

1 A Validation and Reliability Study of the Metacognition Scale in 2 Turkey

3 Azden Demir¹

4 ¹ Kafkas University

5 *Received: 14 December 2012 Accepted: 4 January 2013 Published: 15 January 2013*

6

7 **Abstract**

8 The purpose of this study is to test the reliability and validity of Metacognition Scale (MS)
9 developed by Demir (2012) with a view to identifying perceptions of Education Faculty
10 students regarding metacognitive activities. The participants of the study are 250 randomly
11 chosen students who attend three different departments in Kafkas University Education
12 Faculty. The data were analysed through exploratory and confirmatory factor analysis to
13 enhance the construct validity. Internal consistency (Cronbach Alpha) co-efficiency was
14 evaluated for the reliability of the instrument. A 14-item instrument with ?evaluation?,
15 ?organization? and ?planning? sub-dimensions was developed as a result of the analyses
16 conducted. Cronbach Alpha internal consistency co-efficiency that explains 53.074

17

18 **Index terms**— metacognition, reliability, confirmatory factor analysis.

19 **1 Introduction**

20 learning is a lifelong process. In order for a person to learn completely and experience learning in different areas,
21 it is necessary for him or her to know, apply, and reuse what is learned by recalling. Otherwise, learning will
22 not be complete in situations that lack these three dimensions. Learning is a thinking process and the most
23 comprehensive structure in this process is individuals' own learning and awareness of teaching process, in other
24 words, metacognition.

25 Individuals who have metacognitive skills get into processes such as activating inner energy to solve a problem,
26 developing positive attitudes for accomplishing a task, being motivated, and paying attention. This process
27 requires self-awareness and selfcontrol. Another dimension of metacognition is knowledge and control of the
28 process. In this regard, learners evaluate what they know and what they should know, thus see where they are,
29 and plan the things they should do with a view to fulfilling their aims. Some other important elements include
30 reviewing the strategies that they developed, evaluating whether the strategies are appropriate for the aims,
31 choosing new strategies if they are not appropriate, and being aware of ways of thinking and developing them.
32 Metacognition starts with a process like this. However, in order for metacognition to take place, learners need
33 to comprehend the meanings of phenomenon, concept and generalizations, which requires metacognitive skills.

34 With their perception capacity, learners will first come across phenomenon which is small information particles,
35 then form concepts from the common distinguishing features, and reach the generalizations in the field by
36 establishing relationships between the concepts. The role of metacognition is unquestionable in understanding
37 the relationships between these. Hence, metacognition is a higher order thinking process; it will show up with
38 the skills and become an element that can form base for other skills. Kluwe (1982 in Louca, 2003) describes
39 metacognitive activities and addresses the dimensions of metacognition as 1) As a thinking topic, it is one's
40 having information about his/her own thinking as well as others' thinking, 2) As a thinking topic, it is one's
41 motioning and organizing his or her thinking processes as well as others'. Besides, Kluwe uses the term as an
42 administrative process to show both monitoring and organizing strategies (in ??ouca, 2003, p.11). ??rown's
43 (1978) definition includes applied cognition dimensions such as individuals' planning, monitoring, and reviewing

5 C) THE PROCESS OF PREPARING METACOGNITION SCALE (MS)

44 thinking (in ??aris & Winograd, 1990, p. 16-17). Roll (2007) points that metacognition encompasses two basic
45 skills: knowing about knowing (what do I know?), and organizing knowledge (How can I organize knowledge?)
46 (in ??oll, Alevin, McLaren & Koedinger, 2007, p.126).

47 Gaining metacognitive skills in teaching and learning processes helps learners to plan their work, to think
48 flexibly, and to solve problems effectively. Therefore, learning metacognitive skills contributes to permanent
49 learning. What forms learners' metacognitive skills are their various preferences developed by themselves in the
50 learning process according to their abilities and characteristics. Some of these skills are planning, monitoring
51 what to do and how to do it, and evaluating. Metacognition is a thinking process which takes place in
52 every phase of learning and reflects on students' behaviours. Information gaining process requires planning,
53 evaluating, observing, actively participating in the learning process, and taking control of one's own learning
54 process ??Do?anay, 1997, p.39).

