

1 Remediation of Pesticide-Polluted Water using Ozonation as a 2 Safe Method

3 Prof. Dr. Ahmed Khamis Salama¹

4 ¹ Majmaah University, KSA

5 *Received: 16 December 2012 Accepted: 31 December 2012 Published: 15 January 2013*

6

7 **Abstract**

8 The effectiveness of ozone to remove the organic compound, chloropyrifos or cypermethrin
9 from water at the two different levels of 1 and 2 ppm, for each and different contact times was
10 studied. The recovered amounts of chloropyrifos or cypermethrin were extracted based on the
11 solid phase extraction (SPE) method and then analyzed by GC-MS. The results demonstrated
12 that the removal of these organic compounds by ozone increased with increasing the contact
13 time. The removal percentages of chloropyrifos following ozone bubbling for different periods
14 of 15, 30, 45 and 60 minutes at room temperature were 10.5, 96.3, 97.4 and 98.5

15

16 *Index terms—*

17 **1 Introduction**

18 The excessive use of pesticides, their volatility and long-distance transports eventually results in widespread
19 environmental contamination. In addition more toxic and environmentally persistent pesticides are used
20 extensively in developing nations, creating serious acute health problems and local and global environmental
21 impacts (Ecobichon, 2001). Several pesticides were detected in groundwater (Garcia deLlasea and Bernal-
22 Gonzales, 2001; Johnson et al, 2001; and Kadian et al 2008). The amount and type of pesticides in the water of a
23 particular area depends largely on the intensity of production and type of crops being cultivated (Belmonte et al,
24 2005). Also, the rate at which a pesticide is degraded in both surface and subsurface soils is an important factor
25 in determining the groundwater contamination potential of the pesticide (Di et al, 1998). This implies that most
26 of the applied pesticides find their way as 'residue' in the environment into water and the terrestrial and aquatic
27 food chains where they undergo concentration and exert potential, long term, adverse health effects ??Ekstrom
28 et al, 1996; ??hirone et al, 2000; and Osman and Al-Rehiayani, 2003). Since the late decades, concern about
29 the contamination of water sources has risen due to the increasing number of pesticides detected. Regulations
30 for drinking water are required in order to limit human risks and environmental pollution. These regulations
31 are well defined in North America, depending on the toxicity level of each compound, and Europe (Directive,
32 1998) setting at 0.1 ppm of pesticide concentration for a single pesticide compound and 0.5 ppm for the sum of
33 all pesticides in water samples. Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) is one
34 of the most organophosphorus pesticides that is a widely-used for controlling various insect pests in agricultural
35 and urban settings. Chlorpyrifos enters aquatic systems through spray drift, runoff, erosion, and spills (Racke,
36 1993). Cypermethrin has been widely used in both indoors and outdoors (Kaufman et al, 1981). It is especially
37 effective towards the control of insect pests in many crops, outdoor mosquito control and as an indoor insecticide
38 ??Takahashi et al, 1985). Cypermethrin is commonly found in rivers, sediments, soils, and even foodstuffs
39 (Allan et al, 2005 and Amweg et al, 2005). In recent times the removal of organic harmful pollutants present
40 is investigated by means of a variety of chemical procedures. Advanced oxidation processes (AOPs) which are
41 constituted by the combination of several oxidants, have proven to be very effective in treating a wide variety
42 of organic contaminants. These technologies utilize powerful oxidizing intermediates (mainly OH radicals) to
43 oxidize organic pollutants, leading not only to their destruction, but also, given sufficient conditions, to their
44 complete mineralization. The OH radicals can be generated, for example, by the application of ozone/hydrogen

