

1 Examining Correlates of Math Anxiety Among Single-Sex & 2 Co-Educational Schools in Nigeria

3 Oladipo King¹

4¹ Tai Solarin University of Education

5 *Received: 14 December 2011 Accepted: 1 January 2012 Published: 15 January 2012*

6

7 **Abstract**

8 A global view of Mathematics as a subject reveals that it is widely recognized as a problem
9 area and most students have phobia for it. In view of this, the present study examined
10 correlates of math anxiety among single-sex and co-educational schools in Nigeria. The study
11 adopted an ex-post facto descriptive survey research design, and a total of 450 participants
12 were randomly sampled for the study; 153 (34)

13

14 **Index terms**— Single-sex; Co-educational; Math Anxiety; South-western.

15 **1 I. ntroduction**

16 Tai Solarin University of Education. E-mail : kingola2001@yahoo.com advancement of any country and there is
17 hardly any way of avoiding math in our day-to-day activities. In the words of Rossnan (2003), she asserted that
18 'the needs of society require a greater need for mathematics', and there is therefore no way of avoiding it.

19 That Math anxiety can be a great problem cannot be overemphasized; Rossnan (2003) has said math can
20 greatly affect a child's success throughout their education and their adult life, the reason being that math is
21 connected to so many professional and personal practices. Math anxiety can cause one to forget and loose one's
22 self-confidence and has also been observed to have blocked millions of adults from professional and personal
23 opportunities because they fear or perform poorly in mathematics (Tobias, 1993). For many, these negative
24 experiences remain throughout their adult lives (Evans, 2000; ??itzSimons, 1994;Civil 2003). Baroody and
25 Costlick (1998) suggested that children who develop a math anxiety tend to fall into a self-defeating, self-
26 perpetuating cycle, which may stay with them throughout life if not attended to. From the foregoing, it is of
27 utmost importance therefore that attention be paid to math anxiety, particularly among secondary school
28 students in order to be able to assist the phobic to overcome their phobia for math and prepare better for their
29 future career that may be negatively affected if the anxiety for math continues with them. a) What is anxiety?
30 Anxiety has been defined by Noting, (2006) as stress and strain that is brought into one's body and mind. It
31 can be described as an unpleasant emotion which is usually characterized by a feeling of vague, unspecified harm
32 such as fear, and it can cause a state of physical disturbance; unlike fear, it is characterized by the absence of an
33 apparent cause. It usually occurs that the circumstance that precipitates anxiety is hidden and unknown to the
34 person. Evidence exists that some persons may be biochemically vulnerable to an extreme form of anxiety known
35 as "panic attacks." Anxiety itself is a powerful physical experience that may involve rapid or pounding heartbeat,
36 difficult breathing, tremulousness, sweating, dry mouth, tightness in the chest, sweaty palms, dizziness, weakness,
37 nausea, diarrhea, cramps, E Year global view of Mathematics as a subject will reveal that it is widely recognized
38 as a problem area (Wagh, 2003) and most students have phobia for it (irrespective of age and or gender) Johnson,
39 ??2003). According to Marilyn Burns (1998), nearly two thirds of American adults have hatred for and deep
40 fear of math. In 1992, researchers at the University of Florida circulated a questionnaire to 9,093 students and
41 found that had a moderate to high need of help with math anxiety (Jones 2001). Zaslavsky (1994) also posited
42 that people of all races and economic backgrounds fear math. In the case of Nigeria, Bamidele, (2005) has said
43 students' general impression is that mathematics is a dreadful subject, but ironically, it is the basis for scientific
44 and technologicalA I Author ? ? ? ? ¥ § ? ? ? :

45 **2 25.9%**

46 insomnia, fatigue, headache, loss of appetite, and sexual disturbances. These symptoms may easily be mistaken
47 for physical illness. In addition, anxiety results in a narrowing of one's time perspective so that only the present
48 matters. It also results in an inability to attend to more than one task at a time or to organize thoughts and
49 plans effectively. Low levels of anxiety may temporarily increase a person's ability to do a simple task, because
50 of the greater vigilance and narrowing of attention associated with anxiety, but as anxiety increases, behavior
51 becomes more disorganized and ineffective.