55 Students themselves should choose, observe, and evaluate the topic they need as well as its depth and the
56 way of learning. Learning is a way of inferring meaning. Thus, some evidence for the fact that metacognition is
57 integrated with all thinking aspects is that individuals are aware of their own thinking in the things they are doing,
58 they use this awareness in monitoring the things they are doing, they use cognitive processes such as memory,
59 attention and imagination, and they use learning skills. Learning is a thinking process. Therefore, it becomes
60 more permanent with the increase in the thinking skills involved in learning. Processes related to cognition
61 and metacognition are integrated with each other in the learning process. Learning becomes more effective and
62 permanent when learning strategies such as memory which involves repetition, interpretation which involves
63 interpreting the stimulant, and organization which involves transfer are used together with metacognition.

64 In this regard, improving thinking processes and skills of Education Faculty students is closely associated with
65 the active use of metacognition, organization, monitoring, organization, and self-evaluation skills. Individuals
66 who are aware of learning to learn skills (planning, organization and evaluation) and develop these skills can take
67 the responsibility in the learning process as well as actively experiencing the feeling of self-fulfilment with the
68 responsibility they take. Thus, the main purpose of this study is to identify metacognitive skills of Education
69 Faculty students in learning and teaching environments and to develop an instrument to identify the metacognitive
70 skills of prospective teachers.

71 2 II.

72 3 Method a) Design of the Study

73 The present study aims to develop "Metacognition Scale" (MS) and test its validity and reliability at education
74 faculty level. The process of preparing the items in the scale involves preparing the scale items, receiving expert
75 opinions for content validity, conducting the pilot study, performing Exploratory Factor Analysis, Confirmatory
76 Factor Analysis (CFA), and validity and reliability in the analysis of the data.

77 4 b) Target Population and the Participants

78 Features of Target Population and the Participants: Target population of the study is 250 prospective teachers
79 who are enrolled in Kafkas University Education Faculty in 2011-2012 academic year. The participants of
80 the study are 250 students (168 students-67,2% in normal education, 72 students-28,8% in evening education,
81 and 10 students-4% who did not indicate their departments) enrolled in the three departments which were
82 identified according to nonrandom cluster sampling method (Departments of Classroom Teaching, Psychological
83 Counselling and Guidance, and Social Studies). Of all the students, 123 (49,2 %) are female, 123 (49,2%) are
84 male and 4 (1,6%) did not indicate gender. Findings regarding the department variable shows that 10 students
85 (4%) attend Social Science Department, 168 students (67,2 %) attend Psychological Counselling and Guidance
86 Department (Pcg), 59 ??23,6%) are enrolled in Classroom Teaching Department, and 13 students (5,2 %) did
87 not indicate their departments.

88 5 c) The Process of Preparing Metacognition Scale (MS)

89 The Process of preparing Metacognition Scale (MS) included the following stages suggested by De Vellis (2003):
90 Preparing the Item Pool: The development of the Metacognition Scale (MS) started with preparing the item
91 pool. Therefore, the related literature was reviewed with a view to improving metacognitive skills of prospective
92 teachers and identifying information on the features of these practices. The draft for the first items was prepared
93 in light of these identifications. Draft items were written in the framework of the "Metacognitive Skills" concept
94 which is defined operationally and composed of learner behaviours that improve metacognitive skills as well as
95 the practice setting aspects. These items were reviewed carefully so as to prepare a 100-item pool.

96 Expert Opinions for the Item Pool: The item pool was sent to three experts for their opinions. One of these
97 experts currently works as a secondary school teacher and has received thinking education course in the master
98 program. The second expert who is specialized on learning-teaching processes currently works in Çukurova
99 University, Education Faculty, Department of Educational Sciences. The third expert specialized on learning-
100 teaching processes works in Trakya University Education Faculty, Department of Educational Sciences and has
101 instructed thinking education course.

