

1 A Case Control Study Among Carpet Thread Factory Workers in
2 Uttar Pradesh, India: Occupational Injury and its Deteriorating
3 Factors

4 sapna Sharma¹ and Dr. Ajeet Jaiswal²

5 ¹ Pondicherry University Puducherry, India.

6 *Received: 13 December 2011 Accepted: 3 January 2012 Published: 15 January 2012*

7 **Abstract**

8 Occupational injuries have a major impact on public health and exact a huge toll in the
9 workplace. Annually throughout the world, it is estimated that ?300 000 people die from 250
10 million accidents that occur in the workplace (who 1999). However, efforts towards
11 investigation of determinants among carpet thread factory workers are very minimal in
12 developing countries including India. The aim of the study was to identify determinants of
13 occupational injury among workers in carpet thread factory of Varanasi district, Uttar
14 Pradesh state, India and to assess the different protective measures used during working day
15 to prevent the different hazards. The sample consisted of 650 carpet thread factory included
16 310 workers (cases) and 340 non workers (controls). All the respondents were interviewed by a
17 pretested questionnaire regarding occupational injury status within Eighteen month period
18 (May 2007 to November 2008).

20 *Index terms*— Occupational injury, Carpet Thread Factory, Workers, Non Workers.

21 **1 Introduction**

22 The work is considered a basic part of our life. Most adults spend approximately one fourth to one third of their
23 time at work and often perceive work as a part of their self identity (Rogers, 1994). Employed people in industries
24 spend at least one third of a day at work which have a strong effect on their health and safety due to work and
25 work related injuries (Antonio et al, 2001). Injuries are the leading cause of morbidity and mortality among
26 workers. Thousands of people are killed in industrial accidents every year, and the number of disabling injuries
27 is staggering. Many workers suffer job-related injuries that result in lost working hours, medical treatment, loss
28 of consciousness, restriction of work or motion, or transfer to another job. Today injuries continue to claim lives,
29 inflict physical and psychological damage and consume the resources of workers and their families. Leigh et al.
30 (1999) estimated around 16 million injuries every year, with 2 million moderate to serious injuries on the Indian
31 subcontinent. Indirect costs, such as pain and suffering by workers and family members, are very evident, but
32 a major limitation in dealing with this negative scenario is the inappropriate accounting of the accident events
33 and the potential risks for work-related injuries.

34 This study presents an analysis of occupational injuries in the Carpet industrial process. Pranab L. Nag
35 et.al reported that of the world's total textile production, the industrial enterprises of the Asia-Pacific region
36 contribute two-thirds, to the tune of about 50 million tons of fabric annually. Accident data from the textile
37 industries in this region are sporadic. The prevalence of work hazards, and the quantitative relationships between
38 the nature of work and workplace accident causation are conspicuously lacking. In India alone, nearly 13,500
39 enterprises employ about 2 million workers in the textile sector. The work processes in these industries require
40 intense human involvement under suboptimal working conditions which culminate in a high incidence of accidents
41 of varied severity, some of them fatal.

3 METHODS

43 Worldwide in 2005, an estimated of 250 million occupational injuries and 5.4 million deaths due to injuries
44 occurred annually. From this, over 90 percent was in low and middle income countries where the greatest
45 concentration of world's workforce and low level of factories found (Tetsuya, 1999). This problem costs the world
46 a loss of roughly 4% of the gross national product (Eijkemans, 2004;. Despite this, only 5 to 10 percent of the
47 workforce in developing countries has access to some kind of occupational health and safety services .

48 India has been a member state of International Labor Organization and signed conventions related to health
49 and safety of factory workers since 1923. However, the national occupational safety and health policy is not
50 issued though it is required by the country (Seblework, 2006). Currently to prevent occupational injury and
51 to promote health and safety at work places, the Ministry of Labour and Employment , Ministry of Social
52 Justice and Empowerment, Directorate General Labour Welfare, Internal Works Study unit, International Labour
53 Affairs Section, Wage Board, Chief Labour Commissioner, Central Labour Service, Social Security Division of
54 Government of India and regional board Labor and Social Affairs and Affiliated Zonal representative offices
55 have taken responsibilities for occupational safety and health services of workers according to labor proclamation
56 (<http://labour.nic.in/>).

