

Landsat ETM-7 for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Yemen

anwar abdullah¹ and anwar abdullah²

¹ Taiz University, Taiz, Yemen

Received: 15 December 2012 Accepted: 2 January 2013 Published: 15 January 2013

Abstract

8 The application of remote sensing technology may cover many fields of studies, especially in
9 structure geology, and mineral exploration, where the remote sensing is a useful for lineaments
10 and structure features extractions. Landsat ETM-7 satellite data were used and band -5 was
11 found as the most suitable band in automatic delineation. The automatic lineament
12 extraction process was carried out with LINE module of PCI Geomatica V9.1 based on
13 automatic detection algorithms (canny algorithms). The comparison of the automatic
14 lineament extraction and the published fault maps of the area in terms of total length, number
15 of lineaments and directions. The number and the total length of the lineaments using
16 automatic method were found to be more than the number and the total length of the faults
17 in the fault map. The directional analysis of the automatic lineament map was done with the
18 reference of fault map of the area and the structure features measured in the field.

Index terms—

1 Introduction

22 In recent years, remote-sensing has been increasingly used for obtaining geoscientific data for both regional and
 23 small scales of investigations. Landsat Enhanced Thematic Mapper plus (ETM+) data in digital format were
 24 preferred data due to the availability of seven bands ranging from visible to mid-infrared with 30 m spatial
 25 resolution, and one thermal band with 60 m spatial resolution, this permitted a large spectrum of band
 26 combinations, useful in visual interpretation of different features. Studies of linear geologic features (lineaments)
 27 of both local and regional significance have been progressing rapidly. Lineaments have long attracted the interest
 28 of field geologists with remote sensing satellite imagery that the character and extent of these features have
 29 been realized, and lineament analysis of remotely sensed data, either by visual or automatic interpretation, is a
 30 valuable source of information for studying the structural setting. A lineament is any extensive linear surface
 31 on a planet, as a fault line or fracture line. The term "lineament" is one of the most commonly used terms in
 32 geology. Hobbs [1] first used the term lineament to define a "significant line of landsc-
 33 Author ? ? ? : Geology Department, Faculty of Applied Science, Taiz University, Taiz, Yemen. E-mail : alhrani@gmail.com
 34 ape within basement rocks. O'Leary et al. [2] described the term lineament as a mappable simple or composite linear feature
 35 of a surface whose parts are aligned in a rectilinear or slightly curvilinear relationship and which differ from the
 36 pattern of adjacent features and presumably reflects some sub-surface phenomenon. The purpose of this study
 37 was to test the automated lineament extraction method for detecting the lineaments over the study area, and to
 38 investigate the ability of this method in giving real results compared to the fault map.

Figure 1, shows the study area is located in the western part of Taiz state and extend between Jabal Habashi and Turbah Mawaset. It includes the highest mountains, about 2800m above the sea level. The structural map of the study area (Figure 2) was digitized from geological sheet map of Taiz with scale 1:250,000.

3 RESULTS AND DISCUSSION

42 2 Materials and Methods

43 There are several techniques that were developed for determine the linear features and geomorphologic
44 characteristics of the terrain. According to this paper the automatic lineament delineation was based on decision
45 of the most appropriate band for edge enhancement, followed by edge sharpening enhancement technique which
46 gives the best result of lineaments that are not delineated by human eyes, and apply LINE module of PCI
47 Geomatica V9.1 for recognized lineaments. Landsat ETM-7 satellite data were used and the first step was
48 to select the band that should be used for lineament extraction (Süzen and Toprak [4]; Madani [5]). Visual
49 inspection of the individual bands was carried out, based on the ability to identify features, and band 5 (1.55
50 -1.75 ?m) (SWIR) was selected and it was stretched linearly to output range 0 to 255 (Figure 3). The second
51 step was to select the filter type. For this purpose, different types of filters are tested. Edge sharpening filter was
52 the best which convolved over band 5. Edge sharpening enhancements make the shapes and details for analyses
53 ??Richards [6]). Edge sharpening was applied using PCI Geomatic software package. And finally the final image
54 of the study area was used for automatic lineament extraction. According to Abdullah, A et al. [7], the lineament
55 extraction algorithm of PCI Geomatica software consists of edge detection, thresholding and curve extraction
56 steps. These steps were carried out over band 5 image under the default parameters of the software as follows:
57 RADI = Radius of filter in pixels, GTHR = Threshold for edge gradient, LTHR = Threshold for curve length,
58 FTHR = Threshold for line fitting error, ATHR = Threshold for angular difference, and DTHR= Threshold for
59 linking distance (PCI Geomatica [8]).