102 Pilot Study for MS: The 100-item inventory draft was tested for its language and comprehensibility with a
103 group of 30 students who are enrolled in the Social Studies teaching department. The items and the page layout
104 were revised in light of the suggestions. Before the actual study was conducted, the revised 80 item inventory was
105 piloted with 209 Education Faculty students from two different departments in one session in a classroom setting.
106 The first efforts that aim to identify the factor structure of MS included examining Kaiser-Meyer-Olkin (KMO)
107 coefficient and Barlett Sphericity factor analysis results with a view to identifying the appropriateness of the data
108 for factor analysis. Results show that the values are statistically significant (KMO=0.879; Barlett Sphericity test
109 $\chi^2 = 1.539$ df =153 p<.001). Results of the pilot study for the Metacognition Scale (MS) which was conducted
110 with 209 students show that the 18-item form has .89 Cronbach Alpha reliability level in total, .86 in the first
111 sub-factor (evaluation) (5 items), .81 in the second sub-factor (organization) (5 items), .80 in the third sub-factor
112 Table ?? displays factor analysis that is reached with eight iterations and results with four factors as well as
113 factors, factor loads, and factor eigen values obtained from the reliability analyses, variance percentages and
114 Cronbach Alpha values explained by the factors, revised item-total correlations in relation to the items, revised
115 item-total correlations belonging to the items (r), common variances, and t values. Factor structure of MS
116 was examined with Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Exploratory
117 factor analysis aims to explore factor structure based on the relationships between variables. Confirmatory factor
118 analysis which investigates model-data compatibility tests the hypothesis developed regarding the relationships
119 between variables (Tabachnick & Fidell, 2001).

120 The first component obtained from the analyses is the "evaluation" dimension formed by the 24 th , 23 rd ,
121 25 th , 26 th , and 27 th items. Some of the items in this instrument are "I visualise what I have learnt with
122 a view to monitoring my understanding", "I question my understanding while listening to the lesson", and "I
123 sometimes review the topics with a view to understanding the important relations about the content of the topic".
124 Factor loads of the 18 items in this subscale are between .64 and .85 and item-total correlations are between .55
125 and .63. Cronbach Alpha internal consistency coefficient is .86. Exploratory factor analysis results show that
126 the second component in the MS are composed of ten items about the organization dimension of metacognition
127 such as "I make guesses about the possible solutions to the problem in a topic that I do not know, and "I use
128 different thinking techniques and strategies with a view to answering different questions about the content of the
129 lesson" (Item pool numbers: 63, 75, 76, 77, and 80). Factor loads of the items in this factor called "Organizing"
130 range between .63 and .77; item-total score correlations are between .37 and .61, and Cronbach Alpha internal
131 consistency coefficient is .81. The third factor in MS according to the analysis results is the five items that
132 include statements such as "I can identify the critical concepts of the lesson", "I can organize the information
133 about the topic to be learned". This factor is called "organization". Factor loads of these items with .80 Cronbach
134 Alpha internal consistency (Item Numbers: 72, 68, 74, 70 and 71) range between .55 and .80; and the item-total
135 correlations are between .44 and .63. The fourth factor in MS according to analysis results is the one that deals
136 with the planning dimension of metacognition: "I am aware of my own thinking", "Receiving support from the
137 teacher about the content of the lesson helps me to become a successful student". This factor is called "Planning".
138 Factor loads of these items in this sub-dimension with .58 Cronbach-Alpha internal consistency coefficient (Item
139 numbers 3, 12, and 48) range between .46 and .83, and item-total correlations between .39 and .50. Four sub-
140 dimensions explain 60.46 % of the total variance. Cronbach Alpha Internal Consistency of the whole scale is .89.
141 Guttman Split Half values which were performed with a view to finding out the stability or consistency between
142 the two halves are .76 for the "Evaluation" sub-dimension, .76 for the "Monitoring" sub-dimension, .80 for the
143 "Organization" sub-dimension , .43 for the "Planning" sub-dimension, and .81 for the whole scale. An analysis
144 of Table ?? in terms of factor loads indicates that the factor loads range between .46 and .85. When analysed in
145 terms of the items loaded on more than one factor, the items were found to be generally loaded on the related
146 sub-scales with significant differences (generally .30 and over). In addition to these, total scores the participants
147 got from the 18 items were grouped according to top and bottom 27% groups and examined whether the items
148 distinguished these two groups. As a result of this analysis, all the items were found to distinguish the groups
149 significantly (p<.001). Mean scores belonging to the remaining 18 items were found to range between 3.43 and
150 4.09, and the standard deviations between .87 and 1.18.