5 IV. DETERMINATION OF DETECTION AND QUANTITATION LIMITS

45 peroxide, ultraviolet radiation/ozone, ultraviolet radiation/hydrogen peroxide, ozone/electron beam (Gehringer
46 et al, 1992;Legrini et al, 1993 andAcero et al 2001). Ozone is a triatomic form of oxygen and is referred to as
47 activated oxygen, allotropic oxygen or pure air. It is an unstable gas and the half-life ozone in distilled water
48 at 20 oxygen, and even more rapidly in impure solution (Hill and Rice 1982), while It has a long half-life in
49 the gaseous state ??Rice, 1986). Ozone has been approved for use as a disinfectant or sanitizer in foods and
50 food processing in the United States for removing residual pollutants such as pesticides and other pollutants
51 which are difficult to get rid of in biological oxidation processes due to its high oxidability, high reaction rate
52 and absence of any secondary pollution. It is considered as a powerful oxidant having electrochemical oxidation
53 potential of 2.0V versus 2.8V for hydroxyl radical. Consequently, oxidation by ozone have usually been used as
54 an effective method for removing residual pollutants such as pesticides and other hazardous chemicals from raw
55 water used for drinking and for wastewater treatment (Lafi and Al-Qodah, 2006). There is no data about the
56 removal of chropyrifos or cypermethrin from water in KSA and the search for means to improve the production
57 of clean water in KSA is always the target of scientists, politicians and businessmen, who seek new techniques
58 to enhance the quality and safety of this product. A wide range of water and terrestrial ecosystems might be
59 contaminated with chlorpyrifos and cypermethrin (EPA, 1997 and Sapozhnikova et al, 2004) which have increased
60 the public concern to establish an efficient, safe, and cost effective method to remove or detoxify chlorpyrifos
61 and cypermethrin residues in contaminated water. Therefore, the present study was carried out to evaluate the
62 effectiveness of ozone at different contact times as a safe method for removal of chropyrifos and cypermethrin in
63 water samples.

64 2 II.

65 3 Materials and Methods

66 4 a) Chemicals b) Experimental Procedure i. Removal of 67 organic compounds residues from groundwater

68 Groundwater samples were collected from different locations at Al-Qassim region. Water samples were fortified
69 with the organic compounds, chlropyrifos and cypermethrin at two levels for each compound (1 and 2 ppm).
70 Removal of organic compounds from water samples was studied at four different contact times to ozone gas (15,
71 30, 45 and 60 min) at room temperature were treated with ozone at the previous mentioned periods. Ozone gas
72 (100 ppm at air flow rate of 2.5 L/min with ozone output of 300 mg/hr) produced by Xetin Ozone Air &Water
73 purifier (Model XT 301, Xetin Co. Ltd, Taiwan) was bubbled into 10 liters deionized water in polypropylene
74 cylinder. The duration of dissolved ozone levels were controlled via adjusting the duration of bubbling. A 500
75 ml volume of water was withdrawn after different time on intervals and kept at analysis.

76 ii. Extraction Procedure Water samples were extracted according to the procedure of Quintana et al (2001).
77 with slight modification. In brief, A 500 ml volume of water, in which 5 ml of methanol had been added, was
78 passed over the conditioned sorbent (3 ml of ethyl acetate, 3 ml of methanol and 6 ml of water, the sorbent of
79 SPE was never allowed to dry during the conditioning and sample loading steps.) at a flow-rate of 5 ml/min.
80 The sorbent was afterwards dried under vacuum for 20 min. Elution was performed by soaking the cartridge
81 with 2.5 ml of ethyl acetate at a flow-rate of 0.8 ml/min, eluted with a second portion of 2.5 ml of ethyl acetate
82 and collected in a glass vessel containing 0.5 ml of isoctane. The elute was then dried under vacuum to 0.45
83 ml. The volume was precisely readjusted to 0.5 ml of isoctane and then analyzed by gas chromatography-mass
84 spectroscopy (GC-MS).

85 iii. Recovery Experiments Pure water samples were spiked with either chlropyrifos or cypermethrin standard
86 solutions in acetone to give the four levels of 0.25, 0.50, 1 and 2 ppm prior to extraction. They were then prepared
87 according to the proposed procedure as described previously and then absolute recoveries were measured. The
88 recovery values were found to be ranged from 98-104 and 92-106% for chlropyrifos and cypermethrin, respectively.