60 According to the six parameter above. Several lineament maps were generated using different threshold values.
61 The most suitable threshold values were selected (below) considering these lineaments as fault lines. General
62 properties of faults were taken into consideration such as the length, curvature, segmentation, separation and so
63 on in order to determine the threshold values. The parameters in this application are selected as follows:

64 ?RADI=12, ?GTHR=80, ?LTHR=30, ?FTHR=10, ?ATHR=30, ?DTHR=15.

65 3 Results and Discussion

66 Lineament maps are generated using different values. The most suitable values were selected as mentioned in the
67 above section considering these lineaments as fault lines (Figure 4). In order to test the ability of this method to
68 extract the lineaments. The results obtained from automatic lineament detection need to be checked (Abdullah,
69 A et al. [9]). For this purpose, the fault map of the study area was used in this work.

70 As seen in Table ??, it was noticed that the automatic lineament map has the higher lineaments number
71 compared with the fault map. The highest score of the lines number was recorded in the automatic lineament
72 map as 362 and whereas the lowest score of the lines number was recorded in fault map as 25. Year 2013 B Table
73 ?? : Basic statistics of the automatic lineaments map and fault map The total length of lineaments was (539) km
74 for automatic map, and (154) km for fault map. And the average length of lineaments was (1) km for automatic
75 map and (??) km for fault map. The total length of lineaments was 539 km which was the highest value. The
76 maximum length of lineaments was (17) km for automatic map, and (21) km for fault map. And the minimum
77 length of lineaments was (0.855) km for automatic map, and (0. 711) km for fault map.

78 The number and the total length of the lineaments using automatic method were more than the number and
79 the total length of the faults in the fault map. This result was possibly due to the fact that the automatic
80 lineament extraction method approach does not discriminate man made features during the analysis, as well as
81 the automated lineament extraction method was worked successfully over the hilly area (topography might be
82 the main reason for this problem which was eliminated in the data bands and easy to extract by using automatic
83 method). This leads to increases the total number and length of the lineaments.

84 The most important factor for this was that the lineaments in an automated one were shorter in length so
85 that a few of them could be combined to form one long lineament.

86 The orientations of lineaments and faults lines were created by using rose diagrams (Figure 5) and the results
87 mostly showed great similarities. The main trends observed in the structural truth map (fault map), field features
88 and the lineament map could be recognized in these diagrams, showing strongly major trend in NE-SW, and the
89 subdominant directions were in E-W, NW-SE and N-S. All these lineaments directions were coincide with the
90 major faults directions.

91 Generally, the pattern of the lineament maps extracted from Landsat ETM-7 data suggests that some faults
92 belonging to the some areas were properly identified in the study area. Lineaments in other parts especially in
93 the central and southern sections display a typical pattern of the faults such.

94 There were some of lineament lines in the lineament map could not matched any fault line in the output
95 map of the fault map, also there were some fault lines in the fault map could not matched any lineament
96 lines in the lineament map. This means the algorithm of the automated lineament extraction method does
97 not work successfully to identify all the linear features existing in the area, and it needs some mathematical
98 enhancements and applying it with different satellite images, different resolutions, and different geological
99 environments. Anyhow, this technique may be still a good technique in the moment but, expert knowledge
100 is always required to evaluate the extracted lineaments.

101 Automated methods require an inordinate amount of computer processing of the image and adequate
102 algorithms for lineament identification which at the present time are still being develop and would still not

103 produce an accurate map devoid of cultural effects. This means that the machine method still requires some
104 interaction to eliminate cultural effect.