57 Occupational injuries in developing countries are a major concern . It is estimated that 250 million occupational
58 injuries, 160 million work-related diseases and 2 million deaths occur each year resulting in a loss of roughly 4%
59 of the world gross national product due to workers' compensation, loss of workdays, interruption of production,
60 retraining, and medical expenses and the 1:14 , Eijkemans G 2004). More than 350,000 workers die each year
61 due to injury, significant proportions occurring in low and middle income countries (Who 2009).

62 Studies done in France, U.S and China indicated that men had a higher risk of occupational injury than women
63 ??Bhattacherjee et al, 2003;Rhys and Paul, 2005; ??mith,2004). However, a study conducted in India among
64 small and medium scale factory workers indicated that occupational injury has no any significant statistical
65 association with gender of the worker (Tadesse and Kumie, 2007). Investigators at different places indicated that
66 younger workers suffer more occupational injury at a higher rate than older workers (Rhys and Paul, 2005; ??ulle,
67 1988). Also a study done showed that the prevalence of work and work related injury increased with young age
68 (Tadesse and Kumie, 2007) An ??LO (1997 ??LO (-1998) study in Vietnam indicated that textile workers
69 were exposed to hot and noisy environments, and these workplace exposures led to many accidents at work. The
70 study of Lithuanian textile workers by Ustinaviciene and Piesine (2007) reported 9.3% injuries, with an increase
71 in morbidity with age, and women having 1.5 times higher morbidity than men. Fritschi et al. (2004) reported
72 data from Australian textile units which show that workers, particularly men, are at high injury risk. The shift
73 schedules in work of this nature also have a significant influence on the health, sleep length, social activity, and
74 problem intensity of textile workers (Pajunen et al., 2007).

75 Findings of a study done among textile factory workers demonstrated that the most frequent causes of
76 occupational injury were machinery 42(29.4%), hit by or against objects 29 (20.3%) (Senbeto, 1991). Ministry
77 of Health and Family Welfare in India reported that striking (25.5%), falling (12.8 %) and flying objects from
78 machines (8.5%) were the major causes of occupational injury (Ministry of Health and Family Welfare,2006).
79 similarly the Uttar Pradesh labour department reported that machinery (36.7%), mishandling (15.3%), falling
80 (14.5%) and hand tools (6.2%) were the commonly complained occupational injury types among manufacturing
81 industrial workers (Uttar Pradesh labour department reported that machinery, 2009-10).

82 All of the above studies except few were focused on characterization of occupational injury among industrial
83 workers. Potential risks for workrelated injuries include workload, psychosocial and organizational factors
84 (Simpson CL & Severson RK 2000). Machinery-related injuries are the second leading cause of traumatic
85 occupational fatalities ??Pratt et.al1996). However, to solve occupational health and safety problem of the
86 workforce advanced epidemiological studies are essential for policy makers, public health experts and program
87 implementers. Reducing the risk of occupational accidents requires a combination of a safe work environment,
88 comprehensive training for workers and implementation and enforcing systematic management. Implementation
89 of preventive programmes is also an important task (Jovanovic J & Jovanovic M 2004). Therefore this case
90 control study was designed to fill the gap by identifying the determinants of occupational injury among thread
91 factory workers which is very important for the development and strengthening of legislations and intervention
92 priorities to safeguard the health and safety of the work force.

93 2 Global Journal of Human Social Science

94 Volume XII Issue X Version I II.

95 3 Methods

96 This study was conducted in thirteen thread factory workers in Varanasi district of Uttar Pradesh during the
97 period May 2007 to November 2008. Out of thirteen industries, in ten industries, there is an insurance mechanism
98 for workers that may be injured during work. This encouraged the workers to report every accident during work.
99 There are about total 650 samples included 310 workers (cases) and 340 non workers (controls).