89 5 iv. Determination of detection and quantitation limits

90 Remediation of Pesticide-Polluted Water Using Ozonation as a Safe Method© 2013 Global Journals Inc. (US)

91 The limits of detection (LOD) and limit of quantitation (LOQ) were calculated from the signal-tonoise ratios
92 obtained by analyzing unspiked samples (n = 10); LOD and LOQ were taken to be the concentrations of pesticide
93 resulting in a signal-to-noise ratio of 3 and 10, respectively. The LOD values were Gas chromatography (Model GC
94 450, Varian Inc., The Netherlands) with a mass spectrometry (MS 220.41) detector equipped with split/splitless
95 injector with electronic pressure control was employed. A Fused silica CP-Sil 8 CB-LB/MS capillary column
96 (30 m x 0.25 mm i.d) was used in combination with the following oven temperature programme for chlropyrifos:
97 initial temperature 50 °C, 5 °C/min ramp to 160 °C held for 10 min (first step) and from 160 to 250 °C (20 min)
98 at 15 °C (final step) and 90 °C, 5 °C/min ramp to 160 °C held for 10 min (first step) and from 160 to 250 °C (20
99 min) at 15 °C (final step) for cypermethrin. The injector temperature was 280 °C and mass range from 50-650
100 amu. The carrier gas (helium, 99.999%) flow rate was set to a constant head pressure of 200 kPa at flow rate
101 of 1.0 ml min-1 with split ratio of 1: 20 min. The mass spectrometer was operated in electron ionization mode
102 with a transfer line temperature of 280 °C, manifold temperature 40 °C, ion trap temperature 200 °C, ion source

103 240 °C and selected ion monitoring (SIM) mode. The ion energy for electron impact (EI) was kept at 70 eV. MS
104 Workstation version 6.9.1. was used for data acquisition. For positive identification, both retention time (Rt)
105 and the presence of five fragment ions (z/m ions: 197, 97, 199, 29 and 414 for chlropyrifos and 163, 165, 181, 91
106 and 77 for cypermethrin) were considered. Figures ?? and 2 represent the GC-MS chromatograms for chlropyrifos
107 and cypermethrin, respectively.

108 **6 III.**

109 **7 Results and Discussion**

110 The study shows one of the analytical methods that use a solid phase extraction (SPE) to pre-treat the sample and
111 further analysis of the extract by gas chromatograph-mass spectrometer(GC-MS) equipped with electron impact
112 ionization (EI) detector. SPE is particularly suited for the isolation of organic micropollutants from water and
113 has now become the method of choice in order to carry out simultaneously the extraction and concentration of
114 many pesticides and metabolites in aqueous samples (Heberer et al, 1994;Font, 1993 and ??abik et al, 2000).
115 The most widely used sorbents are C8 and C18 chemically bonded to silica, carbon black and polymeric resins
116 ??Sabik et al, 2000).

117 **8 a) Removing of chlropyrifos and cypermethrin by ozone 118 treatment**

119 The effect of ozone treatment on either chlropyrifos or cypermethrin residues for different contact times was
120 investigated. The amount of either chlropyrifos or cypermethrin levels was significantly decreased exponentially
121 as the contact time increased in water samples at the two tested levels of the pesticides (1 and 2 ppm) compared
122 to the initial levels, control, (Tables ??-2). The data showed that ozone declined the amount of chlropyrifos in
123 water samples following the all intervals of treatment. The removal percentages were 10.5, 96.3, 97.4 and 98.5%
124 in samples spiked with 1ppm of chlropyrifos after 15, 30, 45 and 60 min, respectively, while they were 79.6, 93.9,
125 94.7 and 96.1% in samples spiked with 2 ppm. In case of cypermethrin, the removal percentages were 68.6, 90.5,
126 97 and 99.2% in water samples spiked with 1ppm following ozone bubbling for 15, 30, 45 and 60 min, respectively,
127 whereas they were 30.5, 50, 94.7, 84.7 and 92% at 2 ppm fortification level in the same order.