105 **4 Dominant directions of faults Dominant directions of lineaments**

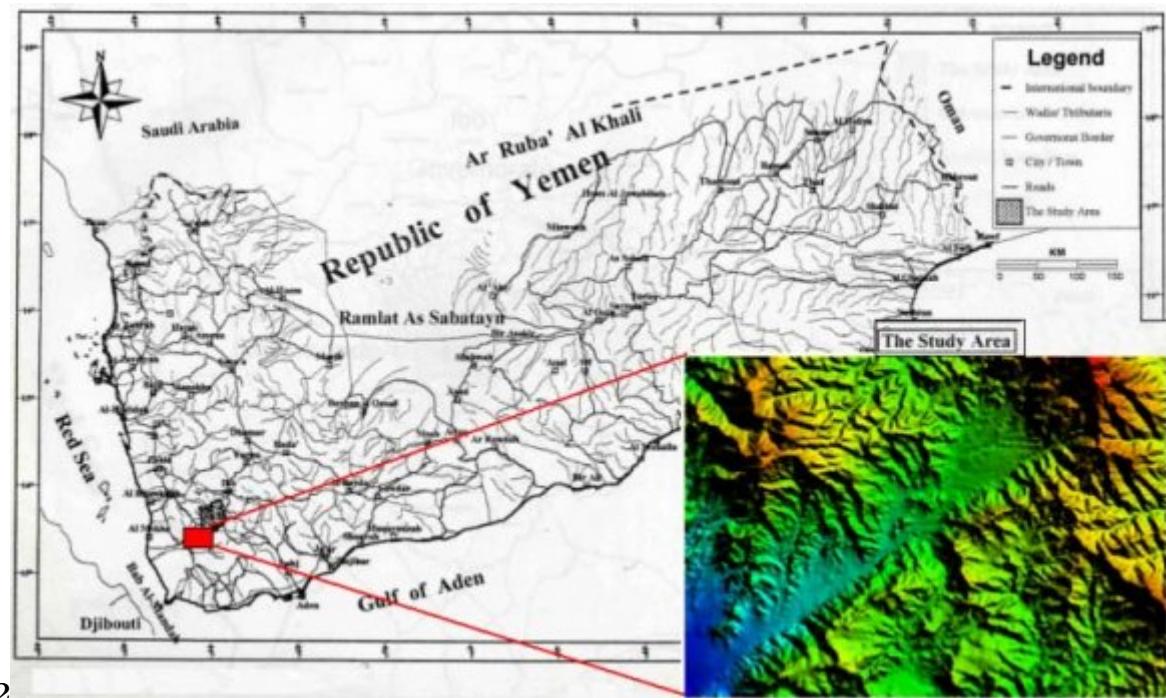
106 **5 Conclusions**

108 Landsat (ETM-7) imagery has higher spatial resolution (30 m) was providing us a powerful for lineament study
109 and analysis especially in the semi arid area. The image enhancement was one of the useful tools to improve
110 the interpretability or perception of information in images for human viewers, or to provide better input for
111 automated image processing techniques, one of those enhancements is edge sharpening enhancement technique
112 for enhancing the edges in an image. Automatic lineament delineation was developed for minimizing the power
113 and saving time. Whereas, non-geological and artificial lineaments may be added to the final lineament map
114 due to the nature of algorithms used. Automatic methods needs advance mathematical algorithms and proved
115 this enhancement by applying it with different satellite images, different resolutions, and different geological
116 environments to improve this technique.

117 **6 Global Journal of Human Social Science**

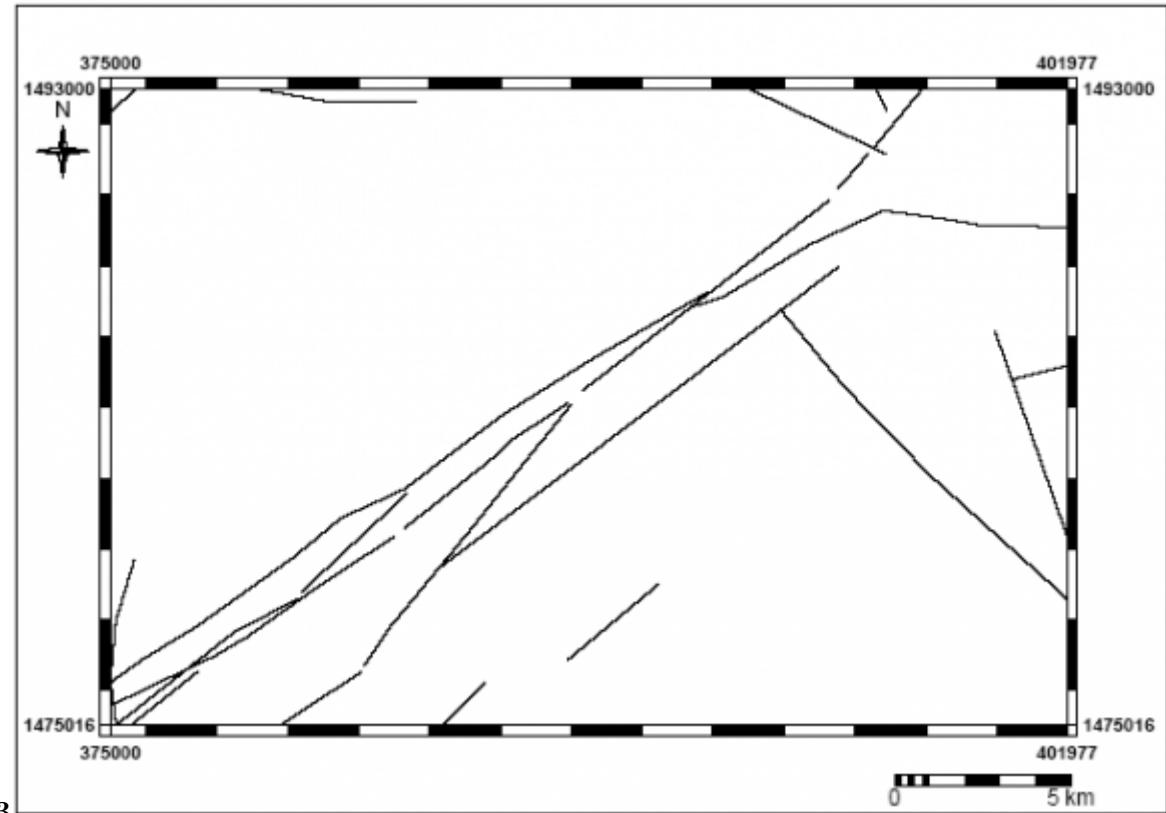
Figure 1: Figure 1 :