100 Cases were workers who have experienced occupational injury within Eighteen month period (from May 2007 to
101 November 2008) in thread factories and the Non workers or control groups were workers who did not experienced
102 occupational injury within Eighteen month period (from May 2007 to November 2008) in thread factories.

103 Data was collected using pre tested and structured questionnaire include two parts, one to assess the
104 industrial hazards and their preventive measures including demographic data, occupational history, present health
105 symptoms, past history of illness, industrial hazards and preventive measures Job stress and job satisfaction of
106 workers were assessed using 14 and 12 three scale item standardized workers response questionnaire, respectively
107 (Nearkasen et al, 2002). The second one was include the information from the health record of the worker in Health
108 Insurance included pre-placement examination and periodic medical examination. Occupational injury status was
109 the outcome variable and socio demographic, behavioral and environmental factors independent variables. The
110 presence of sleepiness problem when the worker is at work in the factory

111 After editing, cleaning and coding, the data was entered to version 16 SPSS for analysis. Bivariate logistic
112 regression analysis was employed to see association between determinants and occupational injury. Crude odds
113 ratio with confidence intervals, Pvalues were considered as statistically significant when less than 0.05. Variables
114 with p at <0.2 during the bivariate analysis were included in the multivariate logistic regression analysis to see
115 the interaction effect of confounding variables.

116 The sample size was calculated using statistical software program for case control study design. The control
117 group exposure to sleeping disorder (58.4 %), lack of training on health and safety (35.3%) and 5 years or less
118 work experience (27.3%) were considered for sample size determination from previous studies (Senbeto, 1991;
119 Abebe and Fatahun, 1999; Thoreia et al, 2004). From the above determinants, exposure of the control group to
120 sleeping disorder problem (main exposure variable) gave the maximum sample size with assumptions of a one to
121 two case to control ratio, a minimum detectable odds ratio of 2 and 95% the above assumptions, a total of 650
122 study participants (310 cases and 340 controls) were included in the study.

123 4 III.

124 5 Results

125 Three hundred ten cases and 340 controls were interviewed for this study and from these 62.90% of cases and
126 58.23% controls were male workers. The mean year of work experience for cases was 10.8 and 14.0 for controls
127 and 91.9% of the cases and 89.1 % of controls were permanently employed in the factories.

128 From socio demographic determinant variables (Table 1), age group at interview, sex and work experience
129 showed statistically significant association with occupational injury in the bivariate analysis. The rest socio
130 demographic variables like religion, ethnicity, marital status, educational level, employment condition and
131 monthly salary did not show significant association with occupational injury. Only sex and age remained
132 significant in multivariate model while years with job became non-significant. Significant at, *P < 0.05 **P
133 < 0.01 ***P < 0.001 @ Not included for multivariate analysis COR @ : Crude odds ratio and AOR @ : Adjusted
134 odds ratio had showed significant association with occupational injury in the bivariate analysis. However, Pan
135 chewing [COR 1.27, 95% 0.76, 2.12] and cigarette smoking [COR 1.28, 95% CI 0.65, 2.51] did not show significant
136 association with occupational injury. Workers who complained problems of sleeping disturbance were more likely
137 to report about two times excess occupational injury compared with workers who did not report problem of
138 sleeping disturbance [AOR 1.99, 95% CI 1.30, 3.04]. This study revealed that job stress was the main predictor
139 of occupational injury. Workers who were stressed due to their job were about 2 times more likely to report
140 occupational injury compared with workers who were not stressed due to their job [AOR 2.25, 95% 1. ??5,4.41]
141 IV.