52 b) What is math anxiety? Several definitions have been advanced for math anxiety; for example, Tobias and
53 Weissbrod (1980) defined math anxiety as "the panic, helplessness, paralysis, and mental disorganization that
54 arises among some people when they are required to solve a mathematical problem". It is both an emotional and
55 cognitive dread of mathematics and it can happen on elementary school children, high school and college students
56 (Tobias 1993). It needs be mentioned however, that, although some anxiety can be motivating or even exciting,
57 too much anxiety can cause "downshifting" in which "the brain's normal processing mechanisms begin to change
58 by narrowing perceptions, inhibiting short term memory and behaving in more primal reactions" (McKee 2002).
59 The Merriam Webster dictionary defines anxiety as an abnormal and overwhelming sense of apprehension and
60 fear often marked by physiological signs (as sweating, tension, and increased pulse), by doubt concerning the
61 reality and nature of the threat, and by self-doubt about one's capacity to cope with it.

62 Mathematics anxiety according to Luo; Wang, and Luo, (2009) refers to such unhealthy mood responses which
63 occur when some students come upon mathematics problems and manifest themselves as being panicky and
64 losing one's head, depressed and helpless, nervous and fearful; at the same time, it is accompanied by some
65 physiological reactions, such as perspiration of the palms, holding tight the fists, being sick, vomiting, dry lips,
66 and pale face. Students experience a feeling of self-threat in mathematics learning, resulting in the loss of interest
67 in mathematics and the loss of confidence in mathematics learning.

68 Researchers like Pries & Biggs (2001) have described a cycle of math avoidance, which they presented as having
69 four phases. In the first phase one, the math-anxious person experiences negative reactions to math situations.
70 This will lead to the second phase in which the person avoids math situations. This avoidance leads to phase
71 three, poor mathematics preparation, which brings them to phase four, poor math performance. This generates
72 more negative experiences with math and brings us back to phase one. This cycle can repeat so often that the
73 math anxious person becomes convinced they cannot do math and the cycle is rarely broken.

74 Several causes have been advanced by researchers for math anxiety: Unrelated life events, trigger events in
75 education and a lack of support (Zopp, 1999); Parents as well as teachers with math anxiety pass it along to their
76 children and students respectively (Fiore 1999); gender bias, insensitive/uncaring instructors (Jackson et al 1999);
77 Math myths" (Preis & Biggs 2001); "Student avoidance", Ashcraft (2002) for Norwood (1994) math anxiety does
78 not appear to have single cause, but was, in fact, the result of many different factors such as truancy, poor self
79 image, poor coping skills, teacher attitude and emphasis on learning math through drill without understanding.
80 However, Greenwood (1984) further stated that the principal cause of mathematics anxiety has been in teaching
81 methodologies. He said math classes did not encourage reasoning and understanding. Butterworth (1999)
82 believes that a lack of understanding is the cause of anxiety and avoidance and that understanding based
83 learning is more effective than drill and practice. A lack of confidence when working in mathematical situations
84 is described by Stuart (2000) as the cause of math anxiety. It is evident from the aforementioned that there are
85 several variables that come to play in causing math anxiety among people in different categories. However, there
86 seems to be a vacuum regarding the examination of demographic variables that may correlate with math anxiety
87 among students (especially when one compares students in single sex and co-educational schools. Therefore, the
88 justification for the present study.

89 **3 Theoretical background**

90 An eclectic approach has been adopted in the establishment of a theoretical background for this study. This
91 approach has been deemed appropriate because the variables that may precipitate anxiety in an individual are
92 numerous and may not be adequately explained by just one theory, hence the adoption of an eclectic approach.

93 **4 c) Learning Theory**

94 In learning theory, anxiety is seen both as a response to learned cues and as a drive, or motivator, of behavior.
95 Most learning theorists maintain that anxiety is derived from reaction to pain. Anxiety can thus be reduced by
96 removing or avoiding the source or sources of the situations that have produced pain. Avoidance may become
97 firmly established and lead to constricted or bizarre behavior. In relation to math anxiety therefore, the anxiety
98 manifested may therefore be a reaction to the learnt cues that math as a subject is a difficult one and it is only
99 the genius that does well in it. Since many people will always want to avoid pain, most students therefore try to
100 avoid perceived pain from taking math. It

101 **5 Global Journal of Human Social Science**

102 Volume XII Issue X Version I is therefore hypothesized that math anxiety, which is manifested by most students
103 is a function of what they have been able to learn from their immediate environment about mathematics. The

104 criticism however is that, even in environment where positive cues are given about math as a subject; many
105 students still manifest math anxiety. In some schools there are sufficient motivation for students to learn math
106 with ease, many of such students still manifest phobic reaction to math. It thus follows that there are may be
107 more factors than the learning from the environment that can precipitate math anxiety in students.