118 1 2 3 4 5


¹© 2013 Global Journals Inc. (US)

²for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Landsat ETM
7 for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Yemen

³for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Landsat ETM
7 for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Yemen


⁴© 2013 Global Journals Inc. (US) 20

⁵for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Landsat ETM
7 for Lineament Mapping using Automatic Extraction Technique in the SW part of Taiz area, Yemen

2

Figure 2: Figure 2 :

3

Figure 3: Figure 3 :

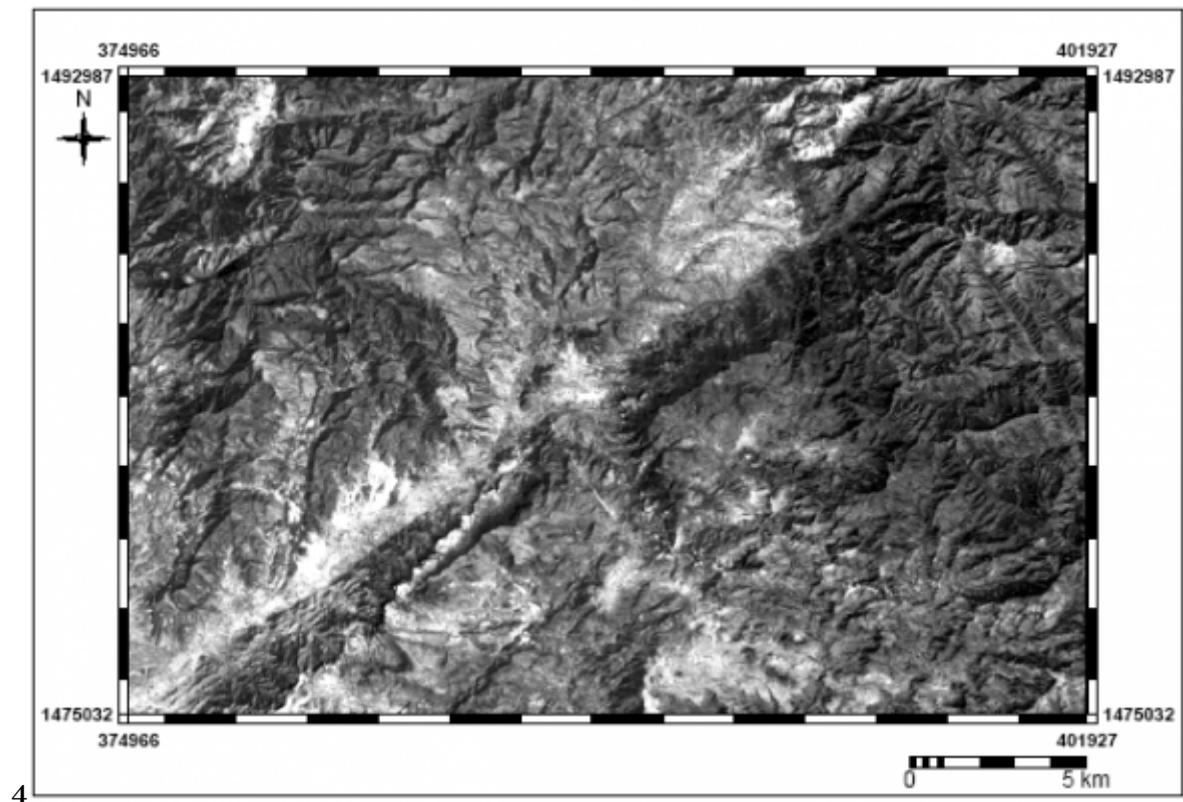


Figure 4: Figure 4 :