128 **9 b) Kinetic Studies**

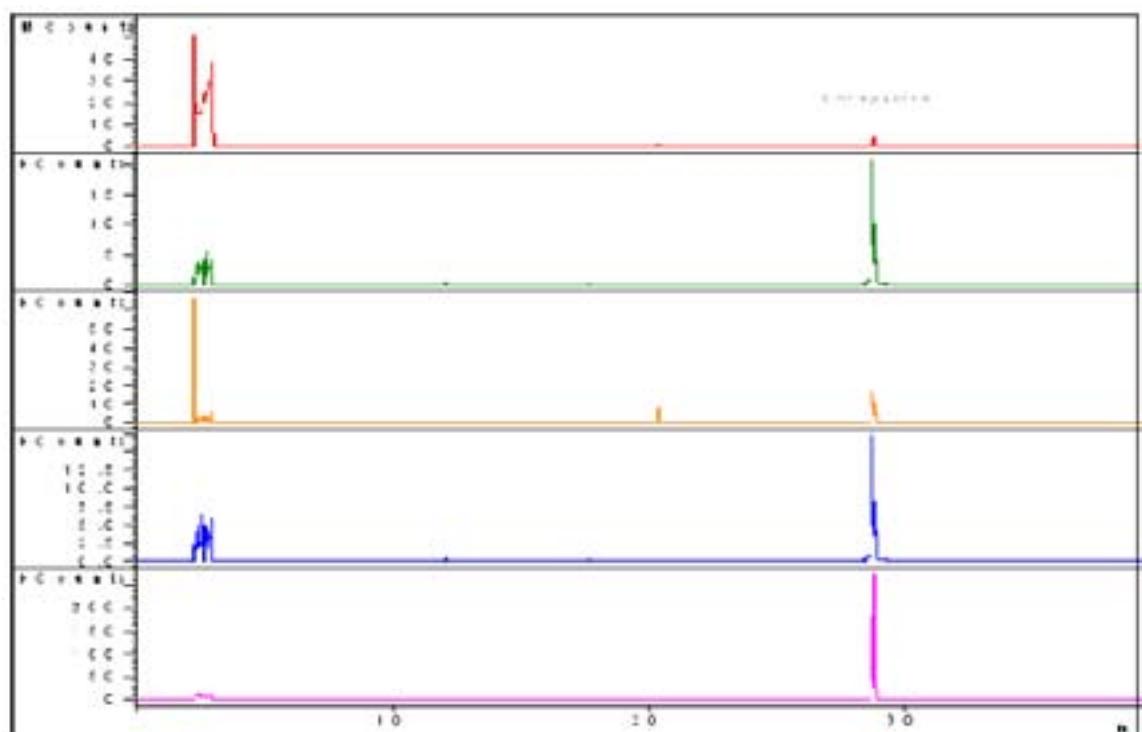
129 A biphasic model was assumed according to Sigma Plot (2011) in order to carry out the statistical study of the
130 of either chlropyrifos or cypermethrin removal in water (equation 1).
$$C_t = A_0 e^{-kt} + B_0 e^{-kt} (1)t^{1/2} = (2.303 \log 2) / \text{rate constant}(2)$$

132 The data fitting results in case of all ozone treatment using second order kinetic showed that the coefficients of
133 determination (R²) were 0.829 and 0.999 for chlropyrifos as well as 0.9990 and 0.9510 for cypermethrin when the
134 tested levels of pesticide were 1 and 2 ppm, respectively (Tables ?? and 6). The biphasic model is characterized
135 by a rapid phase (first phase), and a much slower phase (second phase). This is clearly reflected in the half-live
136 values (t_{1/2}), where t_{1/2} values for chlropyrifis were 15.0 and 4 min, and t_{1/2} values were 15.1 and 17.96 min,
137 at the spiking levels of 1 and 2 ppm, respectively, following ozone treatment. On the other hand, t_{1/2} values
138 of cypermethrin were 8.89 and 21.71 min and t_{1/2} values were 9.00 and 21.71 min at the spiking levels of 1
139 and 2 ppm, respectively, following ozone treatment.

140 The present findings are in accordance with those of many investigators who reported that the kinetics of
141 pesticide degradation is commonly biphasic with a very rapid degradation rate at the beginning followed by a
142 very slow prolonged dissipation ??Alexander, 1994;Jones et al, 1996; ??igas et al, 2007 andOsman et al, 2009).
143 The relative importance of the phases depends on the availability of the pollutants, hydrophobicity, and affinity
144 for organic matter. So it is recommended to use such simple and non-toxic Year 2013 B related to its water
145 solubility and octanol-water partition coefficient.