142 6 Discussion

143 The textile industry occupies a unique place in our country. One of the earliest to come intoexistence in India,
144 it accounts for 14% of the total Industrial production, contributes to nearly 20% of the total exports. With
145 rapid industrialization and mechanization in textile industries occupational health hazards are becoming more
146 prominent. Injury in the textile industry in India are the culmination of several factors, such as human-machine
147 incompatibility, poor methods of work, suboptimal working conditions, temporal factors, and environmental
148 stresses. Employment structure, regulations, and the overall work scenario are peculiar, influencing the
149 occupational health of the workers. Occupational injuries are responsible for high morbidity and mortality in
150 India (David and Goel, 2001). Workgroups such as laborers, farmers, tradesmen, and craftsmen are at higher risk,
151 and personal attributes of being young, males, having psychometric disorders and smoking increase the risk of
152 injuries ??Bhattacherjee et al., 2003). Work related exposures to longer working hours and less job involvement,
153 unsafe work conditions, and unsafe acts all contribute to the likelihood of injuries (Ma et al., 1991;Tiwari et al.,
154 2004) .

155 Studies done in developed and developing countries reported that men had a higher risk of occupational injury
156 than women in manufacturing industries (Senbeto, 1991;Abebe and Fatahun, 1999). According to this finding
157 male workers were about 2.5 times more likely to report occupational injury than female workers [AOR: 2.54,95%
158 CI: ??1.58,4.07)]. This can be explained due to the fact that high willingness of male workers to engage towards
159 risk taking behavior than female workers (Bronson and Howard, 2003).

160 Most study findings at different places by different scholars reported that working at younger age increases the
161 risk of sustaining more occupational injury among factory workers compared with older workers ??Bhattacherjee
162 et al, 2003;Tadesse and Kumie, 2007;Abebe and Fatahun, 1999). Similarly this study revealed that workers whose

7 CONCLUSION

163 age group below 30 years old were about 1.9 times more likely to report occupational injury than workers whose
164 age group were 30 years and above [AOR: 1.90,95% CI: (1.22,2.94)].

165 Most occupational health and safety studies conducted in developing countries revealed that increased
166 educational level have been associated with decreased work related injuries ??Bhattacherjee et al, 2003;Smith and
167 Mustrad, 2004; ??ulle,1998; ??sim et al, 2004). This is due to the fact that education is more likely to increase
168 workers safety and health practice that can prevent them from occupational injuries (Rhys and Paul, 2005;Abebe
169 and Fatahun, 1999). But this study and a cross sectional study done in India among small and medium scale
170 factory workers revealed that educational level did not show any statistical significant (Tadesse and Kumie, 2007).
171 This difference may be due to the fact that only education by itself alone cannot reduce occupational injury when
172 the level of hazards is high and the use of reliable techniques and safe work organizations are limited (Tadesse
173 and Kumie, 2007).

174 The most common accident in spinning process was hand injuries. In Alexandria, study conducted by El-
175 Sabaawi (1978) revealed that hand injuries depended on the nature of occupation among textile workers in
176 spinning process. The consequences of the injuries are painful and disabling because of inadequate injury
177 management. The association of temporal factors (e.g., monthly, date, time, and shiftwise variations) with
178 the occurrence of accidents in textile industry substantiated the observation of Hallsten (1990), whose study of
179 31,580 work accidents in four different industries over a period of two years, showed that accident peaks occur
180 in morning hours across different occupational groups. The causative factors herein identified for injuries in the
181 thread industry have been corroborated in other studies (Goldenhar et al., 2003;Sorock et al., 2004;Cordeiro,
182 2002). Workers with sleep disturbances, insufficient sleep and insomnia experience higher injury rates (Nakata
183 et al., 2005). A similar study found that workers with better sleep quality have lower injury rates (Edmonds and
184 Vinson, 2007).