Figure 5: Figure 5 :

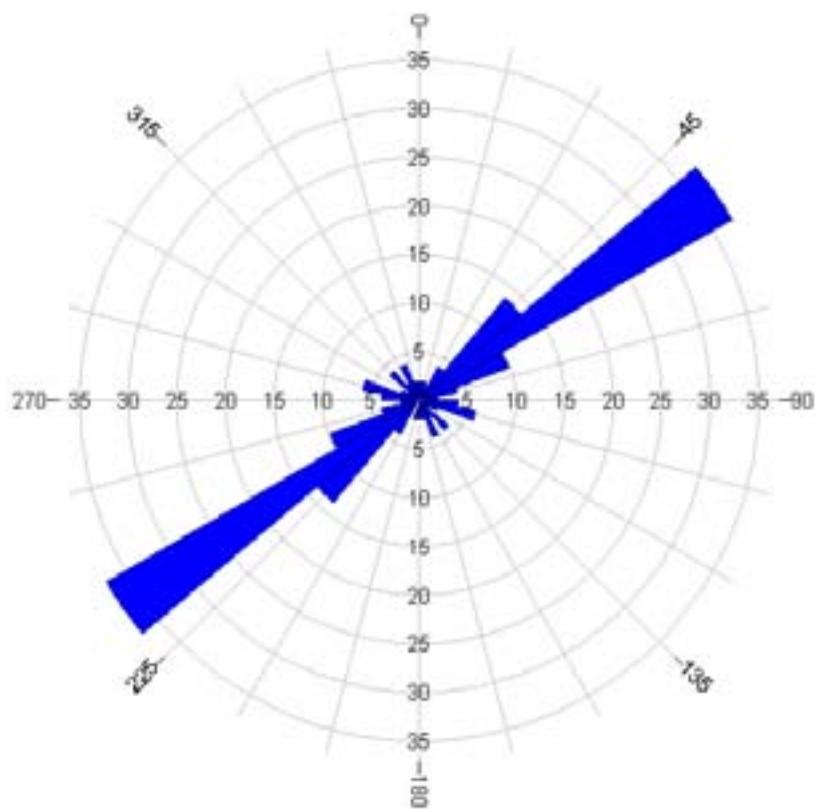


Figure 6: Volume

119 [Abdullah et al. ()] 'Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital
120 Elevation Model (DEMs) in the Maran-Sungai Lembing Area'. A Abdullah , J M Akhir , I Abdullah .
121 *Malaysia. Electronic Journal of Geotechnical Engine-ering* 2010. 15 p. .

122 [Süzen and Toprak ()] 'Filtering of Satellite Images in Geological Lineament Analyses: An Application to a Fault
123 Zone in Central Turkey'. M L Süzen , V Toprak . *International Journal of Remote Sensing* 1998. 19 (6) p. .

124 [Geological Survey of Yemen (GSY). 1990. Geological Map of Taiz area] *Geological Survey of Yemen (GSY).*
125 *1990. Geological Map of Taiz area*, (1 st edition, scales 1:250,000)

126 [O'leary et al. ()] 'Lineament, linear, lineation: Some proposed new standards for old terms'. D W O'leary , J D
127 Friedman , H A Pohn . *Geological Society America Bulletin* 1976. 87 p. .

128 [Hobbs ()] 'Lineaments of the Atlantic Border Region'. W H Hobbs . *Geological Society .American Bulletin* 1904.
129 15 p. .

130 [Pci Geomatica (ed.) ()] *PCI Geomatica user's guide version 9*, Pci Geomatica . 1. Ontario. Canada: Richmond
131 Hill (ed.) 2001.

132 [Richards ()] *Remote Sensing Digital Image Analysis*, J A Richards . 1986. New York: Springer-Verlag.

133 [Madani ()] 'Selection of the Optimum Landsat Thematic Mapper Bands for Automatic Lineaments Extraction,
134 Wadi Natash Area, South Eastern Desert'. A A Madani . *Egypt. Asian Journal of Geoinformatics* 2001. 3 (1)
135 p. .

136 [Abdullah et al. ()] 'The Extraction of Lineaments using Slope Image Derived from Digital Elevation Model:
137 Case Study: Sungai Lembing-Maran area'. A Abdullah , J M Akhir , I Abdullah . *Malaysia. Journal of*
138 *Applied Sciences Research* 2010. 6 (11) p. .