

1 Sustainable Water Resources Management, Future Demands and
2 Adaptation Strategies in Sudan

3 Abdeen Mustafa Omer¹

4 ¹ Energy Research Institute (ERI), UK

5 *Received: 15 December 2012 Accepted: 1 January 2013 Published: 15 January 2013*

6

7 **Abstract**

8 For the thirty-nine million, who live in Sudan, environmental pollution is a major concern;
9 therefore industry, communities, local authorities and central government, to deal with
10 pollution issues, should adopt an integrated approach. Most polluters pay little or no
11 attention to the control and proper management of polluting effluents. This may be due to a
12 lack of enforceable legislation and/or the fear of spending money on the treatment of their
13 effluent prior to discharge. Furthermore, the imposed fines are generally low and therefore do
14 not deter potential offenders. The present problems that are related to water and sanitation in
15 Sudan are many and varied, and the disparity between water supply and demand is growing
16 with time due to the rapid population growth and aridity. The situation of the sewerage
17 system in the cities is extremely critical, and there are no sewerage systems in the rural areas.

18

19 **Index terms**— sudan, water resources development, community water supply, effective water-supply
20 management, environment.

21 **1 INTRODUCTION**

22 In Sudan, with more than ten million people do not have adequate access to water supply, twenty million
23 inhabitants are without access to sanitation, and a very low proportion of domestic sewage being treated. The
24 investment, which is needed to fund the extension and improvement of these services, is substantial (Omer, 1995).
25 Most governments in developing countries are ready to admit that they lack the financial resources for proper
26 water and sanitation schemes. Moreover, historically, bilateral and multilateral funding accounts for less than
27 10% of total investment needed. Thus the need for private financing is imperative.

28 Many water utilities in developing countries need to work in earnest to improve the efficiency of operations.
29 These improvements will not only lead to better services but also to enhanced net cash flows that can be
30 re-invested to improve the quality of service. Staff productivity is another area where significant gains can
31 be achieved. Investment and consumption subsci-Author : Energy Research Institute (ERI), UK. E-mail :
32 abdeenomer2@yahoo.co.uk dies have been predicated on the need to help the poor to have, access to basic
33 services and to improve the environment. Failure of subsidies to reach intended objectives is due, in part, to
34 lack of transparency in their allocation. A key element to successful private participation is the allocation of
35 risks. How project risks are allocated and mitigated will determine the financial and operational performance
36 and success of the project, under the basic principle that the risk should be allocated to the party, which is best
37 able to bear it. Many developing countries (Sudan is not an exception) are encouraging the participation of the
38 private-sector as a means to improve productivity in the provision of water and wastewater services. Private-
39 sector involvement is also needed to increase financial flows to expand the coverage and quality of services.
40 Many successful private-sector interventions have been undertaken. Private operators are not responsible for
41 the financing of works, nonetheless they can bring significant productivity gains, which would allow the utility to
42 allocate more resources to improve and extend services. Redressing productivity, subsidy and crosssubsidy issues
43 before the private-sector is invited to participate, has proven to be less contentious. I have previously thought
44 to encourage more private-sector involvement (Omer, 1995).

3 WATER RESOURCES

45 Sudan is geo-politically well located, bridging the Arab world to Africa. Its large size and extension from
46 south to north provides for several agro-ecological zones with a variety of climatic conditions, rainfall, soils and
47 vegetation. Water resources available to Sudan from the Nile system, together with groundwater resources,
48 provide a potential for thirty years increase in the irrigated sub-sector. There are also opportunities for increased
49 hydropower generation. The strategy of Sudan at the national level aims at the multi-purpose use of water
50 resources to ensure water security for attaining food security, drinking-water security, fibresecurity, hydro-
51 energy security, industrial security, navigation, waste disposal and the security at the regional levels within an
52 environmentally sustainable development context and in harmony with the promotion of basin-wide integrated
53 development of the shared water resources (Noureddine, 1997). The government has continued to pay for the
54 development and operation make the user communities pay water charges. In order to ensure the sustainability
55 of water supplies, an adequate institutional and legal framework is needed. Funds must be generated (a) for
56 production, (b) for environmental protection to ensure water quality, and (c) to ensure that water abstraction
57 from groundwater remains below the annual groundwater recharge. At present, there are private-sector providers
58 who do not have an enabling environment to offer the services adequately. There is a need for the government to
59 have a mechanism to assist in the regulation and harmonisation of the private-sector providers. Privatisation is
60 part of a solution to improve services delivery in water and sanitation sector. At present, there is a transitional
61 situation characterised by: (i) A resistance to water charge; (ii) Insufficient suitable law/law enforcement; (iii)
62 Insufficient capacities; and (iv) Inadequate interaction between actors.

63 In a country with a relatively sparsely populated, there are extreme pressures on water and waste systems,
64 which can stunt the country's economic growth. However, Sudan has recognised the potential to alleviate some of
65 these problems by promoting renewable water and utilising its vast and diverse climate, landscape, and resources,
66 and by coupling its solutions for waste disposal with its solutions for water production. Thus, Sudan may stand
67 at the forefront of the global renewable water community, and presents an example of how non-conventional
68 water strategies may be implemented. In Sudan, more than ten million people do not have adequate access to
69 water supply, twenty million inhabitants are without access to sanitation, and a very little domestic sewage is
70 being treated. The investment needed to fund the extension and improvement of these services is great. Most
71 governments in developing countries are ready to admit that they lack the financial resources for proper water
72 and sanitation schemes. Moreover, historically, bilateral and multilateral funding accounts for less than 10%
73 of total investment needed. Thus, the need for private financing is imperative. Water utilities in developing
74 countries need to work in earnest to improve the efficiency of operations. These improvements would not only
75 lead to better services but also to enhanced net cash flows that can be re-invested to improve the quality of
76 service. Staff productivity is another area where significant gains can be achieved. Investment and consumption
77 subsidies have been predicated on the need to (a) help the poor, which have not an access to basic services and
78 (b) improve the environment.

79 Failure of subsidies to reach intended objectives is in part, from lack of transparency in their allocation.
80 Subsidies are often indiscriminately assigned to support investment programmes that benefit more middle and
81 high-income families that already receive acceptable service. Consumption subsidies often benefit upper-income
82 domestic consumers much more than low-income ones. Many developing countries (Sudan is no exception) are
83 encouraging the participation of the private-sector as a means to improve productivity in the provision of water
84 and of wastewaters services. Private sector involvement is also needed to increase financial flows to expand the
85 coverage and quality of services.

86 A key element to successful private participation is the allocation of risks. How project risks are allocated
87 and mitigated determines the financial and operational performance and success of the project, under the basic
88 principle that the risk should be allocated to the party, which is best able to bear it. Many successful private-
89 sector interventions have been undertaken. Private operators are not responsible for the financing of works,
90 nonetheless they can bring significant gains in productivity, which would allow the utility to allocate more
91 resources to improve and extend services. Redressing productivity, subsidy and cross-subsidy issues before the
92 private-sector is invited to participate, has proven to be less contentious. I have previously sought to encourage
93 more private-sector involvement (Omer, 1995).

94 This study comprises a comprehensive review of water sources, the environment and sustainable development.
95 It includes the renewable water resources, water conservation scenarios and other mitigation measures necessary
96 to reduce climate change. This is still very much lacking particularly under developing countries conditions.

97 2 II.