185 Different scholars reported that sleep disturbances such as difficulty in initiating sleep, sleeping poorly at
186 night, sleep insufficiency, and insomnia symptoms are significantly associated with the occurrence of occupational
187 injuries (Akinori et al, 2005). This study also revealed that workers who complained problem of sleeping
188 disturbance during work had about two times more likely to report occupational injury than workers who did
189 not report problem of sleeping disturbance [AOR: 1.99 ,95% CI: 1.30.3.04]. Most occupational health and safety
190 studies conducted in developing and developed countries strongly agreed with this finding (Rhys and Paul, 2005;
191 Tadesse and Kumie, 2007). This is due to the fact that workers in thread factories were employed in three shifts
192 with 8 working hour's interval which may disturb the sleeping pattern of workers. These sleeping disturbance
193 problems affect the ability to maintain wakefulness, concentration, ability in assessing or watching the work
194 environment and working conditions and performing duties safely.

195 This study finding indicated that workers who were stressed highly due to their job were more likely to report
196 more than 2.5 times occupational injury compared with their counterparts [AOR: 2.25, 95% CI: ??1.15,4.41)].
197 This result was supported by a case control study done among coal mining industrial workers in India [AOR:
198 1.83; 95% CI :(1.0, 3. Iranian car manufacturing workers reported that the risk of occupational injury among
199 those with high job stress was significantly higher than those with low job stress [AOR: 2.00; 95% CI: (1.2, 3.3)]
200 (Soori et al, 2008). This can explained as job stress can result in physiological and psychological alterations that
201 may increase the likely hood of developing physical and mental problems. These conditions may increase the risk
202 of sustaining more occupational injury among industrial workers (Li, 2001). In this researcher have limitations
203 on measurement of environmental determinant factors like heat, lightening, moisture and noise level at working
204 site due to lack of measuring instruments.

205 V.

206 7 Conclusion

207 Traumatic occupational accidents and injuries are a significant problem in industry. To conclude in from this
208 study that being male worker, younger in age, job stress and having sleeping disturbance increases occupational
209 injury. The implementation of safety training programmes may lead to a significant drop in occupational accidents
210 and traumatic injuries. They are most effective among the youngest and the oldest workers and among workers
211 with little experience, as confirmed by this study. ^{1 2 3 4}

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US)

³© 2012 Global Journals Inc. (US)

⁴© 2012 Global Journals Inc. (US)

Figure 1:

7 CONCLUSION

1

Year

Volume Socio-demographic variables confidence interval, 85% power of the study. Based on Cases (n=310) N
XII

Issue

X

Ver-
sion

I

(D	Sex	Male	Female	195(62.90)
D	D				115(37.10)
D)				

D

Global Age group < 30 years >30 years Hindu Muslim Married Single Divorced Widowed < grade 8 G

Jour- Religion

nal Marital

of status@

Hu- Educational

man level

So- Employment

cial condition

Sci- Monthly

ence salary

in Rs@	>5000 Rs per month	137 (44.20)
Work experience in years	5 years and below	144(46.45)

6 years and above 166(53.55)

[Note: @ not included in multivariate analysis Significant at: *P<0.05, **P<0.01, ***P<0.001 COR @ : Crude odds ratio and AOR @ : Adjusted odds ratio]

Figure 2: Table 1 :

2

Work Environment variables		Cases (n=310)	Controls (n=340)	COR @ (95% CI)	AOR @ (95% CI)
		No (%)	No (%)		
Health and safety information access	Yes	128(41.29)	188(55.29)	1.00	1.00
	No	182(58.71)	152(44.71)	1.49(1.01,2.20)*	1.05(0.68,1.71)
Work supervision	Yes	159(51.29)	221(65.00)	1.00	1.00
	No	151(48.71)	130(35.00)	1.58(1.07,2.35)*	1.12(0.70,1.78)
Health and safety Training	Yes	89(28.71)	155(45.59)	1.00	1.00
	No	221(71.29)	185(54.41)	2.22(1.45,3.39)***	1.85(1.18,2.91)**
	Spinning	124(40.00)	146(42.94)	1.00	
Working department@	Weaving	88(28.39)	99(29.12)	1.14(0.72,1.18)	
	Finishing	66(21.29)	63(18.53)	1.03(0.59,1.79)	
	Engineering	32(10.00)	32(.41)	1.30(0.69,1.79)	