108 **6 d) Cognitive Theory**

109 In the control of anxiety, some psychologists have focused on the role of cognition as the origin of anxiety.
110 Cognitive theories emphasize the process of appraisal and the often unnoticed internal dialogue that amplifies
111 emotional response. Experiments have shown that the interpretation of a situation determines whether a person
112 feels anxiety or some other emotion. In other words, many students already have this cognitive dissonance
113 regarding mathematics as a subject. In fact many students have said frantically that they hate math as a subject
114 and they can never pass it at any level. They seem to have concluded and close up their cognitive make up that
115 they can never get to understand math, no matter the strategies, methods or motivation provided for teaching
116 and understanding math as a subject. It thus follows that attention must be paid to cognitive restructuring in
117 order to be able to assist those students.

118 **7 e) Psychoanalytic Theory**

119 Two types of anxiety are recognized in psychoanalysis. The first, traumatic anxiety, results from over stimulation.
120 Events happen faster than the mind can comprehend them. This produces a feeling of crisis. Sigmund Freud
121 believed that this feeling has a physical basis in the capacity of the nervous system and that birth throws every
122 child into a state of traumatic anxiety. In his view, this birth trauma becomes the template for later episodes
123 of anxiety. The second type of anxiety, signal anxiety, is believed to arise from a person's need to guard against
124 traumatic anxiety. The ego appraises its ability to cope with external demands and the push of internal drives.
125 When normal methods of coping with these pressures threaten to fail, the ego responds with anxiety, which then
126 mobilizes the person to take new action. The small-scale discomfort of signal anxiety helps to avoid a more
127 devastating experience. The second type of anxiety fits more in explaining math anxiety, in the sense that,
128 the need to avoid traumatic experience makes the individual to react with anxiety as a defense mechanism. f)
129 Review of related literature "There just aren't gender differences anymore in math performance," says University
130 of Wisconsin-Madison psychology professor Janet Hyde, who gathered data from 7million students in order to
131 challenge the stereotype and cultural beliefs that boys perform better in math than girls. The result of the
132 study showed that there is no significant difference in boys performance in math compared to girls. Hyde
133 and her colleagues; using data from more than 7 million students, they calculated the "effect size," a statistic
134 that reports the degree of difference between girls' and boys' average math scores in standardized units. The
135 effect sizes they found -ranging from 0.01 and 0.06 -were basically zero, indicating that average scores of girls
136 and boys were the same. "Boys did a teeny bit better in some states, and girls did a teeny bit better in
137 others," says Hyde. "But when you average them all, you essentially get no difference." Some critics argue,
138 however, that even when average performance is equal, gender discrepancies may still exist at the highest levels
139 of mathematical ability. So the team searched for those, as well. For example, they compared the variability
140 in boys' and girls' math scores, the idea being that if more boys fell into the top scoring percentiles than girls,
141 the variance in their scores would be greater. Again, the effort uncovered little difference, as did a comparison
142 of how well boys and girls did on questions requiring complex problem solving. They thus concluded that there
143 are no significant statistical difference in the performance of boys and girls in math. (Hyde, Lindberg, Ellis
144 and Williams, 2008). Some of the previous researches such as Betz (1978); Ma (1999); Woodard (2004) and
145 Tapia (2004) who examined math anxiety and achievement have indicated that there is a relationship between
146 mathematics anxiety and achievement; which indicates that as math anxiety scores increase, achievement scores
147 decrease. The more recent findings of Effandi and Norazah (2008), have confirmed also that there is a relationship
148 between math anxiety and motivation. Effandi and Norazah (2008), focused on examining such variables as
149 math anxiety and motivation; sampling a total of 88 university undergraduates in one of the universities in
150 Malaysia, the researchers found that the mean achievement scores and motivation scores of low, moderate and
151 high anxiety groups were significantly different. Findings also revealed a low ($r=-0.32$) but significant ($p <$
152 0.05) negative correlation between mathematics anxiety and achievement and also a strong ($r=-0.72$) significant
153 ($p < 0.05$) negative correlation between mathematics anxiety and motivation. The study also revealed a significant
154 low positive correlation ($r=0.31$) between motivation and achievement.

155 One of the first studies about math anxiety was by Richardson and Suinn (1972), whose work drew attention
156 to the problem. Since then, the literature has included results of studies about math anxiety and its effect on
157 math achievement ??Betz, 1978). Research has shown that females, as a group, do not enjoy math and often
158 see it as having little relationship to their lives or their futures (Fennema & Sherman, 1978). Females display
159 more math anxiety than males in secondary school and college ??Woodard, 2004). Mash, (2004) has noted that
160 at various ages may have cultural or social pressures that help shape their attitudes about mathematics as a
161 subject of study or an element in a future career, results with this sample of college-age students showed that
162 the main effect of gender was insignificant. From these results, we conclude that feeling good about mathematics
163 is not related to gender among this group of college students, but rather it is likely to be something related to

11 C) PARTICIPANTS

164 individual, personal experiences. While the literature has reported a high relationship between math anxiety and
165 gender, in this sample of students it is clear that math anxiety is unrelated to gender.

