early Child Mortality: A Comparative Analysis'. J N Hobcraft , J W McDonald , S O Rutstein . *Population Studies* 1985. 39 (3) p. .

209

210 [Muhuri ()] 'Health Programs, Maternal Education, and Differential Child Mortality in Matlab, Bangladesh'. P Muhuri . *Population and Development Review* 1995. 21 (4) p. .

211

212 [Davanzo et al. ()] 'How Biological and Behavioral Influences on Mortality in Malaysia Vary During the First Year of Life'. J Davanzo , W P Butz , J P Habicht . *Population Studies* 1983. 37 p. .

213

214 [Rajna et al.] 'Impact of maternal education and Health Services on Child Mortality in Uttar Pradesh, India'. P N Rajna , A K Mishra , S Krishnamoorthy . *Asia Pacific Population Journal* 13 (2) p. .

215

216 [Goldberg et al. ()] 'Infant Mortality and Breastfeeding in North-Eastern Brazil'. H I Goldberg , W Rodrigues , A M T Thome , B Janowitz , L Morris . *Population Studies* 1984. 38 p. .

217

218 [Davanzo and Habicht ()] 'Infant Mortality Decline in Malaysia, 1946-1975: the Role of Changes in Variables and Changes in the Structure of Relationships'. J Davanzo , J P Habicht . *Demography* 1986. 23 (2) p. .

219

220 [Machado and Hill ()] 'Maternal, Neonatal and Community Factors Influencing Neonatal Mortality in Brazil'. C J Machado , K Hill . *Journal of Biosocial Science* 2005. 37 p. .

221

222 [Maitra ()] 'Parental Bargaining, Health Inputs and Child Mortality in India'. P Maitra . *Journal of Health Economics* 2004. 23 (2) p. .

223

224 [Boerma and Bicego ()] 'Preceding Birth Intervals and Child Survival: Searching for Pathways of Influence'. J T Boerma , G T Bicego . *Studies in Family Planning* 1992. 23 (4) p. .

225

226 [Van Ginneken ()] 'Prolonged Breastfeeding as a Birth Spacing Method'. J K Van Ginneken . *Studies in Family Planning* 1974. 5 (6) p. .

227

228 [Menken et al. ()] 'Proportional Hazards Life Table Models: An Illustrative Analysis of the Socio-Demographic Influences on Marriage Dissolution in the United States'. J Menken , J Trussel , D Stempel , O Babakol . *Demography* 1981. 18 (2) p. .

229

230

231 [Zenger ()] 'Siblings' Neonatal Mortality Risks and Birth Spacing in Bangladesh'. E Zenger . *Demography* 1993. 30 (3) p. .

232

233 [Hobcraft et al. ()] 'Socio-Economic Factors in Child Mortality, A Cross-National Comparison'. J N Hobcraft , J W McDonald , S O Rustein . *Population Studies* 1984. 38 p. .

234

235 [Mensch et al. ()] 'Socioeconomic Difference in Child Mortality in Developing Countries'. B Mensch , H Lentzner , S Preston . *United Nations* 1985.

236

237 [Cabigon ()] 'The Effect of Birth Spacing and Breastfeeding on Childhood Mortality in the Philippines'. J V Cabigon . *Journal of Population* 1997. 3 (1) p. .

238

239 [Doctor ()] 'The Effect of Living Standards on Childhood Mortality in Malawi'. Henry V Doctor . *African Population Studies* 2004. 19 (2) p. .

240

241 [Winikoff ()] 'The Effects of Birth Spacing on Child and Maternal Health'. B Winikoff . *Studies in Family Planning* 1983. 14 p. .

242

243 [Forste ()] 'The Effects of Breastfeeding and Child Mortality in Bolivia'. R Forste . *Population Studies* 1994. 48 p. .

244

245 [Sandiford et al. ()] 'The impact of Women's Literacy on Child Health and its Interaction with Access to Health Services'. P Sandiford , J Cassel , M Montenegro , G Sanchez . *Population Studies* 1995. 49 (1) p. .

246

8 CONCLUSION

247 [Sixl et al. ()] 'The Importance of Toilet Facilities and Their Proper Use by the Population of Melut, South
248 Sudan'. W Sixl , A Sixl , P Sixl , L D Iliff . *Geographia Medica Supplement* 1988. 1 p. .

249 [Retherford et al. ()] 'To What Extent does Breastfeeding Explain Birth Interval Effects on Early Childhood
250 Moratility'. R D Retherford , M K Choe , S Thapa , B B Gubhaju . *Demography* 1989. 26 (3) p. .

251 [Guo ()] 'Use of Sibling Data to Estimate Family Mortality Effects in Guatemala'. Guang Guo . *Demography*
252 1993. 30 (1) p. .