Figure 3: Table 2 :

3

From personal protective equipment use [COR 1.77, 95% behavioral determinants (Table 3), CI 1.18, 2.64], a

95% 1.52, 3.36], job dissatisfaction [COR 1.97, 95% CI 1.09, 4.33] and job stress [COR 2.29, 95% CI 1.23, 4.25]

Behavioral variables PPE use Alcohol use

Yes Cases Controls

No (n=310)=340

Yes No

(%) (%)

112 168(49.41)

(36.13) 172(50.52)

198 98(28.82)

(63.87)

115

(37.10)

No Yes No Yes No Yes No Yes No ***P < 0.01 ***P < 0.001 195 (62.90 224(72.26) 86(27.74) 185(59.25)

Figure 4: Table 3 :

7 CONCLUSION

212 .1 Acknowledgement

213 An author is thankful to present subject and their families for their cooperation. I am especially grateful for the
214 assistance and encouragement of my supervisor Prof. A.K. Kapoor and co-supervisor Prof. Satwanti Kapoor and
215 the medical professional of BHU for their help during research. An author is also thankful to UGC for giving me
216 financial assistance to carry out the present work.

217 [Eijkemans ()] , G Eijkemans . *Occupational Health & Safety in Africa*. WHO/ILO 2004. 14 (2) p. .

218 [Eijkemans ()] , G Eijkemans . *Occupational Health & Safety in India and Africa*. WHO/ILO 2007. 14 (2) p. .

219 [Thoreia et al. ()] 'A study of occupational health hazards among Assuit spinning factory workers'. M Thoreia ,
220 S Hosnia , E Abd , M Sawsan , D Hoda . *Ass. Univ. Bull. Environ. Res* 2004. 7 (1) .

221 [Akinori et al. ()] N Akinori , Tomoko I Masaya , T Takashi , H Yosei , F Satoe , F Naomi , G S Minoru , H
222 Shunichi , A . *Sleep-related Risk of Occupational Injuries in Japanese Small and Medium-scale Enterprises*,
223 2005. 43 p. .

224 [Saha et al. ()] 'An Accident-Risk Assessment Study of Temporary Piece Rate Workers Occupational Medicine
225 Division, National Inst of Occup Health'. A Saha , T Ramnath , R N Chaudhuri , H N Saiyed . *India. Indul*
226 *Health* 2004. 42 p. .

227 [Tetsuya ()] 'Analysis of Japanese occupational health services for small and medium scale enterprises in
228 comparison with the Finnish System'. M Tetsuya . *J.Occup Health* 1999. 41 p. .

229 [Sorock et al. ()] 'Case-crossover study of transient risk factors for transitional acute hand injury'. G Sorock , D
230 Lombardi , R Hauser , E Eisen , R Herrick , M Mittleman . *Occu and Environ Med* 2004. 61 p. .

231 [Antonio et al. ()] *Economic and Health Effects of Occupational Hazards in Latin America and the Caribbean*, G
232 Antonio , F Roberto , D William . 2001.

233 [Economically Sound Fact Sheet No 84 Geneva. Occupational Health: Ethically Correct ()] 'Economically
234 Sound Fact Sheet No 84'. Geneva. *Occupational Health: Ethically Correct* 1999. (World Health Organization)

235 [Ma et al. ()] 'Evaluating the mechanical injury problem in the wood-bamboo furniture manufacturing industry'.
236 W Ma , M Wang , F Chou . *Inter J of Indl Ergonomics* 1991. 7 p. .

237 [Smith and Mustrad ()] 'Examining the association between physical work demands and work injuries between
238 men and women'. P M Smith , C A Mustrad . *Occup Environ med* 2004. 61 p. .