166 To explain the observed variance in test anxiety scores, individual difference variables must be taken into
167 account ??Zeidner, 1998). Gender and age differences in test anxiety have been reported in the literature
168 ??McDonald, 2001; ??eidner, 1998). Research has consistently found gender differences in test anxiety
169 ??McDonald, 2001; ??eidner, 1998), with female participants scoring higher than male participants on self-
170 report measures of test anxiety (Seipp & Schwarzer, 1996; ??ren & Benson, 2004;Zeidner & Schleyer, 1999).
171 Seipp and Schwarzer conducted a meta-analysis on gender differences in test anxiety among 6,340 school-age
172 students across 12 different cultures (China, Czechoslovakia, Germany, Holland, Hungary, India, Iran, Italy,
173 Jordan, Korea, Turkey, and the United States). Cross-cultural adaptations of the Test Anxiety Inventory (TAI;
174 Spielberger, 1980) were used in each of these independent studies. Seipp and Schwarzer found statistically
175 significant gender differences in test anxiety in all countries except China. Girls scored statistically significantly
176 higher than boys on the TAI, with a mean gender effect size reported of .29.

177 Although the pattern of gender differences reported in the test anxiety literature has been consistent, the
178 pattern of age differences found in the test anxiety literature has been less consistent. Hembree (1988) examined
179 test anxiety among students in Grades 2 through 12. Hembree conducted a meta-analysis of 78 studies involving
180 17,538 elementary and secondary school students. Hembree found that test anxiety increased in the early
181 elementary school grades, stabilized near Grade 5, and remained constant throughout the junior high and high
182 school years. In contrast, Wigfield and Eccles (1989) reported an increase in students' test anxiety scores in the
183 junior high school years, and then the students' scores leveled off during the high school years. According to the
184 literature, age and gender differences in evaluative situations do exist, and it is important to take these variables
185 into account to explain the observed variance in students' scores on test anxiety measures ??Zeidner, 1998).

186 8 g) Rationale for the Study

187 It is no longer news that, a credit grade is compulsory for any graduating secondary school student who is aiming
188 at pursuing a higher degree in the higher institution (irrespective of the discipline he/she is pursuing). The irony
189 however is that majority of these students dread mathematics as a subject. In desperate move to pass at all cost,
190 many of these students have resulted to using dubious means to pass at all cost, which has grievous implication
191 both for the students and the society at large later in life. This situation of course can be remedied by putting
192 machineries in place to correct the wrong impression that mathematics is a difficult subject and must be dreaded.
193 It is in the light of this that the present study set out to examine the demographic correlates of mathematics
194 anxiety among secondary school students, with the intention of making useful recommendation based on the
195 findings of the study.

196 Again, the general assumption by many people is that male students are usually better in mathematics compare
197 to female students. The study also set out to find out the truth about this assumption (particularly in the Nigerian
198 context), hence, the need to sample participants for the study from single-sex (male only and female only) and
199 mixed schools (male and female together).

200 For the purpose of this study therefore, three hypotheses were tested:

201 1. There will be a significant positive correlation among the variables of interest in the study. 2. Male students
202 will be significantly higher on maths anxiety than their female counterparts 3. School type will significantly
203 influence students' mathematics anxiety level.

204 9 II. Method a) Design

205 This study adopts the ex-post facto survey design. This was deemed suitable because the study went out to
206 gather information that was already existing among the population understudy.

207 10 b) Population

208 The target population for the study was randomly selected from nine senior secondary schools in southwestern
209 Nigeria. Secondary school students have been selected as the population of study because researchers like Lazarus
210 (1974) and Jackson and Leffingwell (1999) E Year mathematics at the elementary and secondary level. If this is
211 not attended to, it may be carried into higher levels of study in the university which may have negative effect on
212 the students' career choice and academic performance.

213 11 c) Participants

214 Self-report measures were administered to a randomly selected sample of 450 senior secondary school students
215 who were drawn from 9 different schools in southwestern Nigeria. Participation was voluntary and participants'
216 anonymity was guaranteed.

217 12 (

218) males and 297 () females participated in the study with their ages ranging between 16years and 24years. Mean
219 age was 16.2years (SD = 1.8). All participants registered for mathematics since it is a compulsory subject for all
220 students in the secondary school.