98 3 WATER RESOURCES

99 Sudan is rich in water (from the Nile system, rainfall and groundwater) and lands resources in Table 1. Surface
100 water resources are estimated at 84 billion m³ and the annual rainfall varies from almost nil in the arid hot
101 north to more than 1600 mm in the tropical zone of the south. The total quantity of groundwater is estimated to
102 be 260 billion m³, but only 1% of this amount is being utilised. Water-resources assessment in Sudan is not an
103 easy task because of uncertainty of parameters, numerous degrees of freedom of variables, lack of information and
104 inaccurate measurements. However, according to seasonal water availability, Sudan could be globally divided into
105 three zones: (a) areas with water availability throughout the year are the rainy regions (equatorial tropical zones);

106 (b) areas with seasonal water availability; and (c) areas with water deficit throughout the year, which occupy
107 more than half the area of Sudan. The ground water quality is suitable for animal and human consumption as
108 well as for agriculture and other uses. The potential renewable ground water suitable is estimated at 6×10
109 9 m^3 . The most important research and development policies which have been adopted in different fields of
110 water resources are: (i) the water resource; (ii) irrigation development; (iii) the re-use of drainage water and
111 groundwater; (iv) preventive and canal maintenance; (v) aquatic weed control and river channel development,
112 and (vi) protection plans. The physical and human resources base can provide for sustainable agriculture growth
113 and food security for itself and for others in the region. Failure to do so in the past derives from several causes and
114 constraints, which are manageable. These include misguided policies, poor infrastructure, low level of technology
115 use, recurring droughts and political instability. Perhaps the biggest challenge is that of finding resources for
116 capital improvements in the light of changing water-quality regulations and ageing systems (James, 1994). (D D
117 D D)

118 The desert environment is fragile and highly affected by human activities. Disturbances in the balanced
119 ecosystems are apt to take place causing serious problems to the environment, and consequently, initiating
120 geotechnical hazards. Urbanisation, climatic conditions, and geomorphic and geologic setting are usually the
121 controlling factors influencing the types of these hazards. One of the potential geotechnical hazards that may
122 occur under desert conditions is sand drifting and dune movement. The problem of sand drifting and dune
123 migration is of special interest in Sudan as moving sand covers approximately one-third of the country. Because
124 sand poses natural erosional depositional hazards on the existing structures, such as roads and urbanised areas,
125 it becomes necessary to study the behaviour of the sand forms in the different parts of the country.

126 Although deserts are known to be simply barren areas, they are scientifically defined in terms of water shortage
127 or aridity, soil type, topography and vegetation. Anon, 1979 presented a map showing the distribution of
128 deserts in the world. Accordingly to this map, most of the Middle Eastern countries lie within the semi-arid,
129 arid, and hyper-arid desert zones, with an aridity index (ratio between annual precipitation and mean annual
130 potential evapotranspiration) ranging between 0.03 and 0.02. Most of the geotechnical hazards are associated
131 with desert environments. The desert environment, being a fragile ecosystem, needs to be treated with care.
132 Intercommunications between different national and international agencies and education of the layman should
133 help to keep the system balanced and reduce the resulting environmental hazards. In addition, any suggested
134 remedial measures should be planned with nature and be engineered with natural materials.

135 4 III. WATER AND SANITATION MANAGEMENT

136 Community water supply and sanitation management is a new form of cooperation between support agencies in
137 the water and sanitation sector and communities.

138 It involves a common search to identify problems with the local water supply and sanitation systems, to
139 establish the possibilities for, and constraints on, management by communities, and to find possible solutions
140 that may be tested. Some fundamental principles of community water and sanitation management are: (i)
141 Increased management capacities are the basis for improved water and sanitation systems, and each community
142 must develop its own specific management systems; and (ii) Communities own the process of water charge;
143 facilitators and local researchers participate in the community's projects, not the other way around.

144 Through this approach, the support agency is no longer the provider of technical goods or solutions, but the
145 facilitator of process to enhance the capacity of the community to manage its own water and sanitation systems.
146 Constraints include: (i) A lack of funds or substantial delays in allocating funds for essential requirements such as
147 operation and maintenance of irrigation and drainage projects; (ii) Deterioration in data collection activities; (iii)
148 A lack of appropriate and consistent policies for water development for both large and small-scale projects; (iv)
149 Serious delays in completing water projects after major investments such as dams and other hydraulic structures,
150 and main secondary canals not being completed; (v) An absence or inadequacy of monitoring, evaluation, and
151 feedback at both national and international levels; (vi) A lack of proper policies on cost recovery, and water pricing
152 or, if policies exist, absence of their implementation; (vii) A shortage of professional and technical manpower,
153 and training facilities; (viii) A lack of beneficiary participation in planning, implementation, and operation of
154 projects; (ix) Inadequacy of knowledge, and absence of appropriate research to develop new technologies and
155 approaches, and an absence of incentives to adopt them; (x) General institutional weaknesses and a lack of
156 coordination between irrigation, agriculture, energy, healthy, environment, and planning; (xi) Inappropriate
157 project development by donor agencies, e.g., irrigation development with drainage, supporting projects which
158 should not have been supported; and (xii) A lack of donor coordination resulting in differing approaches and
159 methodologies, and thus conflicting advice.

160 As developing nations strive to provide a safe and reliable drinking-water supply to their growing and
161 increasingly urbanised population, is becoming more evident that new approaches to this problem will be needed.
162 To meet this challenge, new methods of reclaiming and re-using water have been developed in cost-effective and
163 environmentally sound ways ??ODA, 1987; Seckler, 1992; and Salih, 1992).

164 Despite the constraints, over the last decade the rate of implementation of rural and peri-urban water
165 supply and sanitation programmes has increased considerably, and many people are now being served more
166 adequately. The following are Sudan experience in water supply and sanitation projects: a) At community level
167 ? Participatory approaches in planning, implementation and monitoring.

7 IV. WATER RESOURCE MANAGEMENT SYSTEMS

168 ? Establishment and training of water tap committees.
169 ? Clear ownership of improved water supply and sanitation systems.
170 ? Technology and service level selection by consumers.
171 ? Sensitive timing of hygiene and sanitation education.

172 5 Global Journal of Human Social Science

173 Volume XIII Issue IIW I Version I(D D D D) 2 16
174 Year 2013 ? Establishment and training of reliable financial and maintenance management.

175 6 b) At district and national level

176 ? Integrated multi-sectoral approach development.
177 ? Training approach and material development for district and extension staff.
178 ? Continuing support from integrated multi-sectoral extension team.
179 ? Establishment of technical support system.
180 ? Multi-sectoral advisory group including training and research institutions.
181 ? Development and dissemination of relevant information for district and extension staff.

182 7 IV. WATER RESOURCE MANAGEMENT SYSTEMS

183 Water is a substance of paramount ecological, economical, and social importance. Interrelationships inherent in
184 water use should encourage integrated water management. Water resources are to be better managed to:

185 1. Ensure more reliable water availability and efficient water use in the agricultural sector. 2. Mitigate flood
186 damage. The emerging water crisis, in terms of both water quantity and quality, requires new approaches and
187 actions. Priority areas needing concerted action in various sectors are:

188 (a) Water use efficiency, (b) Flood control, (c) Management of scarce water resources, (d) Water quality
189 management and provision of safe drinking water, and (e) Coordination and integration of various aspects of
190 water management, and water management with other related resources and societal concern. The following are
191 recommended: ? Community must be the focus of benefits accruing from restructures, legislature to protect
192 community interest on the basis of equity and distribution, handover the assets to the community should be
193 examined; and communities shall encourage the transfer the management of water schemes to a professional
194 entity.

195 ? The private-sector should be used to mobilise, and strengthen the technical and financial resources, from
196 within and without the country to implement the services, with particular emphasis on utilisation of local
197 resources.

198 ? The government should provide the necessary financial resources to guide the process of community
199 management of water supplies. The government to divert from provision of services and be a facilitator
200 through setting up standards, specifications and rules to help harmonise the private-sector and establish a legal
201 independent body by an act of parliament to monitor and control the providers. Governments to assist the poor
202 communities who cannot afford service cost, and alleviate social-economic negative aspects of privatisation.