239 [Bronson and Howard ()] *Gender differences and their influence on thrill seeking and risk taking*, M Bronson ,
240 E Howard . 2003. (Department of psychology)

241 [Leigh et al. ()] 'Global burden of disease and injury due to occupational factors'. J Leigh , O Macaskill , E
242 Kuosma , J Mandryk . *Epidemiology* 1999. 10 p. .

243 [Global health risks: mortality and burden of disease attributable to selected major risks ()] *Global health risks:
244 mortality and burden of disease attributable to selected major risks*, 2009. Geneva.

245 [Machida and Bachoo ()] 'Guidelines on occupational safety & health management systems'. S Machida , P
246 Bachoo . *Indian news letter on Occupational health and safety* 2001. 11 (3) p. .

247 [Machida and Bachoo ()] 'Guidelines on occupational safety and health management systems'. S Machida , P
248 Bachoo . *African news letter on occu heal & safety* 2001. 11 (3) p. .

249 [Fulle ()] *Injuries in urban factories of ketena one*, A Fulle . 1998. Addis Ababa. Addis Ababa University (Master's
250 Thesis)

251 [Tiwari et al. ()] 'Injury and injury care among child laborers in gem polishing industries in Jaipur'. R Tiwari ,
252 A Saha , J Parikh , H Saiyed . *India. J of Occu Health* 2004. 46 p. .

253 [Li ()] 'Job stress and satisfaction in association with non fatal injuries on the job in cross sectional sample of
254 petrochemical workers'. C Y Li . *Occup Med* 2001. 51 p. .

255 [David and Goel ()] 'Knowledge, attitude, and practice of sugarcane crushers towards hand injury prevention
256 strategies in India'. S David , K Goel . *Injury Prevention* 2001. 7 p. .

257 [Bhattacherjee et al.] 'Lorhandicap group 2003. Relationships of job and some individual characteristics with
258 occupational injuries in employed people. A community-based study'. A Bhattacherjee , N Chau , Otero
259 Sierra , C Legras , B Benamghar , L Michaely , J P Ghosh , A K Guillemin , F Ravaud , J F Mur , JM . *J
260 Occup Health* 45 p. .

261 [Pratt et al. ()] 'Machinery related occupational fatalities in the United States, 1980 to 1989'. S G Pratt , S M
262 Kisner , J C Helmkamp . *J Occup and Environ Med* 1996. 38 p. .

263 [Ministry of Health and Family Welfare 2006. Occupational Health and safety assessment in selected factories in India]
264 *Ministry of Health and Family Welfare 2006. Occupational Health and safety assessment in selected factories
265 in India*, p. .

266 [Goldenhar et al. ()] 'Modeling relationships between job stressors and injury and near-miss outcomes for
267 construction laborers'. L Goldenhar , L Williams , N Swanson . *Work and Stress* 2003. 17 (3) p. .

7 CONCLUSION

268 [Ustinaviciene and Piesine ()] 'Morbidity of textile industry workers in Kaunas'. R Ustinaviciene , L Piesine .
269 *Medicina (Kaunas)* 2007. 43 p. .

270 [Fritschi et al. ()] 'Mortality in an Australian cohort of textile workers'. L Fritschi , R Lakhani , L Nadon , M
271 Bulsara . *Occup Med* 2004. 54 p. .

272 [Nag et al. ()] P K Nag , A Nag , H Vyas . *Nonfatal Accident Analyses in the Textile Industry in India: Ergonomics in Developing Regions Needs and Applications*, (Boca Raton London NY) 2009. Taylor & Francis
273 Group. p. .

275 [Seblework ()] *Occupational safety and health profile for Ethiopia: Ministry of Labour and Social Affairs*, D
276 Seblework . 2006. p. .

277 [Jovanovic and Jovanovic ()] 'Occupational safety training programme'. J Jovanovic , M Jovanovic . *Arh Hig
278 Rada Toksikol* 2004. 55 p. .