151 Confirmatory factor analysis was conducted with a view to testing the accuracy of the four-factor structure.
152 Although there are many statistics for data accuracy, the most common indicators are χ^2 , χ^2/df , RMSEA, NNFI,
153 CFI and GFI values (Sümer, 2000; Çokluk, Büyüköztürk & ?ekercio?lu, 2010). Confirmatory factor analysis
154 conducted for reviewing the compatibility of the four-factor model of MS with the data collected and chi-square
155 value performed for model-data compatibility were found to be significant ($\chi^2 = 211.05$, $sd=129$, p<.01).

156 Examination of the four-factor model which was tested with CFA shows that fit indices values RMSEA=0.055
157 and $\chi^2/df=1.63$ value and RMR=0.050, STRMR=0.057, GFI=0.90, AGFI= 0.87, NFI=0.85, NNFI=0.92,
158 CFI=0.93 values are suitable for the recommended criteria. Standardized coefficients that show the relationships
159 of the factors with the items were found to range from 0.47 to 0.80, and all of them were significant at .01 level. A
160 general analysis of the model fit indices indicates that the model reaches a medium level fit, but displays a good
161 consistency with the RMSEA=0.055, $\chi^2/df=1.63$ values (Tabachnick and Fidell, 2001; ??n; ??okluk et al., 2010,
162 271) d) Analysis of the Data Reliability and validity analysis of the Metacognition Scale included performing
163 Cronbach Alpha analysis for reliability, receiving expert opinions for content validity, and performing explanatory
164 factor analysis and confirmatory factor analysis for construct validity. Besides, arithmetic means and standard

5 C) THE PROCESS OF PREPARING METACOGNITION SCALE (MS)

165 deviation values of the items and item-total correlations were examined, and their item discrimination strength
166 was calculated using t-test analysis. Mean scores, t-test, and one-way variance analysis techniques were used
167 with a view to comparing the data in terms of gender, education type, and department variables. The calculation
168 of the skew and kurtosis coefficient of the items in each sub-scale, item-total score correlations, correlation
169 matrix values of the items, their common variances, factor loads (at least .30), and the differences between the
170 factor loads loaded on more than one factor (at least .20) were examined and found that four items should be
171 excluded from the scale. These calculations were performed using principal components factor extraction and
172 orthogonal (varimax) rotation. Kaiser-Meyer-Olkin (KMO) and Barlett Sphericity test results were examined for
173 the factor structure of the gender sub-scale of the Metacognition Scale with a view to finding out whether the
174 data are appropriate for factor analysis. These values were found to be statistically significant in the gender
175 sub-scale (KMO =.914; Barlett Sphericity test $\chi^2 = 1.853$ df =153 p<.001). Results obtained from the student
176 administration of the scale with 250 students show that Cronbach Alpha reliability value of the 14-item, three
177 dimension form is .89, it is .87 in the first sub-factor , .65 in the second sub-factor and .70 in the third subfactor.
178

179 The first results of the factor analysis show that the scale has three components over 1.00 eigen value. However,
180 the items collected under the factors apart from the first three components with eigen value of over 2.00 were
181 either too few in number (one or two items) or had factor loads of over .30 under other components as well, and
182 the loads under the two components were found to be close to each other. Scree plot of the eigen values was
183 analysed and found that the most significant skew occurred in the third factor. The most frequently used criteria
184 in the process of identifying the total factor number included eigen value, percentage of contribution to the total
185 variance, and scree plot (DeVellis, 2003; ??alayc?,2009). Cattel (in DeVellis, 2003) points that the factor number
186 till the scree plot takes a horizontal shape can be used as a criterion in identifying the appropriate factor number.
187 Beside these values, considering that the item pool was prepared under three main titles (F1: Evaluation, F2:
188 Organization, F3: Planning), the factor analysis was reperformed limiting it with three components.