221 13 d) Sample and Sampling Procedure

222 This research adopted the simple random sampling (ballot technique) in selecting the 450 participants that
223 participated in the study.

224 14 e) Instrument

225 Validated instrument was used for data collection. The instrument was made up of two sections 'A' and 'B'.
226 section 'A' dealt with the demographic characteristics of the participants, while the section 'B' was the revised
227 edition of the 24item Mathematics Anxiety Rating Scale, which was developed by Plake and Parker ??1982). The
228 Alpha reliability co-efficient of the scale as reported by Plake et al ??1982) was .98, while the alpha reliability
229 co-efficient of the scale for the present study is .90. The scale is in the likert format, with responses ranging from
230 1(no anxiety) to 5(high anxiety).

231 15 f) Procedure for data collection

232 The researchers went personally to administer the questionnaires in the different schools that were randomly
233 selected to participate in the study (in southwestern Nigeria). After obtaining permission from the respective
234 school's principal, researchers went to each of the schools on an agreed date and administered the instruments to
235 the students that were randomly selected from the schools to respond to the questionnaires. The questionnaires
236 were properly filled and collected back the same day. g) Method of Data Analysis Data was analyzed using
237 correlation statistics, ttest for independent samples and one way analysis of variance.

238 16 III. Results

239 The correlation analysis that was done to establish the relationship that exists among the major variables of
240 interest in the study showed that only gender and conception about mathematics had significant relationship
241 with math anxiety. Gender correlated significantly negatively ($p<.001$, $r = -.216^{**}$); while conception about
242 mathematics and age correlated significantly positively with math anxiety respectively ($p<.05$; $r = 103^*$, 114^*).
243 Other variables such as age, assertiveness, emotional intelligence, need achievement motivation, life satisfaction
244 and self-esteem did not have significant correlation with math anxiety.

245 For hypothesis two, the result of analysis is presented in table 1 below. between math anxiety level of male and
246 female students. Specifically, the mean difference shows that male students are higher on math anxiety compared
247 to their female counterparts (mean = 75.38, 66.23; df =448, $t=4.68$, $p<.001$). For hypothesis 3, the result of
248 analysis is presented below.

249 17 2012

250 (D D D D) E Year 34% 66%

251 Table 1 show that there is a significant The ANOVA results as shown in Table 2b, revealed that there is a
252 significant difference in the level of anxiety of the students based on their school type. $F (8.87) = 3.75$, $p<0.001$.
253 School type significantly predicted math anxiety score as shown by the result. Students in single sex school (male
254 only) were significantly higher on math anxiety ($X=79.42$), followed by those in the mixed schools ($X=69.82$),
255 while the students in single sex school (female only) seems to be significantly lower compare to their counterparts
256 ($X=66.35$).

257 18 IV. Discussion

258 The result of data analysis revealed that there is a significant relationship among the variables of, gender, age,
259 conception about mathematics and math anxiety. This seems to be in line with previous works of ??embree,
260 (1988); McDonald, (2001) and Zeidner, (1998) who have reported gender and age difference in math anxiety.
261 In furtherance, the relationship between class level and math anxiety cannot be far fetched, since the higher a
262 student moves in his/her academic level, the more he/she becomes aware of what lies ahead of him/her regarding
263 his/her life goals, it follows that, at the lower classes, the students may not have understood the essence of being
264 in school and may not have been very serious with their studies, whereas at the higher classes, when they must
265 have realized that math is one of the compulsory subjects that must be passed in order to be able to take courses
266 in the higher institution, they may develop anxiety and may eventually device different unacceptable mechanisms
267 of attending to their anxiety.

268 Although the pattern of gender differences consistent, the pattern of age differences found in the test anxiety
269 literature has been less consistent. For instance, ??embree (1988) examined test anxiety among students in
270 Grades 2 through 12 and found that test anxiety increased in the early elementary school grades, stabilized near
271 Grade 5, and remained constant throughout the junior high and high school years. In contrast, Wigfield and

272 Eccles (1989) reported an increase in students' test anxiety scores in the junior high school years, and then the
273 students' scores leveled off during the high school years. According to the literature, age and gender differences
274 in evaluative situations do exist, which has also been established with the significant relationship that we found
275 in our study also. It is therefore important to take these variables into account to explain the observed variance
276 in students' scores on test anxiety measures ??Zeidner, 1998).