279 [Soori et al. ()] *Occupational stress and work-related unintentional injuries among Iranian car manufacturing
280 workers. Eastern meditrnian health journal*, H Soori , M Rahimi , H Mohseni . 2008. 14 p. .

281 [Nakata et al. ()] 'Prevalence and correlates of occupational injuries in small-scale enterprises'. A Nakata , T
282 Ikeda , M Takashaki . *J of Occup Health* 2005. 48 p. .

283 [Tadesse and Kumie ()] 'Prevalence and factors affecting work and work related injury among small and medium
284 scale industries in Gondar woreda'. T Tadesse , A Kumie . *EJHD* 2007. 21 (1) p. .

285 [Nearkasen et al. ()] 'Relationships between some individual characteristics and occupational accidents in the
286 construction industry: a case-control study'. C Nearkasen , J M Marie , B Lahoucine , S Christian , D
287 Jean-Louis , Martine F Regis , J , AlainS . *J Occup Health* 2002. 44 p. .

288 [Ghosh et al. ()] 'Relationships of working conditions and individual characteristics to occupational injuries: a
289 casecontrol study in coal miners'. A K Ghosh , A Bhattacherjee , N Chau . *J Occup Health* 2004. 46 p. .

290 [Simpson and Severson ()] 'Risk of injury in African American hospital workers'. C L Simpson , R K Severson .
291 *J Occup Environ Med* 2000. 42 p. .

292 [Rogers ()] *Roles of the occupational health nurse. In: Occupational health nursing concepts and practice*, B
293 Rogers . 1994. W.B. Saunders Co. p. .

294 [Pajunen et al. ()] *Seasonal changes in mood and behavior in relation to work conditions among the general
295 population. Scandinavian Jrn of Work, Environ and Health*, P Pajunen , J Lunqvist , T Partonen . 2007. 33
296 p. .

297 [Abebe and Fatahun ()] 'Shift work and sleep disorder among Bahir Dar textile mill workers northwest Ethiopia'.
298 Y Abebe , M Fatahun . *East African Medical journal* 1999. 76 p. .

299 [El-Sabaawi ()] 'Study on the cost of hand injuries among spinners and weavers in textile industry in Alexandria'.
300 M El-Sabaawi . *Alex. University* 1978. 84 p. 123. (unpublished Master Degree of P.H. in Industrial Hygiene)

301 [Cordeiro ()] 'Suggestion of an Inverse Relationship between Perception of Occupational Risks and Work-Related
302 Injuries'. R Cordeiro . *Cad. Saúde Pública* 2002. 18 p. .

303 [Senbeto ()] *The incidence of injuries and their determinants in Akaki textile factory*, E Senbeto . 1991. Addis
304 Ababa. Addis Ababa University (Master's Thesis)

305 [Edmonds and Vinson ()] 'Three measures of sleep, sleepiness, and sleep deprivation and the risk of injury: A
306 case-control and case-crossover study'. J Edmonds , D Vinson . *J of the Am Board of Fam Med* 2007. 20 p. .

307 [Hallsten ()] 'Time and accident-A register study'. L Hallsten . *J of Occu Accidents* 1990. 12 p. .

308 [Rhys and Paul ()] *Trends and context to rates of workplace injury. Health and safety executive*, D Rhys , J Paul
309 . 2005. Uni of Warwick Coventry. Warwick Institute for Employment Research

310 [Uttar Pradesh labour department report 2009-10 Employment Accident statistics. Bilingual annual Bulletin]
311 'Uttar Pradesh labour department report 2009-10'. *Employment Accident statistics. Bilingual annual Bulletin*

312 [Uttar Pradesh regional state Bureau of labour and social affairs 2009-10 Employment Accident statistics. Bilingual annual Bulletin]
313 'Uttar Pradesh regional state Bureau of labour and social affairs 2009-10'. *Employment Accident statistics.
314 Bilingual annual Bulletin*