146 One of the health concerns of using oxidants to degrade pesticide is the formation of toxic intermediates. The
147 present study investigated the efficacy of ozone to remove chlropyrifos and cypermethrin from water. Ozone was
148 assayed for treatment has a powerful oxidant having electrochemical oxidation potential of 2.0V, and thus, can
149 modify the chemical structure of the selected pesticides creating derived by-products. If these by-products are
150 more toxic than the parent pesticide, such washing treatments should not be utilized to reduce pesticide residue
151 levels in water.

152 Ozone selectively reacts with compounds containing hetero-atoms such as S, N, O, and Cl via two different
153 pathways, namely direct molecular and indirect radical chain-type reactions Gottschalk et al, 2000). Thus,
154 pesticides, which usually have some hetero-atoms on the molecules, are often expected to be destroyed by
155 ozonation (Reynolds, 1989). However, as has been found by many researchers, the reactivity of pesticides with
156 ozone varies largely due to their diverse structural features (Reynolds, 1989;David et al, 1991) the characteristics of
157 the wastewater to be treated, i.e., pH, concentration of ozone decomposition initiators, promoters and scavengers
158 in the reacting medium (Glaze et al, 1987).


159 IV.

160 **10 Conclusions**

161 Water is the basic necessity of life and water contaminated with toxic pesticides is associated with severe effects
162 on the human health. Hence it is pertinent to explore strategies that address this situation of water safety
163 especially for the developing countries where pesticide contamination is widespread due to indiscriminate usage.
164 It is therefore of significance to evaluate simple and effective strategies as such ozone to enhance water safety
165 from harmful pesticides. Due to its high oxidability, high reaction rate and absence of any secondary pollution,
166 ozonolysis technique should be used in the sanitization of water especially in the treatment of pesticides which are
167 difficult to get rid of. Results of this work, provided some basic concepts that can be helpful in water treatment
168 for consumers. Therefore, the present study validated that ozone treatment is safe and promising processes for
169 the removal of pesticides from water under domestic conditions. Results found in the present study must not be
extrapolated to other pesticides. ^{1 2}

Figure 1:

Fig (1). GC-MS profiles for chlorpyrifos

Figure 2: Global

10 CONCLUSIONS

171 .1 Acknowledgements

172 This study was supported by the Engineering and Applied Sciences Research Center, Scientific Research Deanship,
173 Majmaah University under Award No. 11-1432.

174 28. Rice RG. ??1986)

175 [Font et al. () , G ; J Font , ; J C Manes , Y Molto , Pico . *J. Chromatography* 1993. 642 p. 135.

176 [Heberer et al. () , T Heberer , ; S Butz , H J Stan . *Journal of AOAC International* 1994. 77 p. 1587.

177 [Ec Directive ()] 98/ 83, *Publicatieblad Europese Gemeenschapen* 330/ 32-330, Ec Directive . 1998. 1998. 54.

178 [Reynolds et al. ()] 'Aqueous ozonation of pesticides: A Review'. G Reynolds , N Graham , R Perry , R G Rice
179 . *Ozone Science & Engineering* 1989. 11 p. .

180 [Kadian et al. ()] 'Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed
181 materials'. N Kadian , A Gupta , S Satya , R K Mehta , A Malik . *Bioresource Technology* 2008. 99 p.
182 .

183 [Osman et al. ()] 'Bioremediation of oxamyl in sandy soil using animal manures'. K A Osman , S Al-Rehiayani ,
184 Al-Doghairi , M A Salama , AK . *International Biodeterioration & Biodegradation* 2009. 63 p. .

185 [Lafi and Al-Qodah ()] 'Combined advanced oxidation and biological treatment processes for the removal of
186 pesticides from aqueous solutions'. W K Lafi , Z Al-Qodah . *Journal of Hazardous Materials* 2006. 137 p. .

187 [Di et al. ()] 'Degradation rates of eight pesticides in surface and subsurface soils under laboratory and field
188 conditions'. H Di , L A G Aylmore , R S Kookana . *Soil Science* 1998. 163 p. .

189 [Racke ()] *Environmental fate of chlorpyrifos. Reviews of Environmental Contamination & Toxicology*, K D Racke
190 . 1993. 131 p. .