203 ? The sector actors should create awareness to the community of the roles of the private-sector and government
204 in the provision of water and sanitation services.

205 ? Support agencies assist with the financial and technical support, the training facilities, coordination,
206 development and dissemination of water projects, and then evaluation of projects.

207 The development of new, modern, and complete water-resources-information systems is one of the basic needs
208 for the implementation of the waterresources-management system. The decision process in drought or flood
209 conditions, and also in overexploitation cases, can only be correct if based on a reliable information system. A
210 complete and comprehensive database on water availability, users, water quality monitoring, current technologies
211 (like geographical information systems), is certainly the way to produce an efficient framework for decision-
212 making. Lack of information is one of the most critical points regarding the development and implementation of
213 the new management system (FAO, 1999). The types of data related to flood management include:

214 ? Topographic data (elevations, land use, soils, vegetation, and hydrography).
215 ? Administrative data (political boundaries, and jurisdictional boundaries).
216 ? Infrastructure data (roads, wells, utilities, bridges and culverts, hydraulic structure, properties, facilities)
217 and imagery (satellite images and aerial photographs).

218 ? Environmental data (threatened and endangered species, critical aquatic and wildlife habitat, archaeological
219 sites, and water quality).

220 ? Hydrometeorology data (stream flows, precipitation, temperature, wind, solar radiation, soil water, discharge
221 rating curves, flood frequency, and flood plain delineation).

222 ? Economic data (stage-damage relationships, insured values, and industries), and ? The government should
223 provide the necessary financial resources to guide the process of V.

224 8 THE POLICY REGIME IN WATER QUALITY MANAGE- 225 MENT

226 Apart from effluent regulations, and sometimes, national water quality guidelines, a common observation is that
227 few developing countries (Sudan is not an exception) include a water-quality-policy context. Whereas water
228 supply is seen as a national issue, pollution is mainly felt at, and dealt with at, the local level.

229 With few exceptions, national governments have little information on the relative importance of various types
230 of pollution (agriculture, municipal, industrial, animal husbandry, aquaculture), and therefore, have no notion of
231 which is of greatest economic or public health significance.

232 Usually freshwater quality management is completely divorced from coastal management even though these
233 are intimately linked. Consequently, it is difficult to develop a strategic water quality management plan or to
234 efficiently focus domestic and donor funds on priority issues.

235 A national water-quality-policy should include the following water quality components:

236 ? A policy framework that provides broad strategic and political directions for future water-quality
237 management. ? A strategic action plan for water-quality management based on priorities that reflect an
238 understanding of economic and social costs of impaired water.

239 This plan should include the following components:

240 ? A mechanism for identifying national priorities for water-quality management that will guide domestic and
241 donor investment.

242 ? A plan for developing a focused and cost-effective data programme for water quality and related uses, as a
243 basis for economic and social planning.

244 ? A consideration of options for financial sustainability including donor support, public/private-sector
245 partnerships, and regional self-support initiatives.

246 ? A regulatory framework that includes a combination of appropriate water-quality objectives (appropriate to
247 that country and not necessarily based on Western standards) and effluent controls. This includes both surface
248 and groundwater.

249 ? A methodology for public input into goals and priorities.

250 ? A process for tasking specific agencies with implementation so that accountability is firmly established and
251 inter-agency competition is eliminated.

252 ? Specific mechanisms for providing drinking water monitoring capabilities, at the community level if necessary.

253 ? National data standards that must realistically reflect national needs and capabilities. Nevertheless,
254 the objective is to ensure reliable data from those organisations that provide information for national water
255 management purposes and at the community level for drinking water monitoring.

256 The design criteria in any water-quality programme are to determine the management issues which water
257 quality data are required. Generally, there are four categories of data objectives:

258 ? Descriptive data that are typically used for government policy and planning, meeting international
259 obligations, and for public information.

260 ? Data specific to public health.

261 ? Regulatory concerns, and

262 ? Aquatic ecosystem health. The last category is not normally included in many developing countries for
263 reasons of cost and complexity. In most developing countries, countries with transitional economies, and some
264 developed countries, the technology of monitoring has changed little since 1970s, yet some of the largest advances
265 in monitoring in recent years involve technical innovation that serve to reduce costs and increase efficiency.

266 Admittedly, not all of these are inexpensive; however when deployed appropriately, they may eliminate traditional
267 monitoring, or reduce costs by increasing the efficiency of more traditional approaches to chemical monitoring.

268 Types of innovation include: biological assessment, use of surrogates, use of enzymatic indicators, miniaturisation,
269 automation, and simplification of laboratory analytical methods.

270 9 VI.

271 10 SUSTAINABLE DEVELOPMENTS

272 In the past decade, sustainability has increasingly become a key concept and ultimate global for socio-economic
273 development in the modern world. Without a doubt, the sustainable development and management of natural
274 resources fundamentally control the survival and welfare of human society. Water is an indispensable component
275 and resource for life and essentially all human activities rely on water in a direct or in direct way. Yet supplying
276 water of sufficient quantity and safe quality has seldom been an easy task. Although sustainability is still a loosely
277 defined and evolving concept, researchers and policy-makers have made tremendous efforts to develop a working
278 paradigm and measurement system for applying this concept in the exploitation, utilisation and management of
279 various natural resources. In water resources arena, recent development has been synthesised and

280 11 Global Journal of Human Social Science

281 Volume XIII Issue IIW I Version I(D D D D)

12 GOALS AND CHALLENGES

282 presented in two important documents published by (ASCE, 1998) and (UNESCO, 1999), which attempt
283 to give a specific definition and a set of criteria for sustainable water resource systems. When considering
284 the long-term future as well as the present, sustainability is concept and goal that can only be specified and
285 implemented over a range of spatial scales, of which urban water supply is a local problem with great reliance on
286 the characteristics and availability of regional water resources. ? Calculation of energy consumption (no extreme
287 conditions are required)

288 ? Design purposes (extremes are essential), and

289 ? Predicting the effect of climate change such as increasing annually average of temperature.

290 This results in the following requirements:

291 ? Relevant climate variables should be generated (solar radiation: global, diffuse, direct solar direction,
292 temperature, humidity, wind speed and direction) according to the statistics of the real climate.

293 ? The average behaviour should be in accordance with the real climate.

294 ? Extremes should occur in the generated series in the way it will happen in a real warm period. This
295 means that the generated series should be long enough to assure these extremes, and series based on average
296 values from nearby stations. Agriculture is largely subsistence with a wide range of food crops including: maize,
297 sorghum, millet, root crops, banana, pulses, tea, and coffee. Because of the marked fluctuation between the
298 flood discharge and the low season period in the Nile system, storage reservoirs in Sennar, Rosaries, Girba and
299 Jebel Aulia were constructed to ensure the availability for water during the recession period. Designing and
300 implementing a sustainable energy sector will be a key element of defining and creating a sustainable society. In
301 the electricity industry, the question of strategic planning for sustainability seems to conflict with the shorter
302 time horizons associated with market forces as deregulation replaces vertical integration. Sustainable low-carbon
303 energy scenarios for the new century emphasise the untapped potential of renewable resources. Rural areas can
304 benefit from this transition. The increased availability of reliable and efficient energy services stimulates new
305 development alternatives. It is concluded that renewable environmentally friendly energy must be encouraged,
306 promoted, implemented, and demonstrated by full-scale plant especially for use in remote rural areas (Figure 1).
307 This is the step in a long journey to encourage a progressive economy, which continues to provide us with high
308 living standards, but at the same time helps reduce pollution, waste mountains, other environmental degradation,
309 and environmental rationale for future policy-making and intervention to improve market mechanisms. This
310 vision will be accomplished by: ? 'Decoupling' economic growth and environmental degradation. The basket of
311 indicators illustrated shows the progress being made (Table 5).