189 Table 2 displays factor analysis that is reached with two iterations and results with three factors as well as
190 factors, factor loads, and factor eigen values obtained from the reliability analyses, variance percentages and
191 Cronbach Alpha values explained by the factors; revised item-total correlations in relation to the items; revised
192 item-total correlations belonging to the items (r), common variances, and t values. Factor structure of MS was
193 examined with Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Exploratory factor
194 analysis aims to explore factor structure based on the relationships between the variables. Confirmatory factor
195 analysis which investigates the model-data compatibility tests the hypothesis in relation to variables. (Tabachnick
196 & Fidell, 2001). The first component obtained from the analyses is the "Evaluation" dimension formed by the 4
197 th , 9 th , 3 rd , 5 th , 11 th , 1 st and 8 th items. Some items in this scale are "I visualise what I have learnt with
198 a view to monitoring my understanding". Factor loads of 7 items in this sub-scale range between .62 and .75, and
199 itemtotal correlations between .56 and .70; Cronbach Alpha internal consistency is .87. According to exploratory
200 factor analysis results, the second component in the MS includes three items in relation to the organization
201 dimension of metacognition such as: "While listening to the lesson, I sometimes review the topics with a view
202 to understanding the important relationships regarding the content of the lesson" (Item numbers 12, 16 and
203 13). Factor loads of these items called "Organization" range between .58 and .66, and item-total correlation is
204 between .48 and .61; Cronbach Alpha internal consistency coefficient is .65. Analysis results show that the third
205 factor in MS is composed of four items regarding the planning dimension of metacognition: "I can create the
206 necessary conditions so as to form the aims of the course" and "I can organize the information about the topic to
207 be learned". This factor is called "Planning". Factor loads of the items in this sub-scale with .70 Cronbach Alpha
208 Internal consistency coefficient (item numbers ??4, 17, 6, and 18) range between .58 and .70; and the item-total
209 correlations between .46 and .52. The three sub-scales explain 53.074 % of the total variance. Cronbach Alpha
210 internal consistency of the whole scale is .89. Guttman Split Half values which were performed with a view to
211 finding out the stability or consistency between the two halves are .84 for the "Evaluation" sub-scale, .50 for the
212 "Organization" subscale, .58 for the "Organization" sub-scale , .58 for "Planning" sub-scale, and .82 for the whole
213 scale. An analysis of Table ?? in terms of factor loads indicates that the factor loads range between .58 and .75.
214 When analysed in terms of the items loaded on more than one factor, the items were found to be generally loaded
215 on the related sub-scales with significant differences (generally .30 and over). Arithmetic means of the 14 items
216 range from 3.61 to 4.25 while the standard deviations from .94 to 1.26. Besides, total scores the participants
217 got from the 14 items were grouped according to top and bottom 27% groups and examined whether the items
218 distinguished these two groups. As a result of this analysis, all the items were found to distinguish the groups
219 significantly (p<.001). Arithmetic means of the remaining 14 items range from 3.61 to 4.25 while the standard
220 deviations from 94 to 1.26.

221 Table 3 demonstrates correlation matrix, arithmetic mean, and standard deviation values in relation to the
222 Metacognition Scale and its sub-scales. As seen in Table 3, the first sub-scale in MS demonstrates significant
223 relationships between the second and third total scores ($p<0.01$, $p<0.05$), and the second sub-scale between the
224 first and third total scores ($p<0.01$, $p<0.05$). The third sub-scale displays significant relationships between the
225 first and the third sub-scales and with the total score ($p<0.01$, $p<0.05$). The total dimension of the scale shows
226 a positive significant relationship with all the sub-scales ($p<0.01$, $p<0.05$). Arithmetic mean values in relation
227 to MS total and sub-scales range between 11.13 and 53.42 and standard deviations between 2.57 and 9.46.

228 Confirmatory Factor Analysis: There are a number of fit indices used in CFA with a view to testing the

228 validity of the model. The most frequently used ones among these are chi-square conformance test, Goodness of
229 Fit Index (GFI), Adjusted Goodness of Fit Index (AGFI), Comparative Fit test (CFI), Normed Fit Index (NFI),
230 the Non-normed Fit Index (NNFI), and Root Mean Square Error of Approximation (RMSEA).

231 It is indicated that if the (χ^2/sd) proportion calculated with CFA is lower than 5, the model is compatible
232 with the real data (Sümer, 2000). Confirmatory factor analysis was performed with a view to testing the validity
233 of the three-factor structure identified. Although there are many statistics for data accuracy, the most common
234 indicators are χ^2 , χ^2/df , RMSEA, NNFI, CFI and GFI values (Sümer, 2000; Çokluk, Büyüköztürk and ?ekercio?lu,
235 2010). Confirmatory factor analysis was performed with a view to testing the validity of the structure obtained
236 from the exploratory factor analysis.