191 [Hill and Rice (ed.) ()] *Historical background properties and applications*, A G Hill , R G Rice . Rice, R.G. (ed.)
192 1982. Ann Arbor, MI: Ann Arbor Science Publishers. p. . (Ozone Treatment of Water for Cooling Application)

193 [Vega et al. ()] 'Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid
194 chromatography coupled to mass spectrometry'. Belmonte Vega , A Garrido French , A Vidal , JL . *Analytica
195 Chimica Acta* 2005. 538 (1-2) p. .

196 [Quintana et al. ()] 'Monitoring of pesticides in drinking and related waters in NE Spain with a multiresidue
197 SPE-GC-MS method including an estimation of the uncertainty of the analytical results'. J ; I Quintana , F
198 Martí , Ventura . *Journal of Chromatography A* 2001. 2001. 938 p. .

199 [Kaufman et al. ()] 'Movement of cypermethrin, decamethrin, permethrin, and their degradation products in
200 soil'. D D.; B A Kaufman , S Russell; C , A J Hellingand , Kayser . *Journal of Agricultural & Food Chemistry*
201 1981. 29 p. .

202 [Acero et al. ()] 'MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide:
203 efficiency of the processes and bromate formation'. Juan L Acero , Stefan B Haderlein , C Torsten , Schmidt
204 , J F Marc , Suter , Urs Von Gunten . *Environmental Science & Technology* 2001. 35 p. .

205 [Jones et al. ()] 'Organic chemicals in contaminated land: analysis, significances and research priorities'. K C
206 Jones , R E Alcock , D L Johnson , G L Nothcott , K T Semple , P J Woolgar . *Land Contamination &
207 Reclamation* 1996. 3 p. .

208 [Gottschalk et al. ()] *Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its
209 Application*, C Gottschalk , J A Libra , A Saupe . 2000. Weinheim: Wiley-VCH. p. .

210 [Johnson et al. ()] 'Penetration of herbicide to groundwater in an unconfined chalk aquifer following normal soil
211 applications'. A C Johnson , T J Besien , A Bhardwaj , D C Dixon , A H Goody , Haria , C White . *Journal
212 of Contaminant Hydrology* 2001. 53 p. .

213 [Chiron et al. ()] 'Pesticide chemical oxidation: state-of-the-art'. S Chiron , A Fernandez-Alba , E Rodriguez ,
214 Garcia-Calvo . *Water Research* 2000. 34 p. .

215 [Ecobichon ()] 'Pesticide use in developing countries'. D J Ecobichon . *Toxicology* 2001. 160 (1-3) p. .

216 [Legrini et al. ()] 'Photochemical processes for water treatment'. O Legrini , E Oliveros , A M Braun . *Chemical
217 Reviews* 1993. 93 p. .

218 [García De Llasea and Bernal-González ()] 'Presence of carbamate pesticides in environmental waters from the
219 northwest of Mexico: Determination by liquid chromatography'. M P García De Llasea , M Bernal-González
220 . *Water Research* 2001. 35 p. .

221 [David et al. ()] 'Rate constants for direct reactions of ozone with several drinking water contaminants'. C David
222 , C Yao , W R Haag . *Water Research* 1991. 25 (7) p. .

223 [Gehringer et al. ()] 'Remediation of ground water polluted with chlorinated ethylenes by ozone electronbeam
224 irradiation treatment'. P; Gehringer , Proksch , H Eschweiler , W Szinovatz . *International Journal of
225 Radiation Application and instrumentation. Part A. Applied Radiation and Isotopes* 1992. 45 p. .

10 CONCLUSIONS

226 [Epa ()] 'Review of Chlorpyrifos Poisoning Data'. Epa . *EPA* 1997.

227 [Osman and Al-Rehiayani ()] 'Risk assessment of pesticide to human and the environment'. K A Osman , S
228 Al-Rehiayani . *Saudi Journal of Biological Sciences* 2003. 10 p. .

229 [Glaze et al. ()] 'The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet
230 irradiation'. W H Glaze , J W Kang , D H Chapin . *Ozone Science Engineering* 1987. 9 p. .

231 [Amweg et al. ()] 'Use and toxicity of pyrethroid pesticides in the central valley California, USA'. E L Amweg ,
232 D P Weston , N M Ureda . *Environmental Toxicology & Chemistry* 2005. 24 (4) p. .