312 Decoupling air and water pollution from growth, making good headway with CO 2 emissions from energy,
313 and transport. The environmental impact of our own individual behaviour is more closely linked to consumption
314 expenditure than the economy as a whole. ? Focusing policy on the most important environmental impacts
315 associated with the use of particular resources, rather than on the total level of all resource use.

316 12 GOALS AND CHALLENGES

317 Sudan needs assistance in developing and implementing (a) river-basin management, (b) diffuse source pollution,
318 (c) environmental restoration, and (d) urban storm drainage.

319 At present the international, bilateral donor agencies, and relevant United Nations bodies provide such
320 assistance. The international associations constitute an additional, but as yet untapped, source of assistance.
321 The solution, which should be seriously explored, is the forging of partnerships with bodies such as the World
322 Bank and the appropriate United Nations agencies.

323 Advanced research and technology contribute to resolving water shortage and sanitation problems, and
324 non-conventional reliable water supplies cannot be provided unless the environmental impacts are taken into
325 consideration. Looking to the future, Sudan has a set the following priorities for water-resource research and
326 development until the year 2020: a) Increase overall water-use efficiency to the maximum limit. This could be
327 achieved by (a) improving the irrigation system and assure its flexibility to cope with modern farm irrigation
328 system, (b) developing the farm system, (c) drawing up a proper mechanism for water charges; The water quantity
329 situation is highly variable in Sudan reflecting different levels of development and different needs for water quality
330 programmes in Table 6.

331 The conventional paradigm of water quality monitoring is not suitable for the Sudan being too expensive,
332 inefficient, and ineffective. Financial and sustainability issues include cost avoidance and cost reduction, local
333 and accountability frameworks that encourage good business practices by senior programme managers, the use
334 of new cost-effective technologies for monitoring, and a variety of donor/public/ private-sector linkages that focus
335 on commercial benefits that permit the transfer of certain parts of water quality programmes to the private-sector.

336 From a visual investigation of the River Nile in Table 7, the major sources are industrial effluents, crude sewage
337 from blocked, broken or overloaded sewers, sewage effluents, surface runoff, and solid wastes which have been
338 dumped into the river.

339 Therefore remedial and improvement measures must be taken before the environment becomes further polluted
340 and the natural resources are completely overexploited (Omer, 2000).

341 The challenges facing and enhancing the ecology in the twenty-first century are as follows: while planning for
342 a balanced development in the future; (f) The concept of the ecosystem (involving education and interpretation
343 of the natural environment) must be promoted.

344 Environmental pollution is a major problem facing all nations of the world. People have caused air pollution
345 since they learned to how to use fire, but manmade air pollution (anthropogenic air pollution) has rapidly
346 increased since industrialisation began.

347 **13 Full cost of boreholes Regressive**

348 Many volatile organic compounds and trace metals are emitted into the atmosphere by human activities. The
349 pollutants emitted into the atmosphere do not remain confined to the area near the source of emission or to the
350 local environment, and can be transported over long distances, and create regional and global environmental
351 problems. The privatisation, and price liberalisation in energy fields has to some secured (but not fully).
352 Availability and adequate energy supplies to the major productive sectors is needed. The result is that, the
353 present situation of energy supplies is for better than ten years ago.

354 **14 THE CHALLENGE OF OVERCOMING THE COUN- 355 TRY'S DIVERSITY**

356 Sudan is a federal republic of 2.5 million km² located in the eastern Africa. The country is divided into 26
357 states and a federal district, in which the capital, Khartoum is located. Sudan is known as a country of plentiful
358 water, with highest total renewable fresh water supply in the region. Table 8 shows some of the most significant
359 regional diversities concerning water issues.

360 Adequate water management is essential to sustain development. Competing needs for this beneficial resource
361 include municipal supply, industry, and agriculture, among others. The National Water Act of 1994 (Law
362 No. 1155) defines the objectives, principles, and instruments of the National Water Resources Policy and the
363 National Water Resources Management system. The law establishes the institutional arrangement under which
364 the country's water policies are to be implemented. The National Water Resources Policy was proposed to
365 achieve:

366 ? Sustainability: to ensure that the present and future generations have an adequate availability of water with
367 suitable quality.

368 ? Integrated management: to ensure the integration among uses in order to guarantee continuing development.

369 ? Security: to prevent and protect against critical events, due either to natural causes or inappropriate uses.

370 To achieve such objectives, water management must be implemented according to the following principles:

371 ? Water is a public good, and it is a finite resource that has economic value.

372 ? The use of water required to meet people's basic needs shall have priority, especially in critical periods.

373 ? Water management shall comprise and induce multiple uses.

374 ? The river basins are the appropriate unit for water management, and water management shall decentralise,
375 with the participation of government, stakeholders and society. ? Basin-wide management plan has been drafted.

376 ? Natural mitigation strategy in place.

377 ? Basin-wide coordination and communications strategy instituted.

378 ? Trained emergency management staff coordinating at the regional level.

379 ? Effective regulatory policies that address floodplain occupancy.

380 ? Decentralised decision-making with a high degree of local autonomy.

381 ? Evidence of an updated national response plan.

382 ? Bilateral response agreements.

383 ? Evidence of regional preparedness and response training.

384 ? Some trained emergency management staff at the local and/or national level. ? Evidence of some regulatory
385 policies designed to address floodplain occupancy. ? Attempts to decentralise decision-making, moderate local
386 discretion.

387 ? No existing flood response plan.

388 ? No evidence of mitigation-related activities.

389 ? Poor local-and national-level coordination and communications.

390 ? Little or no evidence of flood preparedness and response training.

391 ? No regulatory policies addressing floodplain occupancy.

392 ? Centralised decision-making, no evidence of local autonomy.

393 Water resources plans are developed to guide future decisions and are to be developed for each river basin
394 and state, as well as the country. The objective is to coordinate efforts and establish guidelines and priorities
395 for water allocation and water pricing. The priorities established for water allocation will be used in critical
396 drought conditions. Water pricing is the single most controversial instrument of the law. The pricing system is
397 also the most difficult step to implement. The pricing system recognises the economic value of water, as stated
398 in the principles of the policy. The development of a new, modern, and complete water resources information
399 system is one of the basic needs for the implementation of the water resources management system. The decision
400 process in drought or flood conditions, and also in overexploitation cases, can only be correct if based on a reliable
401 information system. A complete and comprehensive database on(D D D D)

402 water availability, users, water quality monitoring, and current technologies (like geographical information
403 systems), is certainly the way to produce an efficient framework for decision-making. Lack of information is one

404 of the most critical points regarding the development and implementation of the new management system. The
405 institutional framework provides the basis by which all actions are taken, and an assessment of its functional
406 character helps determine the collaborative potential. The resulting criteria for measuring a given community's
407 institutional capacity can be found in Table 9.

408 **15 IX.**

409 **16 WATER SCARCITY IMPACTS AND POTENTIAL CON-**
410 **FLICTS**

411 The failure of water resources to meet the basic requirements of society has a host of social, economic,
412 environmental, and political impacts. Water scarcity is man-made phenomenon brought about by the increasing
413 demands of the population for water. The imbalance in the population-water resources equation strains society
414 and has an adverse impact on domestic hygiene, public health, and cost of domestic water, and could impart
415 political problems as a serious as bringing down government. On the social side, water scarcity adversely impacts
416 job opportunities, farm incomes, credibility and reliability of agricultural exports, and ability of the vulnerable
417 to meet the cost of domestic water. Economically, the adverse impact is displayed in the loss of production of
418 goods, especially agricultural goods, the loss of working hours because of the hardships society faces as a result
419 of water scarcity. The impacts of water scarcity on regional stability are addressed with reference to water in the
420 Middle East Peace Process, taking into account the serious impacts of conflicts and potential water war.