237 Confirmatory factor analysis conducted for reviewing the compatibility of the three-factor model with the data
238 collected; and chi-square value performed for model-data compatibility were found to be significant ($\chi^2=151.90$,
239 $sd=74$, $p<.01$). Some conformity statistics found using the same analysis are ($\chi^2/sd=2.05$, RMSEA=0.064,
240 RMR=0.045, GFI=0.92, AGFI=0.89, NNFI=0.91, NFI=0.87, CFI=0.93. With the first modification conducted
241 (between M13 and M14), confirmatory factor analysis of the three-factor model and chi-square values for model-
242 data compatibility were found to be significant $\chi^2=116.68$, $sd =73$, $p<.01$. Some conformity statistics found
243 using the same analysis are ($\chi^2/sd=1.59$, RMSEA=0.048, RMR=0.044, GFI=0.94, AGFI=0.91, NNFI=0.95,
244 NFI=0.90, CFI=0.96. A general analysis of the model fit indices indicates that the model reaches a medium level
245 fit, but displays a perfect consistency with the RMSEA=0.048, $\chi^2/df=1.59$ values (Tabachnick and Fidell, 2001;
246 ??n; ??okluk et al., 2010, 271).

247 **6 Discussion, Conclusion and Recommendations**

248 MS process has included the use of many fit indices such as Chi-square Conformity Test (χ^2), Goodness of Fit
249 Index (GFI), Adjusted Goodness of Fit Index (AGFI), Comparative Fit test (CFI), Normed Fit Index (NFI), the
250 Non-normed Fit Index (NNFI), and Root Mean Square Error of Approximation (RMSEA) (?imsek, 2007;Hoe,
251 2008).

252 Confirmatory factor analysis was performed with a view to testing the validity of the three-factor structure
253 identified in the exploratory factor analysis. Confirmatory factor analysis conducted for reviewing the
254 compatibility of the three-factor model of MS with the data collected and chi-square value performed for model-
255 data compatibility were found to be significant $\chi^2=151.90$, $sd=74$, $p<.01$. Some conformity statistics found
256 using the same analysis are($\chi^2/sd=2.05$, RMSEA=0.064, RMR=0.045, GFI=0.92, AGFI=0.89, NNFI=0.91,
257 NFI=0.87, CFI=0.93. The indicators showing the general compatibility of the factor structure are that the
258 chi-square compatibility test is not significant; CFI, NNFI, NFI values are over .90; GFI and AGFI values are
259 over .75; the ratio of χ^2/df is 3 or lower; and RMSE significance level is 0,064.

260 With the first modification conducted (between M13 and M14) in DFA, confirmatory factor analysis of the
261 three-factor model and chi-square value performed for model-data compatibility were found to be significant
262 ($\chi^2=116.68$, $sd=73$, $p<.01$). Some conformity statistics found using the same analysis are ($\chi^2/sd=1.59$,
263 RMSEA=0.048, RMR=0.044, GFI=0.94, AGFI=0.91, NNFI=0.95, NFI=0.90, CFI=0.96. A general analysis of
264 the model fit indices indicates that the model reaches a medium level fit, but displays a perfect consistency with
265 the RMSEA=0.048, $\chi^2/df=1.59$ values (Tabachnick and Fidell, 2001; ??n; ??okluk et al., 2010, 271).Confirmatory
266 factor analysis was performed with a view to testing the original factor structure of MS which was also supported
267 by expert opinions; the 14 items in the scale were found to be valid for Education Faculty students. These values
268 reveal that the data compatibility of the model is sufficient (Kline, 1998; Kelloway, 1998). The present study has
269 developed a reliable, 14-item instrument in that Cronbach Alpha internal consistency level for the whole scale is
270 .89; it is .87 in the evaluation sub-dimension, .65 in the second factor, and .70 in the third factor.

271 In line with the features of the items in factors, the first factor was identified as "evaluation", the second one
272 as "organization", and the third one as "planning". This instrument, which is valid and reliable according to the
273 results, is the first instrument in Turkey which was developed using confirmatory factor analysis with a view to
274 identifying perceptions of education faculty students regarding metacognition.

275 Considering the results of the validity and reliability study conducted with education faculty students and
276 considering that the instrument can measure perceptions of education faculty students regarding metacognition
277 with a three-factor structure; ? The scale is valid and reliable;

278 ? The results to be obtained from the real administration of the scale can provide feedback about students'
279 perceptions regarding metacognition;

280 ? The scale developed can be analysed in the future at meta-analytical level with various participants. ? It
281 is thought that MS can be used in experimental and descriptive studies which aim to identify perceptions of
282 education faculty students regarding metacognition.

