

¹ Forecasting of Load -Carrying Ability of The Earth file Around ² of Horizontal Cavities

Dr. S.A.Piriyev¹

¹ Baku State University

Received: 5 June 2012 Accepted: 2 July 2012 Published: 15 July 2012

7 Abstract

8 The scattered destruction of a heavy half-plane with a circular hole under an operation of
9 internal constant pressure is investigated. On a rectilinear side a border of the half-plane is
10 under load. The Suvorov-Akhundov's theory on isotropic bodies' damage is used. In chosen
11 final investigated area a numerical way of the solution is used and border conditions in infinity
12 were transferred on it. Lateral pressure coefficient three values illustrations on time of
13 development of the destroyed area are given.

Index terms— Destruction, tunnels, deformation, stress.
ecessity of stressed and deformed state definition of soil mass around tunnels appears while making underground tunnels and metro lines as well. This is actual as for unfixed tunnel-mine working so as for fixed tunnel. Complexity of this problem is in amount of reological properties of soil variety, nonhomogeneousness, structural changes, particularly connected with destroying process and underground water presence. The bad that metro lines are put in the places where surface construction are presented, also complicates this issue. Calculation method of stressed state of one or two horizontal cylindrical cavities in the soil mass is offered in this research. The problem is solved for the case wish surface deformation taking in to account soil mass stratification, underground water presence, process formation and damage accumulation. The contour of the cavity is effected by the given pressure. The presence construction on the surface is modified according to the given on it power-pressure system.

25 Numerical algorithm of stressed state calculation and its changeability in time has been developed.
26 Based this algorithm not only stressed state definition in the area around cavities tunnels appears, but searching
27 of appearing and extending destroying zones as well (fig. ??) M. u. u. M. ? ? ? ? ? *

39 ii. The criterion of failure will be $M_u u M ? ? ? ? ? * 2$

42 Since, the problem is a plane one then equations of motion will be will have the following form? ? ? ? ? ? ?

44 Here ? is specific gravity of rock.

45 Equations of deformation compatibility, 2 1 12 2 2 1 22 2 2 2 11 2 2 x x x x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 5

46 The criteria were given by means of stresses, therefore we express the problem through the stresses. For that,
 47 taking into account (1) and (5), we obtain the following system
 48
 49
 50
 51

52 This system of equations with equilibrium equation (6) forms by stress component an isolated system of
 53 equations. As was noted, in the system Analytical solving of (6) is very difficult therefore here numerical method
 54 and finite element method were applied. For that we pass from infinite half-plane onto finite rectangle. Its incremental
 dimensions are defined during the numerical computations. Damaging operator is of the form,¹

Figure 1: M

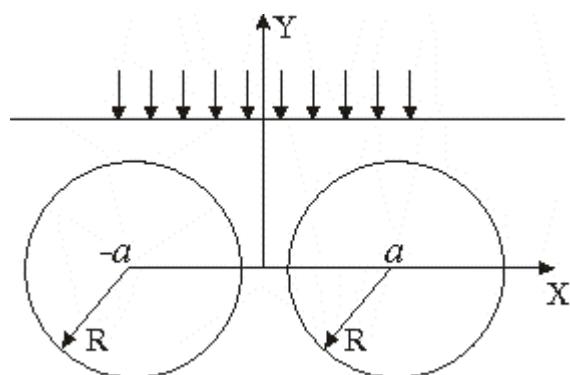


Figure 2:

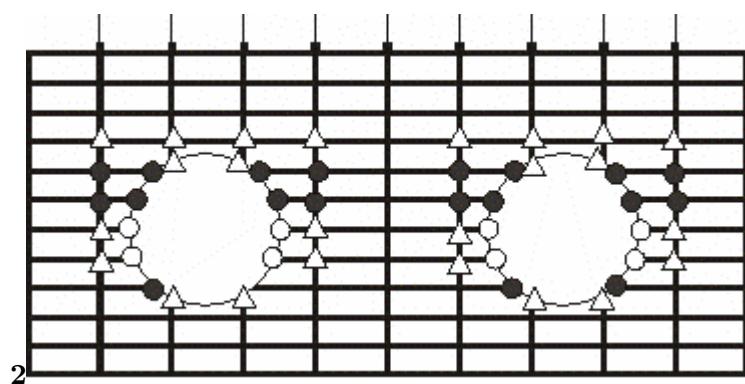


Figure 3: Figure 2 .

56 [Akhundov et al. ()] ‘An approach to solving the one-dimensional problem of compression of a viscoelastic layer
57 dispersedly reinforced with elastic inclusions’. M B Akhundov , A Sh , A A Sadayev , Ayvazov . *Mechanics*
58 *of composite materials*, 2009. 45 p. .

59 [Suvorova et al. ()] ‘Deformationand failure of damaging isotropic bodies at complex stressed state’. Yu V
60 Suvorova , M B Akhundov , V G Ivanov . *Mechanics of composite materials*, 1987. p. . (in Russian)

61 [Piriyev ()] ‘The Dispersed Failure of a Heavy Half-Plane with a Circular Aperture’. S A Piriyev . *International*
62 *Mathematical Forum* 2009. 4 (34) p. .