421 Conditions of scarcity propel an increase in competition among the different sectors of water use with results,
422 invariably, at the expense of irrigated agriculture. Pure market forces create a gradient under which water flows
423 from the poor to the rich. Tough decisions await politicians, and the consequences are expected to displease one or
424 more parties, and please others. The scene of domestic politics becomes as fluid as water itself, with politicians
425 shifting positions continuously in response to domestic pressures. The political fallout from water resources
426 scarcity on the domestic scene is parallel to the impact the scarcity has on domestic households in terms of basic
427 needs for drinking and food preparation, on domestic hygiene, and on public health. Other important factors
428 have a delayed response to water scarcity, and these pertain to the integrity of the environment, and deterrence
429 it imparts on development investment and economic credibility of the country. The cost of mitigating these
430 problems and of the provision of services to the increased urbanisation could very well be beyond the ability of
431 government to bear. The political consequences resulting from this will not be in favour of domestic stability,
432 and social explosions can be anticipated. A bilateral agreement was reached between Egypt and the Sudan in
433 1959 by which the two countries share the Nile flow: 55.5 billion cubic meters to Egypt, 18.5 billion to Sudan,
434 and 10 billion were allocated to evaporation. Hopes are high for achieving a more extensive participation by the
435 other riparian parties in what could be a multilateral treaty on the Nile encompassing the other riparian states in
436 addition to Egypt and Sudan. The above agreement is not complete; it lacks the entry of other legitimate riparian
437 states, lacks water quality components, and tends to focus on quantity measures, and miss important management
438 issues. It is to be noted that regional relations, including those among the riparian parties, are connected to
439 the political, economic, and trade network of international relations. Water is not the only determinant factor
440 in shaping the nature of bilateral, regional, or international relations. Water relations can be transformed into
441 a positive sum game by which all parties can be made to win. One common gain to all is the environmental
442 protection of the common watercourse or water body. Lack of cooperation and agreement will most likely lead
443 to environmental neglect and water quality degradation, which is loss to all. International encouragement to
444 attain cooperation can, therefore, be brought to bear on the regional parties, and efforts of international lending
445 agencies can be called upon to pool with the regional and international efforts to achieve this objective. It has
446 been stipulated by many that under conditions of scarcity, water conflicts can lead to hostile actions between
447 riparian parties. Experience in the region indicates that water, in its own right, has not been the cause of any of
448 the wars that have broken out in the region.

449 Today's advanced societies heavily depend on energy. The principal sources of energy and electricity generation
450 today are solar, wind, biomass, hydropower, and fossil fuel. Energy from hydropower is short of meeting the
451 current or future energy requirements, and the fossil fuel resources, being depleted with time, will eventually
452 run out. For human civilisation to continue at its natural pace, new forms of affordable and clean energy will
453 have to come on line. Failure of human civilisation to introduce new forms of energy will render that civilisation
454 doomed, and the quality of life will deteriorate. If this unlikely scenario actually takes place, the requirements
455 will decrease because the mechanism of making it available for use (pumping) diminishes.

456 The more likely scenario is more optimistic one, and it is that a new form of energy generation will be
457 introduced in which case water desalination becomes affordable and its pumping from the coastal desalination
458 plants become possible at reasonable cost.

459 **17 Global Journal of Human Social Science**

460 Volume XIII Issue IIW I Version I(D D D D)

461 The way out of the looming water crisis rests, therefore, in the invention of new forms of energy generation
462 that will make possible the reliance on desalination and in the recycling of wastewater for reuse in agricultural

463 production and for environmental reasons. Integrated management of the three resources of water, energy, and
464 the environment, will result in better results with a positive sum for society.

465 X.

466 18 COMMON LANGUAGE AND CULTURE

467 A common language and similar culture simplify communication and reduce the potential for misunderstandings.
468 In the Nile basin where several languages are spoken, an international language, English, is used with some
469 success by multijurisdictional basin management authorities.

470 19 a) Primary Factors Promoting Data and Information

471 Exchange Data and information exchange is more probable when needs are compatible and when there is potential
472 for mutual benefit from cooperation in Table 10. Where countries are working on developments that are beneficial
473 to both countries as well as other riparians, there is little incentive to hide project impacts. This means that
474 since data and information exchange is unlikely to lead to pressure from surrounding countries that might restrict
475 developments, countries have less reason to restrict access to their data and information resources. It is important,
476 therefore to be no perceived clash of interests in development plans and needs. An example of this might be in
477 developing their part of the basin primarily for hydroelectric development, while the lower riparians are more
478 interested in developing the irrigation potential of their portion of the basin. By constructing large storage dams
479 in the upper part of the basin, the river Nile seasonal flow might be evened out, reducing flooding downstream
480 while increasing irrigation water supplies and even making downstream run-of-the-river hydroelectric projects
481 more profitable. Ecosystem effects would have to be considered. Sufficient levels of economic development
482 across a basin are needed to permit joint funding of cooperative processes, particularly data collection and
483 dissemination. Although countries with differing levels and forms of economic development may, at times, have
484 more complementary needs than countries with similarly structured economies, the overall level of economic
485 development is still significant. A wealthier country in a river basin may be able to assist with the funding of
486 data collection activities in the neighbouring country with much needed data and helping to build confidence
487 between the two countries.

488 20 c) Increasing Water Resources Stress

489 As per capita water resources availability decreases as shown in ??able 11, tensions between riparian nations
490 may rise and make cooperation difficult. Stress may, therefore, reduce cooperation and data sharing rather than
491 strife.

492 The historical background of the basin may have a lasting effect on current negotiations. Past conflicts can
493 have a deleterious effect on the prospects for establishing cooperative practices, such as data sharing. Where there
494 is a history of conflict between two nations, both nations may view the present situation primarily as competitive
495 and focus on conflicting rather than common interests. Democracies may find it easier to negotiate cooperative
496 arrangements with other democracies. Political differences can lead to legacies of mistrust developing between
497 countries.

498 21 DISCUSSIONS a) Water Stress in Sudan

499 Water stress refers to economic, social, or environmental problems caused by unmet water needs. Lack of supply
500 is often caused by contamination, drought, or a disruption in distribution. In an extreme example, when Sudan
501 split four years ago between the rebel-led west and government-ruled north, the conflict led to unpaid water
502 bills, which precipitated a dangerous health threat in the region, increasing the risk of waterborne diseases such as
503 cholera. Some analysts believe the disruption of distribution was a political ploy to put pressure on the rebel-led
504 west.

505 While water stress occurs throughout the world, no region has been more afflicted than sub-Saharan Africa.
506 The crisis in Darfur stems in part from disputes over water: The conflict that led to the crisis arose from tensions
507 between nomadic farming groups who were competing for water and grazing land-both increasingly scarce due to
508 the expanding Sahara Desert. As Mark Giordano of the International Water Management Institute in Colombo
509 Sri Lanka says, "Most water extracted for development in sub-Saharan Africa is drinking water, livestock watering,
510 and irrigation-is at least in some sense 'transboundary'". Because water sources are often cross-border, conflict
511 emerges.

512 Improving water and sanitation programmes is crucial to spurring growth and sustaining economic develop-
513 ment. Because it takes time to develop these programmes, a paradox emerges: poor economies are unable to
514 develop because of water stress, and economic instability prohibits the development of programmes to abate
515 water stress. Developments in water storage could have prevented that drought from significantly affecting
516 Sudan's economy. Hydropower can also spark economic development. Accordingly, some transboundary water
517 agreements also play a clear role in fostering development, for example, by facilitating investment in hydropower
518 and irrigation.