1 2 3 4

¹20 2

²()G

³© 2013 Global Journals Inc. (US)

⁴2 30 ()

Figure 1:

\bar{X}

Figure 2:

2

Values in the Metacognition Scale

Figure 3: Table 2 :

A Validation and Reliability Study of the Metacognition Scale in Turkey

displays
t-test
results
of the
stu-
dents'

answers given for evaluation, organization, and planning dimensions according to gender variable.

Sub-dimensions	Gender	N		X	S	Sd	t	p
Evaluation	Female	123	28,30	5,46	Male	123	27,05	5,76
							244	1.596
								.112
Organization	Female	123	11,59	2,28	Male	123	10,58	2,77
							244	3.132
								0.02
Planning	Female	123	14,73	2,57	Male	123	14,49	3,08
							244	,677
								.499
Metacognition Total	Female	123	54,53	8,79	Male	123	52,13	9,85
							244	2.018
								.045

[Note: © 2013 Global Journals Inc. (US)]

Figure 4: Table 4

Figure 5: Table 3 :

Figure 6: Table 4 :

6 DISCUSSION, CONCLUSION AND RECOMMENDATIONS

6

	Sub-dimensions	Source of Variance	KT	Sd	KO	F	P	Dif- fer- ence (LSD)
Evaluation		Intergroup	299,355	2	149,677	7252,909	234	30,995
	Intra-groups							4,829 ,009
	Total		7552,264	236				
Organization		Intergroup	56,354	1451,948	234	6,205	2	28,177
	Intra-groups							4,541 ,012
	Total		1508,301	236				
Planning		Intergroup	56,869	1782,280	234	7,617	2	28,434
	Intra-groups							3,733 ,025
	Total		1839,149	236				
Total		Intergroup	1010,817	2	505,409			
	Intragroup							6,044 ,003
	Total		19566,915	234	83,619			
		Total	20577,733	236				

As seen in Table 6, the level of participants' metacognition skills differs significantly depending on the departments they are attending (evaluation: $[F(2,236)=4.829; p<.05]$, organization: $[F(2,236)=4.541; p<.05]$; planning: $[F(2,236)=3.733; p<.05]$; and total: $[F(2,236)= 6.044; p<.05]$). The results of LSD test performed with a view to finding out the departments

that display differences indicate that there is a difference in favour of the Pcg department. Table 7 presents t-test results for the participants' answers in relation to evaluation, organization, and planning dimensions according to education variable.

[Note: A © 2013 Global Journals Inc. (US)]

Figure 7: Table 6 presents

6

Department Variable

Figure 8: Table 6 :

5

Metacognition Scale (MS)

Figure 9: Table 5 :

Figure 10:

-
- 283 [European Journal of Psychological Assessment] , *European Journal of Psychological Assessment* 18 (2) p. .
- 284 [Sanders et al. ()] , R D Sanders , D N Allen , S D Forman , T Tarpey , M S Keshavan , G Goldstein . 2005.
- 285 [A Validation and Reliability Study of the Metacognition Scale in Turkey] *A Validation and Reliability Study of the Metacognition Scale in Turkey*,
- 286 [Heubeck and Neill ()] 'Confirmatory factor analysis and reliability of the mental health ?nventory for australian adolescents'. B G Heubeck , J T Neill . *Psychological Reports* 2000. 87 p. .
- 287 [Lewis et al. ()] *Confirmatory factor analysis of the french translation of the abbreviated form of the revised eysenck personality questionnaire*, C A Lewis , L J Francis , M Shevlin , S Forrest . 2002. EPQR-A.
- 288 [Confirmatory factor analysis of the neurological evaluation scale in unmedicated schizophrenia Psychiatry Research] 'Confirmatory factor analysis of the neurological evaluation scale in unmedicated schizophrenia'. *Psychiatry Research* 133 p. .
- 289 [Roll et al. ()] *Designing for metacognition-applying cognitive tutor principles to the tutoring of help seeking*", *Metacognition Learning* (2007) 2: ,ss, I Roll , V Aleiven , B M McLaren , K R Ve Koedinger . 2007. p. .
- 290 [Dorman and Knightley ()] 'Development and validation of an instrument to assess secondary school students' perceptions of academic tasks'. J P Dorman , W M Knightley . *Educational Studies* 2006. 32 (1) p. .
- 291 [Kahn ()] 'Factor analysis in counseling psychology research, training, and practice: principles, advances, and applications'. J H Kahn . *The Counseling Psychologist* 2006. 34 (5) p. .
- 292 [Paris and Ve Winograd ()] 'How metacognition can promote academic learning and instruction'. S G Paris , P Ve Winograd . *Dimension of Thinking and Cognitive Instruction*, B F Jones Ve, L Idol (ed.) (New Jersey) 1990. NCREL-Lawrence Erlbaum Associates Publishers.
- 293 [Ingles et al. ()] 'Interpersonal difficulties in adolescence: a new selfreport measure'. C J Ingles , M D Hidalgo , F X Mendez . *European Journal of Psychological Assessment* 2005. 21 (1) p. .
- 294 [Hoe ()] 'Issues and procedures in adopting structural equation modeling technique'. S L Hoe . *Journal of Applied Quantitative Methods* 2008. 3 (1) p. .
- 295 [Corral and Calvete ()] 'Machiavellianism: dimensionality of the mach IV and ?ts relation to selfmonitoring in a spanish sample'. S Corral , E Calvete . *The Spanish Journal of Psychology* 2000. 3 (1) p. .
- 296 [Olivares et al. ()] 'Relationships among social anxiety measures and their ?nvariance'. J Olivares , L J Garcia-Lopez , M D Hidalgo , V Caballo . *European Journal of Psychological Assessment* 2004. 20 (3) p. .
- 297 [Devellis ()] *Scale development: Theory and applications*, R F Devellis . 2003. Thousand Oaks: Sage Publications. (Second Edition)
- 298 [Çokluk et al. ()] *Sosyal Bilimler ?çin Çok De?i?kenli ?statistik: SPSS ve LISREL Uygulamalar?*. Pegem Akademi, Ö Çokluk , G ?ekercio?lu , ? Büyüköztürk . 2010. Ankara.
- 299 [Kalayc? ()] *SPSS uygulamal? çok de?i?kenli istatistik teknikleri. Dördüncü bask?*, ? Kalayc? . 2009. Ankara: Asil Yay?n da??t?m.
- 300 [Klein ()] 'Standards for teacher tests'. S P Klein . *Journal of Personnel Evaluation in Education* 1998. 12 (2) p. .
- 301 [Johnson et al. ()] 'Teachers' perceptions of school climate: a validity study of scores from the revised school level environment questionnaire'. B Johnson , J J Stevens , K Zvoch . *Educational and Psychological Measurement* 2007. 67 (5) p. .
- 302 [Louca ()] *The concept and ?nstruction of metacognition*, Louca . ss. 9-30. 2003. Teacher Development. 7.
- 303 [Smolleck et al. ()] 'The development and validation of an instrument to measure preservice teachers' selfefficacy in regard to the teaching of science as inquiry'. L D Smolleck , C Zembal-Saul , E P Yoder . *Journal of Science Teacher Education* 2006. 17 p. .
- 304 [Kelloway ()] *Using lisrel for structural equation modeling: a researcher's guide*, E K Kelloway . 1998. United States of America: Sage Publications.
- 305 [Tabachnick and Fidell ()] *Using multivariate statistics, Fourth Edition*, B G Tabachnick , L S Fidell . 2001. New York: Harper Collins Publishers.
- 306 [?imsek ()] *Yap?sal e?itlik modellemesine giri? temel ilkeler ve lisrel uygulamalar?*, O F ?imsek . 2007. Ankara: Ekinoks.
- 307 [Sümer ()] 'Yap?sal e?itlik modelleri: Temel kavramlar ve ornek uygulamalar'. N Sümer . *Turk Psikoloji Yaz?lar?* 2000. 3 (6) p. .
- 308 [Do?anay ()] 'Üst düzey dü?ünme becerilerinin ö?retimi'. A Do?anay . *Ö?retim ilke ve yöntemleri*. Ankara: PegemA Yay?nc?l?k, A Do?anay (ed.) 2007. p. .