277 It needs be mentioned that there seems to be a dearth of literature regarding students' conception about
278 mathematics in relation to math anxiety. This we found in this study that there is a relationship between the
279 two variables. It follows that a student who has a negative conception of the subject will have manifest anxiety
280 for it, which is most likely going to be as a result of the wrong or negative perception he has for the subject.
281 With wrong or negative conception, there might not be sufficient inner motivation to study the subject. It also
282 follows that the person who has a positive conception of mathematics will not have anxiety for the course as
283 he may have sufficient motivation to continue with the subject. It is of utmost importance that teachers and
284 educators should work towards helping students to

285 19 Global Journal of Human Social Science

286 Volume XII Issue X Version I reported in the test anxiety literature has been have the right conception of
287 mathematics so that they may be able to overcome the anxiety for the subject. If there is a change in the
288 conception of students about mathematics, the possibilities are that they will have reduced anxiety and possibly
289 no anxiety for mathematics.

290 More specific analysis was done to ascertain the gender difference in math anxiety. The t-test for independence
291 sample that was conducted revealed that boys were higher on math anxiety than girls ($p<.001$.) of course there
292 are several conflicting research reports along this line, some researchers have reported that girls are higher on
293 math anxiety while a host of others have reported that boys are higher. For this research, we found that boys
294 are significantly higher on math anxiety compared to girls.

295 The most probable explanation for this of course will be the fact that in the most recent times there has
296 been aggressive in awareness creation regarding the education of the girl child as well as several programs and
297 propaganda to motivate girls into taking courses that are ordinarily regarded as men's. Nigeria in the most
298 recent times has experienced more aggressiveness on the emancipation of women and the education of the girl
299 child more than never before and this must have started to yield its dividends with the result being observed in
300 this study.

301 The possibility is also that boys might have been looking at themselves as the 'head' the strong; believing
302 that there are certain fields of study that are supposedly male dominated and may therefore see no need to make
303 efforts towards improving themselves in such areas. They have the perception that come rain come shine, they
304 will excel in such areas. However, they are being proved wrong as it were.

305 The third hypothesis also affirmed that boys have significantly higher level of math anxiety than girls since the
306 mean difference showed that student in male only and mixed schools were significantly higher in math anxiety
307 than students in female only school. This is particularly interesting because, for decades, the presumption was
308 that co-ed schools provided a more equitable environment for learning than single education schools, but in
309 recent years a number of researchers have built an increasingly persuasive case that this is not so. A leading role
310 in highlighting the problems faced by girls has been played by the American Association of University Women
311 (AAUW), in a series of studies published throughout the 1990s. A national poll commissioned by AAUW,
312 Shortchanging Girls, Shortchanging America (1991), highlighted that girls aged 9-15 suffered from lower self
313 esteem, less willingness to stand up for their views with teachers, and lower interest in science and mathematics.
314 The report How Schools Shortchange Girls (1992), also published by the American Association of University
315 Women, sparked an intense national debate with its findings that girls were frequently and encouraged less than
316 male students. American University professors Myra Sadker and David Sadker added to the debate with the
317 publication of Failing at Fairness: How America's Schools Cheat Girls ??1994). The report, based on a three-year
318 study involving structured visits to more than 100 classrooms in several states, asserted that girls were called
319 upon less than boys, that boys received more attention when answering questions, and that boys received more
320 encouragement to work through problems. In 1995, the AAUW, in its report Growing Smart: What's Working
321 for Girls in School, took the next step and endorsed singlesex schooling as a response, while urging for changes
322 in existing co-ed schools. Specifically, the report noted: "Single-sex programs deserve consideration as a vehicle
323 to address specific needs or remedy existing inequities" (Valerie and Helen, 1990). By that point, substantial
324 research confirmed the benefits of single-sex education for girls. Similarly positive results were found in secondary
325 schools, too. The same seems applicable in the present study where students in female school were found to have
326 less math anxiety compared to their male counterparts from male only schools.

327 20 V. Conclusion

328 From the foregoing, it is clear that there is gender difference in math anxiety among secondary school students,
329 school type also showed significant influence on the manifestation of math anxiety among students. This should
330 therefore guide teachers, educators and counselors in guiding and counseling students and parents.