519 **22 b) The Role of Agriculture in Water Stress**

520 Agricultural development has the potential to improve African economies but requires extensive water supplies.
521 These statistics from the Water Systems Analysis Group at the Institute for the Study of Earth, Oceans, and Space
522 at the University of New Hampshire reveal the urgent need for sustainable agricultural development:

523 ? About 64 percent of Africans rely on water that is limited and highly variable; ? Croplands inhabit the driest
524 regions of Africa where some 40 percent of the irrigated land is unsustainable; ? Roughly 25 percent of Africa's
525 population suffers from water stress; ? Nearly 13 percent of the population in Africa experiences drought-related
526 stress once each generation.

527 Another aspect of water-related stress is the relationship between water, soil, and agriculture. Improved access
528 to quality water is a long-term goal that requires more than humanitarian funds.

529 ? Because sub-Saharan Africa is subject to more extreme climate variability than other regions, it needs
530 improved water storage capacity. Some experts say that large dam projects would create a more sustainable
531 reserve of water resources to combat the burden of climate fluctuations, but other disagrees, stating the harmful
532 environmental impact of large dams.

533 ? Many experts say more water treaties are needed.

534 The transboundary water agreements have cultivated international cooperation and reduced the "probability
535 of conflict and its intensity".

536 ? Better donor emphasis on water development is needed. Small-scale agricultural improvements also offer
537 a solution to water stress, including the harvest of water in shallow wells, drip irrigation for crops, the use of
538 pumps, and other technological innovations.

539 Farmers can access green water through drip irrigation systems that slowly and consistently deliver water to
540 plant's root system, supplemental irrigation (supplementary to natural rainfall rather than the primary source
541 of moisture during periods of drought) and rainwater harvesting (the collection of rainwater for crops, which
542 reduces reliance on irrigation). Crops can grow poorly even during periods of rainfall, and most farms in Africa
543 suffer from nitrogen and phosphorus depletion in soil.

544 One way to assuage water stress in terms of food scarcity is to increase water-holding capacity with organic
545 fertilisers that would increase availability and efficacy of green water.

546 **23 c) Water Supply Problems in the Butana Region -Central
547 Sudan with Special Emphasis on Jebel Qeili Area**

548 The Butana region of central Sudan is famous for its animal wealth and extensive pastures. Yet scarcity of water
549 resources in the area especially during the dry seasons handicaps the proper utilisation of these pastures. The
550 area is occupied by non-water-bearing basement rocks and the only source of water is from direct run-off.

551 Thus large numbers of small-size water reservoirs, "haffirs", were constructed, but these are inadequate to
552 provide enough water for the growing human and animal population. An all-year lake is here proposed to be
553 constructed utilising the ring-structure the Jebel Qeili igneous complex, central Butana. This lake is expected
554 to solve the present water problem and meet the future demand of central Butana at the present rate of human
555 and animal growth (Omer, 2001).

556 **24 d) Southern Sudan**

557 World Vision began its work in Sudan in 1972 through a partnership with the African Committee for
558 Rehabilitation of the Southern Sudan (ACROSS) to provide emergency relief aid to war-effected families. Efforts
559 included the reconstruction of the Rumbek community hospital and surrounding buildings, the provision of
560 medicine and supplies, and education in preventative health care. Other projects during this period focused on
561 training health and social workers in general medical aid and child welfare and instruction in water development,
562 agriculture, handcrafts, and literacy (Omer, 2004). The 1980s brought constant turmoil to the Sudanese people
563 as the civil war raged on and severe drought parched the country. In 1983, approximately 1,500 refugees entered
564 Sudan daily from violence-torn neighbouring countries, straining the already limited food supply. World Vision,
565 through the ACROSS Refugee Settlement Project, responded by distributing blankets, grain, cooking oil, medical
566 kits, and shelter to more than 50,000 people. Supplemental feeding for children also was provided.

567 **25 Global Journal of Human Social Science**

568 Numerous development projects were initiated during this time that assisted communities in improved crop
569 production, animal husbandry, health care, clean water collection, infrastructure repair, and literacy. In 1989,
570 World Vision became a founding member of Operation Lifeline Sudan (OLS), a partnership of nongovernmental
571 organisations (NGOs) and the United Nations (UN) agencies designated to coordinate the southern relief efforts.

572 During the 1990s World Vision conducted operations in all major regions of southern Sudan. Project objectives
573 included primary health care, water provision, agriculture, local grain purchase, enterprise development, and
574 emergency relief efforts. World Vision focused on an integrated work approach that involved peace and advocacy,
575 gender development, church support, and environment and natural resource initiatives. Some specific projects
576 included:

577 ? The Kapoeta Medical Supplies Project provided health and educational assistance to more than 200,000
578 people to help reduce incidences of disease and suffering.

579 **26 e) Beja People's Problems**

580 The Beja, a semi-nomadic group of people, who live in rebel-held areas of eastern Sudan, need a huge amount of
581 humanitarian assistance, a representative from the International Rescue Committee (IRC). Although Beja can
582 be found throughout northeast Africa, tens of thousands are currently trapped in an area of eastern Sudan near
583 the Eritrean border, held by Sudanese rebels since the late 1990s. Only two NGOs, both based in Eritrea, are
584 able to access the 15,000 sq km area at the moment, one of which is the IRC. The organisation estimates the
585 Beja population in the area to be between 45,000 and 186,000 people (Omer, 2008).

586 Although it did rain in the area in 2004, a shortage of water had also posed serious problems. "Fresh drinking
587 water is incredibly hard to come by. All the settlements have just focused around dry river beds, in which people
588 dig hand-dug wells". Locusts would eat the foliage that usually sustains the Beja's goats and camels-upon which
589 the Beja utterly depend for survival. A few immature locust swarms have formed in northeast Sudan near the
590 Red Sea and the border of Egypt, the UN Food and Agriculture Organisation said in March 2004. Moreover,
591 Beja grazing areas have been severely restricted by a front line between rebel forces and Khartoum government
592 soldiers, the second to be opened by southern rebels during Sudan's 21-year-old civil war.

593 Sudan is an example that projects the environmental plight of Africa, south of the Saharadrought and
594 desertification, floods, deforestation, loss of biodiversity, tribal and ethnic conflict and poverty are only too
595 common. As a result, interest and commitment to environmental impact assessment practices have become
596 mandatory by donors when executing new development projects. The ecological zones of Sudan in 1998 as:

597 ? Deserts: cover almost 30% of the northern parts.

598 Annual precipitation is less than 50 mm; soils are sandy. Sparse vegetation grows on seasonal 'Wadis' and the
599 banks of the Nile.

600 ? Semi deserts: cover above 20% south of the desert belt. Rainfall ranges from 50 to 300 mm. It is speckled
601 with few Acacia trees and thorny bushes and zerophytes.

602 ? Low rainfall woodland Savannah: covers about 27% of the area of Sudan with rainfall less than 900 mm,
603 with a nine-month dry period. Annual grasses are dominant. Heavy clay soils lie on the east of the Nile and the
604 west is sandy. Most of the 36 million feddans of rain-fed agriculture and the 4 million irrigated lands fall within
605 this heavily populated belt.

606 ? High rainfall woodland Savannah: 13% of the area with rainfall more than 900 mm and with broadleafed
607 trees in the southern parts of Sudan.

608 ? Swamps: are probably the largest in the world and cover about 10% and fall in three main areas around the
609 tributaries of the White Nile.

610 ? Highlands: are less than 0.3% of the areas of Sudan and are scattered along the Red Sea coast, the south
611 and the west of the country.

612 ? The Red Sea Coast-Marine ecosystem, mangrove swamps, coral reefs and associated fauna. Environmental
613 problems include:

614 ? Horizontal expansion in rain-fed and irrigated agriculture;

615 ? The complete absence of the environmental dimensions in policies, strategies, plans and programmes of
616 management of resources;

617 ? Development is random and environmental evaluation does exist before or after execution of projects;

618 ? The economy and society, in spite of the centurylong attempts at 'modernisation' are still dominated by
619 subsistence way of living;

620 ? The economy is still affected seriously by the yearly, seasonal and geographical variability of rainfall for crop
621 and livestock production;

622 ? Dependence on imported seeds and agricultural chemicals has increased cost of production;

623 ? Loss of land productivity and marketing policies decreased cash surplus;

624 ? The civil war in the south has grave economic and social costs;

625 ? Population distribution and rural-urban migration due to desertification and civil strife has led to
626 deterioration of natural resources, indigenous knowledge and loss of local culture and dignity;

627 ? Problems of poor sanitation, limited industrial pollution and food hygiene have become more complex;

628 ? The energy crisis is aggravating desertification and affecting climate change;

629 ? Vast water resources are badly managed;

630 ? Environmental education has only been recently incorporated in school curricula; and

631 ? Laws and legislation concerning the environment are not effective and law enforcement measures are not
632 integrated.

633 **27 f) Western Sudan**

634 El Fasher, Darfur region, Sudan, 24 August 2005 -Torrential rains have caused severe flooding in this city of
635 400,000 people and in nearby Abu Shook, a camp for people forced to flee their homes as a result of the ongoing

636 Darfur conflict (Figures 2-3). The floods have destroyed hundreds of homes and have made El Fasher's water
637 supply largely unsafe ??WHO, 2006).

638 UNICEF is mounting a concerted effort to restore basic services to those affected by the flood, and to prevent
639 the outbreak of disease. Since the flood, UNICEF has assisted with the following:

640 ? Reinstalling pipes in Abu Shook and restoring the water supply by linking boreholes with pumps.

641 ? Testing the water quality each day. No bacterial contamination has been found.

642 ? Rebuilding 156 latrines and 88 bath stations.

643 ? Renting five tankers to deliver more water.

644 ? Repairing damaged schools and child-friendly spaces.

645 ? Providing daily door-to-door hygiene-promotion trainings.

646 ? Distributing jerry cans, soap, tarps, and mosquito nets. Year 2013 B Sustainable Water Resources
647 Management, Future Demands and Adaptation Strategies in Sudan also easier and more transparent. The
648 communities should be fully utilised in any attempts to promote the local management of water supply and
649 sanitation systems. There is little notion of 'service, invoice and move on'. As a result, there are major problems
650 looming with sustainability of completed projects. A charge in water and sanitation sector approach from supply-
651 driven approach to demand-responsive approach calls for full community participation. The community should be
652 defined in terms of their primary role as user/clients. Private-sector services are necessary because there are gaps,
653 which exist as a result of the government not being able to provide water services due to limited financial resources
654 and increase in population. The factors affecting the eco-environmental changes are complex, interrelated, and
655 interactive. The deterioration problems of water and sanitation have attracted some attention in recent years.
656 There is an urgent need to study possible rehabilitation measures to ensure a sustainable and excellent water
657 quality and improved sanitation. Water resources plans are developed to guide future decisions and are to be
658 developed for each river basin and state, as well as for the country. The overall objective is to coordinate efforts
659 and establish guidelines and priorities for water allocation and water pricing. The priorities established for
660 water allocation would be used in critical drought conditions. The water quality classification of water bodies
661 by different classes of use is the basis for truly integrating the quality and quality of water management. Water
662 pricing is the single most controversial instrument of the law. The pricing system recognises the economic value
663 of water, as stated in the principles of the policy, but is also the most difficult step to implement. It is expected
664 that the pace of implementation will increase and the quality of work will improve in addition to building the
665 capacity of the private and district staff in contracting procedures. The financial accountability is also easier and
666 more transparent. The communities should be fully utilised in any attempts to promote the local management
667 of water supply and sanitation systems. A charge in water and sanitation sector approach from supply-driven
668 approach to demand-responsive approach calls for full community participation. The community should be
669 defined in terms of their primary role as user/clients. Private-sector services are necessary because there are
670 gaps, which exist as a result of the government not being able to provide water services due to limited financial
671 resources and increase in population. There is little notion of 'service, invoice and move on'. As a result, there are
672 major problems looming with sustainability of completed projects. The factors affecting the eco-environmental
673 changes are complex. There are interrelated and interact. The deterioration problems of water and sanitation
674 have attracted some attention in recent years. There is an urgent need to study possible rehabilitation measures
675 to ensure a sustainable and excellent water quality and improved sanitation.

1 2 3 4 5 6 7 8 9

¹© 2013 Global Journals Inc. (US)

²Sustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan

³BSustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan

⁴Sustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan

⁵Sustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan

⁶© 2013 Global Journals Inc. (US) 20

⁷Sustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan

⁸24 Year 2013 B Sustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan

⁹© 2013 Global Journals Inc. (US) 20

Figure 1: 3 . 5 .

1

Figure 2: Figure 1 :

Figure 3:

of water systems, but attempts are being sought to
Year 2013

2 14

Volume XIII Issue IIW I Version I

D D D D)

B

(

Global Journal of Human Social Science

Figure 4:

(a) Land use (millions of ha)				
Geographical area (total Sudan area)				250.6
Land area				237.6
Cultivable area				8.4
Pastures				29.9
Forests and woodland				108.3
Uncultivable land				81.0
Area under crop (irrigated, rain-fed, mechanised, and rain-fed traditional)				10.0
(b) Land-resource zones				
Zone	Area as % to total area of Sudan	Persons per km ²	Mean average rainfall range	
Desert	44	2	0-200	
QOS sands (dune)	10	11	200-800	
Central clay plains	14	19	200-800	
Southern clay plains	12	8	800-900	
Ironstone plateau	12	7	800-1400	
Hill area and others	8	16	Variable	
(c) Water Resources				
Water resource	Available number	Static water level (m)	Number	
Haffirs	824	0-0	824	
Slow sand filters	128	0-0	128	
Open shallow wells	3000	0-10	3000	
Boreholes	2259	0-25	1248	
deep wells		26-50	478	
		51-75	287	
		76-100	246	
(d) Geological Formations				
Basins	Amount of water recharged (10 ⁶ m ³)	Water level below land (m)	Aquifer thickness (m)	Velocity (m/year)
Sahara Nile	136	30-100	300-500	1-2.5
Sahara Nubian	20.6	10-50	300-500	0.8-1.5
Central Darfur	47.6	25-100	250-550	0.3-6.0
Nuhui	15.4	75-120	200-400	1.0-2.75
Sag El Na'am	13.5	50-1000	300-500	1.0-25.0
River Atbara	150	100-150	250-300	0.3-5.0
Sudd	341	10-25	200-400	0.1-1.8
Western Kordofan	15	50-70	300-500	0.1-0.3
Baggara	155	10-75	300-500	0.1-2.4
Blue Nile	70.9	10-50	250-500	0.1-2.5
The Alluvial	N.A	Shallow	N.A	N.A
Gedaref	41.7	50-75	200-500	0.1-2.0
Shagara	1.1	25-30	200-300	0.1-2.5

Figure 5: Table 1 :

Figure 6: B

2

Technological criteria	Water and environment criteria	Social and economic criteria
Primary water saving in regional scale	Sustainability according to greenhouse gas pollutant emissions	Labour impact
Technical maturity, and reliability	Sustainable according to other pollutant emissions	Market maturity
Consistence of installation and maintenance requirements with local technical known-how	Land requirement	Compatibility with political, legislative and administrative situation
Continuity and predictability of performance	Sustainability according to other environmental impacts	Cost of saved primary water
Cleaner, leaner production processes-pursuing improvements and savings in waste minimisation, energy and water consumption, transport and distribution, as well as reduced emissions are needed. Tables (2-4) indicate water conservation, sustainable development and environment.		