³³¹ 21 2012

³³² 22 Global Journal of Human Social Science

Volume XII Issue X Version I ¹ ²

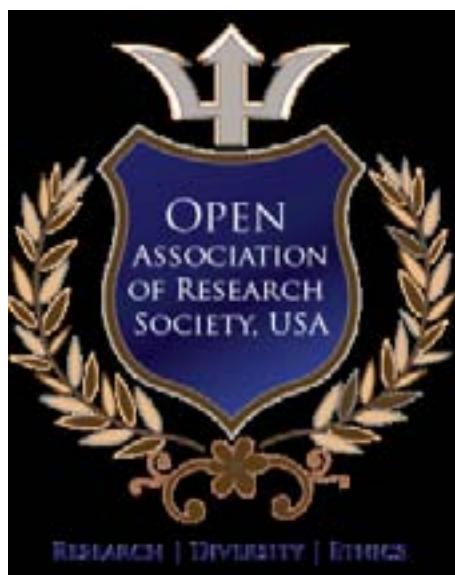


Figure 1:

1

Group Statistics								
	Gender	N	Mean	Std. Deviation	Std. Mean	Error	Df	t P
Math Anxiety	Male	153	75.38	18.96	1.533		448	4.68 <.001
	Female	297	66.23	19.97	1.159			

Figure 2: Table 1 :

³³³

¹© 2012 Global Journals Inc. (US) Examining Correlates of Math Anxiety Among Single-Sex & Co-Educational Schools in Nigeria

²© 2012 Global Journals Inc. (US)

2

	N	Mean	Std. Deviation	Std. Error
female only	200	66.35	21.386	1.512
mixed school	200	69.82	17.914	1.267
male only	50	79.42	19.912	2.816
Total	450	69.34	20.090	.947

Figure 3: Table 2 a

2

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	6919.450	2	3459.725	8.873	.000
Within Groups	174299.53	447	389.932		

Figure 4: Table 2 b

Year

D D D D) E

(

35.

36. Wigfield, A., & Eccles, J. (1989). Relations of expectancies and values to students' math grades and intentions. Paper presented at the meeting of the American Educational Research Association, San Francisco.

37. Zaslavsky,

disadvantaged in classrooms by being called upon less approach on mathematics

[Note: 38. Zeidner, M. (1998). *Test Anxiety: The State of the Art*. New York: Plenum Press.]

Figure 5:

334 [Sena and Whitaker] , J D Sena , Whitaker .

335 [Global Journals Inc. (US) ()] , *Global Journals Inc. (US)* 2012.

336 [Ma ()] *A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics*, X Ma . 1999. 30 p. . (Journal for research in mathematics education)

338 [Civil ()] 'Adult Learners of Mathematics: A look at Issues of Class and Culture'. M Civil . *Polices and practices for adults learning mathematics: opportunities and risks*, J Evans (ed.) 2003. July 2002. p. . (The 8th International Conference on Adults Learning Mathematics (ALM8)

341 [Evans ()] *Adults' Mathematical thinking and emotions: A study of numerate practices*, J Evans . 2000. New York, NY: Routledge Falmer.

343 [Tobias and Weissbrod ()] 'Anxiety and mathematics: An update'. S Tobias , C Weissbrod . *Harvard Educational Review* 1980. 50 p. .

345 [Jones and George ()] 'Applying Psychology to the Teaching of Basic Math: A Case Study'. W Jones , George . *Inquiry* 2001. 6 (2) p. .

347 [Preis and Biggs ()] 'Can Instructors Help Learners Overcome Math Anxiety?'. Christy & Preis , Bobbie T Biggs . *ATEA Journal* 2001. 28 (4) p. .

349 [Seipp and Schwarzer ()] 'Cross-cultural anxiety research: A review'. & Seipp , Schwarzer . *Stress, anxiety and coping in academic settings*, C Schwarzer, & M Zeidner (ed.) (Tubingen, Germany) 1996. Francke-Verlag. p. .

352 [Zeidner and Schleyer ()] *Evaluating the effects of full-time vs*, M Zeidner , E J Schleyer . 1999. (part-time educational)

354 [Examining Correlates of Math Anxiety Among Single-Sex Co-Educational Schools in Nigeria phobia]
355 *Examining Correlates of Math Anxiety Among Single-Sex & Co-Educational Schools in Nigeria phobia*, Sausalito, CA: Math Solutions Publications.

357 [Myra and Sadker ()] *Failing at Fairness: How America's Schools Cheat Girls*, Myra , D Sadker . 1994. New York: MacMillan Publishing Company.

359 [Fennema and Sherman ()] 'Fennema-Sherman Mathematics Attitude Scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Catalog of Selected Documents in'. E & Fennema , J A Sherman . *Psychology* 1978. 6 (2) p. 31.

362 [Baroody and Costlick ()] *Fostering children's mathematical power. An investigative approach to K-8 mathematics instruction*, A J Baroody , R T Costlick . 1998. New Jersey: Lawrence Erlbaum Associates, Inc.

364 [Hyde et al. ()] 'Gender similarities characterize math performance'. J S Hyde , S M Lindberg , M C Linn , A Ellis , C Williams . *Science* 2008. 321 p. .