Figure 7: Table 2 :

3

Criteria	Intra-system impacts	D D D D) B
Stakeholder satisfaction	Standard expectations met	(
	Relative importance of standard expectations	Extra-system impacts
	Change in intra-system resource bases	Covered by attending to extra-system resource
Resource base impacts	Significance of change	base and ecosystem impacts
	Change in intra-system ecosystems	
Ecosystem impacts	Significance of change	
		Resource flow into/out of facility system
		Unit impact exerted by flow on source/sink system
		Significance of unit impact
		Resource flows into/out of facility system
		Unit impact exerted by flow on source/sink system
		Significance of unit impact
Growing environmental sustainability have led to increased interest in planning for the energy utility sector because of its large resource requirements and production of emissions. A number of conflicting trends combine to make the energy sector a major concern, even though a clear definition of how to measure progress toward sustainability is lacking. These trends include imminent competition in the electricity industry, global climate change, expected long-term growth in population and	complaint social and	pressure to balance living standards and capital energy consumption).

Figure 8: Table 3 :

4

Economic system	Social system	Environmental system
Durability	Preservation of cultural values	Preservation of resources
Meeting changing needs of economic development	Meeting changing needs of individuals and society	Reuse, recycling and preservation of resources
Energy conservation and saving	Savings directed to meet other social needs	Preservation of resources, reduction of pollution and global warming

Figure 9: Table 4 :

5

- Economy-wide decoupling indicators
 - 1. Greenhouse gas emissions
 - 2. Air pollution
 - 3. Water pollution (river water quality)
 - 4. Commercial and industrial waste arisings and household waste not cycled
- Resource use indicators
 - 1. Material use
 - 2. Water abstraction
 - 3. Homes built on land not previously developed, and number of households
- Decoupling indicators for specific sectors
 - 1. Emissions from electricity generation
 - 2. Motor vehicle kilometres and related emissions
 - 3.

Figure 10: Table 5 :

Year 2013	VII.
2 20	
Volume XIII Issue IIW I	
Version I	
D D D D)	
(
Global Journal of Human Social Science	Sustainable production polices -primarily targeted at producers
	Structural change and innovation polices -designed to change the market conditions
	Sustainable consumption policies primarily targeted at consumers

[Note: B?]

Figure 11:

6

Using of re-sources	Sources	Institutions	Pricing Principle	Price Details
Urban	Surface and groundwater	National Water Corporation (NWC)	Full cost recovery	Progressive rate with increasing uses. Rates lower in the north
Major rural villages	Mostly groundwater	Rural Water Corporation (RWC)	Stand pipe free, recovery of recurrent costs, charges for yard and house connections	Progressive rates but less comparative to urban cities
Rural villages	Groundwater	District Councils	As above	Not available
Livestock	Surface and groundwater	Rural Water Corporation (RWC)	All investments and recurrent costs	Regressive, no charges on relatively small use
Mines	Surface and groundwater	National Water Corporation (NWC)	Full cost recovery	Progressive rates
Wildlife	Mostly surface	Rural Water Corporation (RWC)		

Figure 12: Table 6 :

7

Materials	(%)
Paper, and wood	50.0
Ferrous residues	12.5
Glasses	11.0
Organic wastes	10.0
Plastics	5.0
Non-ferrous residues	1.5
Other	10.0
VIII.	

Figure 13: Table 7 :

8

Sustainable Water Resources Management, Future Demands and Adaptation Strategies in Sudan
Year 2013

2 22

Volume XIII Issue IIW I Version I

D D D D)

B

(

Global Journal of Human Social Sci-
ence

Region

Water resource issues

South

1. Abundant water resources

2. Localised scarcity of water and untapped
water supplies

3. High hydropower potential

4. Water conflicts arising from immigration of
Bagara Arabs (nomadic) from north to south

5. Water-borne diseases

Figure 14: Table 8 :

9

High capacity (plans,
etc., in places)

Medium capacity
(evidence of activity
on-going)

Low capacity (no
formalisation in place
nor apparently
evolving)

Figure 15: Table 9 :

10

River basin	Nile basin
Basin states or territories	Burundi, Democratic Republic of Congo, Egypt, Eritrea, Ethiopia, Kenya, Rwanda, Sudan, Tanzania, Uganda
Cooperative frameworks in place	Nine of the countries of basin are pursuing the development of a cooperative framework
Major languages spoken	More than 6 official languages and numerous unofficial languages
Major water issue facing the basin	Rapid population growth, environmental degradation, under development
External funding of	Extensive external funding of

Figure 16: Table 10 :

11

Country	Egypt	Sudan
Per capita annual water resources 2000 (m ³)	34	1187
Per capita annual withdrawal (m ³)	921	666
Per capita annual withdrawal for agriculture (m ³)	86	94

XI.

Figure 17: Table 11 :

676 [Asce ()] *ASCE Task Committee on Sustainability Criteria, Sustainability Criteria for Water Resource Systems*,
677 Asce . 1998. Reston, Virginia, USA.

678 [Noureddine ()] 'Conservation planning and management of limited water resources in arid and semi-arid areas'.
679 R M Noureddine . *Proceedings of the 9 th Session of the Regional Commission on Land and Water Use in*
680 *the Near East*, (the 9 th Session of the Regional Commission on Land and Water Use in the Near East Rabat;

681 Morocco) 1997. p. .

682 [FAO United Nations Food and Agriculture Organisation ()] *FAO United Nations Food and Agriculture Organ-*
683 *isation*, 1999. Rome: Italy. (The State of Food in Security in the World)

684 [Omer ()] 'Focus on groundwater in Sudan'. A M Omer . *International Journal of Geosciences Environmental*
685 *Geology* 2002. 41 (8) p. .

686 [James ()] *Managing water as economic resources*', *Overseas Development Institute (ODI)*, W James . 1994.
687 UK..

688 [Anon ()] *Map of the world distribution regions*, Anon . 1979. MAB Tech Note 7.

689 [Seckler ()] *Private sector irrigation in Africa-Water resources and irrigation policy studies*, D Seckler . 1992.
690 Winrock International Institute for Agricultural Development.

691 [Overseas Development Administration (ODA). (ed.) ()] *Sudan profile of agricultural potential*, Overseas Develop-
692 opment Administration (ODA). (ed.) 1987. 1987. Survey, UK.

693 [Sustainability criteria for water resource systems, Cambridge UNESCO ()] 'Sustainability criteria for water re-
694 source systems, Cambridge'. *UNESCO* 1999. Cambridge University Press. (UNESCO Working Group M.IV)

695 [Omer ()] 'Water and environment in Sudan: the challenges of the new millennium'. A M Omer . *NETWAS* 2000.
696 7 (2) p. .

697 [Omer ()] 'Water development in Sudan: Present and future challenges. Arab Organisation for Agriculture
698 Development (AOAD)'. A M Omer . *Arabic Journal* 2001. Sudan.

699 [Omer ()] 'Water resources development and management in the Republic of the Sudan'. A M Omer . *Water and*
700 *Energy International* 2004. 61 (4) p. .

701 [Omer ()] 'Water resources in Sudan'. A M Omer . *NETWAS* 1995. 2 p. .

702 [Omer ()] 'Water resources in the Sudan'. A M Omer . *Water International* 2008. 32 (5) p. .

703 [Salih ()] *Water scarcity and sustainable development*', *Nature and Resources* 28, A M A Salih , Ali , AA G .
704 1992. p. 1.

705 [World Health Organisation (WHO) ()] *World Health Organisation (WHO)*, 2006. Geneva: Switzerland. (Water
706 norms and attitudes)

707 [World Resources Institute (WRI) ()] *World Resources Institute (WRI)*, 2002. 2000-2001. USA. (World Re-
708 sources)