366 [Greenwood ; Greenwood ()] J Greenwood ; Greenwood . *My anxieties about math anxiety. Mathematics Teacher*, 1984. 1984. 77 p. .

368 [How Schools Shortchange Girls: A Study of Major Findings on Girls and Education ()] *How Schools Shortchange Girls: A Study of Major Findings on Girls and Education*, 1992. Wellesley College, MA: AAUW. American Association of University Women ; Center for Research on Women

371 [Luo et al. ()] 'Investigation and Analysis of Mathematics'. X Luo , F Wang , Z Luo . *Anxiety in Middle School Students Journal of Mathematics Education* 2009. 2 (2) p. .

373 [Jackson and Leffingwell ()] C D Jackson , R J Leffingwell . *The role of instructors in creating math anxiety in students from kindergarten through college*, *Mathematics Teacher*, 1999. 92 p. .

375 [London: King's College London] *London: King's College London*,

376 [Zopp and Ann ()] *Math Anxiety, the Adult Student and the Community College*, Marilyn Zopp , Ann . 1999. Abstract, Northern Illinois University: D Dissertation.

378 [Ashcraft ()] 'Math anxiety: Personal, educational, and cognitive consequences'. M H Ashcraft . *Current Directions in Psychological Science* 2002. 11 p. .

380 [Stuart ()] *Math curse or math anxiety? Teaching children mathematics*, V Stuart . 2000. 6 p. .

381 [Bamidele (2005)] 'Mathematics not a Dreadful Subject'. R Bamidele . *Daily Sun Newspaper* 2005. August. 30 p. 22.

383 [Lazarus ()] *Mathephobia: Some personal speculations*. *National Elementary Principal*, M Lazarus . 1974. 53 p. .

384 [Rossnan ()] 'Overcoming math anxiety'. S Rossnan . *Mathitudes* 2003. 2006. 1 (1) p. . (Rossnan)

385 [Tobias ()] *Overcoming Mathematics Anxiety*, S Tobias . 1993. New York: W.W. Norton and Company.

386 [Wagh ()] *Overcoming Mathematics phobia in adults -some experiences of working with parents and community in the state of Maharashtra in India. Published by Topic Study Group 6 Adult and Lifelong Education 10th International Congress on Mathematical Education -www*, V M Wagh . icme-10.dk - Programme -TSG6. 2003.

389 [Short-changing Girls, Short-changing America] *Short-changing Girls, Short-changing America*, Washington,
390 D.C.

391 [Lowe and Lee ()] 'Significant Predictors of Test Anxiety among Students with and Without Learning Disabil-
392 ities'. P A Lowe , S W Lee . <http://www.highbeam.com/doc/1G1-166778312> *Journal of Learning*
393 *Disabilities* 2007. p. .

394 [Lee and Marks ()] 'Sustained Effects of the Single-Sex Secondary School Experience on Attitudes, Behaviors,
395 and Values in College'. Valerie E Lee , Helen M Marks . *Journal of Educational Psychology* 1990. 82 (3) p. .

396 [Norwood ()] 'The effects of instructional achievement'. K S Norwood . *School Science and mathematics* 1994.
397 94 p. .

398 [Effandi ()] 'The Effects of Mathematics Anxiety on Matriculation Students as Related to Motivation and
399 Achievement'. Norazah Effandi . *Eurasia Journal of Mathematics* 2008. 4 (1) p. . (Science & Technology
400 Education)

401 [Butterworth ()] *The mathematical brain*, B Butterworth . 1999. London: Macmillan.

402 [Richardson and Suinn ()] 'The Mathematics Anxiety Rating Scale: Psychometric data'. F C Richardson , R M
403 Suinn . *Journal of Counseling Psychology* 1972. 79 p. .

404 [Hembree ()] 'The Nature, Effects, Relief of Mathematics Anxiety'. R Hembree . *Journal for Research in*
405 *Mathematics Education* 1990. (1) p. .

406 [Tapia ()] 'The relationship of math anxiety and gender'. M Tapia . *Academic Exchange Quarterly* 2004. 8 (2) .

407 [Hansen et al. ()] *University of Minnesota's College of Education and Human Development*, S Hansen , J Walker
408 , B Flom . 1995. Washington, D.C.. American Association of University Women Educational Foundation
409 (Growing Smart: What's Working for Girls in School)

410 [Noting ()] *Winning at Math; Your Guide to Learning Mathematics Through Successful Study Skills*, P D Noting
411 . <http://www.niolincs.org/whyGEDtran/MathAnxiety.htm> 2006.