

Evaluating Intra-Urban Transportation and Gender Travel behaviour in Ilorin, Nigeria

Dr. Ibrahim¹

¹ Ladoke Akintola University of Technology

Received: 9 December 2011 Accepted: 3 January 2012 Published: 15 January 2012

6

Abstract

The condition of intra-urban transport system in Nigerian cities is becoming worrisome by the day. Although the situation affects male and female, previous empirical and theoretical discussions most of the time assumed the universality of gender's experience. Transportation Planning and Engineering have been gender neutral. It is against this background that the study evaluates condition of intra-urban transport and gender travel behaviour in Nigeria using Ilorin as case study. The study uses primary data, which were obtained through a random and systematic sampling of 500 households in Ilorin, Nigeria. Variables used for this study include indicators of urban transport infrastructure conditions and intra-urban travel patterns. Data collected were analyzed using descriptive statistics in form of cross tabulation and chi-square statistics. The results showed inadequate and poorly maintained transport infrastructural facilities; accidents; waiting for long periods at the bus stops; traffic congestion and the related parking problems. It was also revealed in the study that man and woman are not equal urban space users and actors, in relation to kind of trips made and complexity of trip making. The study recommends among others the need to develop transportation planning models that capture gender differences in trip purpose, frequency and distance travel, mode of transportation used and complexity of trip making. Improving safety on the street is very crucial. Routes should connect homes with other activity centers. The study concludes by reiterating the need to boost the current state of transport infrastructure in the study area.

26

27 **Index terms**— ntra-urban, transportation, gender, travel behaviour.

1 Introduction

28 growing body of academic literature has emerged over the last few years addressing the complex relationships between transportation and gender, both in developed ??Rosembloom, 1993; Hanson and ??anson, 1978 and ??985; ??enkins and Gregory, 1991; ??eters, 1999; Schintler, 2001; ??ones, 1990) and developing countries (Turner and Fouracre, 1995; Fernando, 1997; Grieco and Turner, 1997 and ??rieco et al, 1996; Oyesiku and Odufuwa, 2002; Okoko, 2007; ??dufuwa, 2007; ??verton, 1994; ??siyanbola, 2007). Matalon ??1992) confirmed that, the travel behaviour of individuals is not uniform and he attributed this difference to sex (gender). Okoko (2007), expatiated further that, difference in travel behaviour of men and Author : Department of Urban and Regional Planning Faculty of Environmental Sciences Ladoke Akintola University of Technology, P.M.B.4000 Ogbomoso, Nigeria. E-mail : ibrahimrafiu1079@yahoo.com women stems on the fact that women are vulnerable to a number of factors in their choice of travel (mode or in their travel behaviour).

39 In Nigeria, urban transport that serves as the sinew, binding together various land uses has not only remained 40 inefficient, it has grown over the years to be expensive and dangerous (Egunjobi 1999). In many Nigerian 41 cities, urban transport exhibits remarkable features. Several studies have revealed these features of Nigerian

5 B) GENDER AND TRANSPORT

42 urban transport ??Adeniji, 1993; ??desanya, 1996; ??desanya and Adeniji, 1998; ??orres, 2001; ??yesiku, 2002b
43 ??yesiku, , 2002b; ??gunsanya, 2002; ??lukoju, 2003; ??sita et al, 2003; ??andu-Chikolo, 2004,).

44 A study by ??adare and Morenikeji (2007) on gender bias in intra-urban trip pattern in Niger State, Nigeria,
45 shows that, there was a remarkable difference in the travel behaviour of men and women. Also, ??anson and
46 Hanson (1980) noted that women travel less frequently than men and they travel shorter distances than men
47 do and rely on bus (public transport) to a greater extent than men. Despite the transport bias against women,
48 scholars emphasized that, there would be an increase productivity, improved nutrition and health for children and
49 the society at large when gender discrimination against women is eliminated in terms of accessibility ??Blackden
50 and Wodon, 2006;Okoko, 2007).

51 Hitherto, every attempt at solving intra-urban mobility problems was made without gender considerations.
52 The assumptions have always been such that the solutions are applicable equally to both men and women. In
53 most cases, pure traditional economic variables, which ignore crucial cultural roles and the salience of the life
54 course, are used to derive some of these solutions (Rosenbloom, 1993). Yet those missing variables are parts of
55 our realities, which of course need to be applied in formulating any transportation policy. The place of gender
56 has been found to be very important in effective policy formulation because man and woman are not equal urban
57 space users and actors ??Townsend 1991; ??eager, 1992; ??oser, 1993; ??owlby et al, 1989; ??hort, 1996; ??tc).
58 This study is an addition to the existing literature and an attempt to make contribution along this line.

59 2 Aim and Scope of Study

60 This study aims at assessing urban transport infrastructure condition and intra-urban travel of women and men
61 in the city of Ilorin, Nigeria. This is with a view to understanding the situation of intra-urban transportation
62 whether it is gender oriented or not. To achieve this, the operational objective used is the assessment of transport
63 infrastructure condition and travel pattern of people in the study area.

64 3 III.

65 4 Literature Review a) Urbanization and Urban Transport 66 Condition in Nigeria

67 The trend of urbanization and city growth in developing countries are characterized by rapidity of urban increase
68 and a high rate of urban population growth by natural increase and migration ??Oyesiku, 2002a). In Nigeria,
69 urbanization has a fairly long history in its growth and development. Historical account shows that extensive
70 urban development in Nigeria predates the British colonial administration. Early explorers, missionaries and
71 merchants estimates of population of towns show the existence of substantial human settlements in this part of
72 the world in the 19 th century (Mabogunje 1968). During this period, the major factors crucial to the growth
73 and development of cities were trading, marketing and administration. The second half of the 20 th century
74 witnessed rapid rate of urbanization and emergence of cities in various parts of Nigeria due to a number of
75 factors among which are: introduction of wheeled transportation, particularly railway and road; categorization of
76 settlement into hierarchical order of township; introduction of monetized economy and consequently production
77 of cash crops and exploitation of mineral resources; continuous geopolitical restructuring, through creation of
78 states and local governments in ??967, 1976, 1987, 1991 and 1996,; and the industrialization process between
79 1960 and 1975, which was based on import substitution strategies and consumer market for imported goods and
80 services ??Oyesiku 2002a).

81 In Nigeria the pace of urbanization has been dramatic showing extraordinarily high rates of 5-10 percent per
82 annum (Egunjobi 1999). Consequently, there has been rapid expansion of Nigerian cities" areal extent, which
83 is now sometimes ten fold their initial point of growth (Egunjobi 1999; ??gunsanya 2002; ??yesiku 2002a). A
84 crucial aspect of this is that city growth and expansion in Nigeria has been largely uncontrolled ??Agbola, 1989;
85 ??gbola, 1997;Egunjobi, 1999;2002; ??yesiku, 2002a; ??lanrewaju, 2004; ??tc). Consequently, the scaring and
86 unsatisfactory situations in the cities have been increasing at an alarming rate. Egunjobi (1999:3) noted that
87 our cities in Nigeria are not only ailing, quite a majority of them are on the verge of breathing the last breath.
88 Several studies have shown that inadequate planning of urban landuses in Nigeria and great intensity of use
89 of land in the urban areas has exacerbated urban problems (Filani, 1994;Egunjobi, 1999;2002; ??yesiku 2002a;
90 Foundation for Urban Development in ??frica, 2006; ??tc). The current trend in the Nigerian cities is very
91 frustrating. Mabogunje (1968) notes that whether we think of welfare services or employment opportunities, the
92 urban system in Nigeria today is already proving inadequate as a means of achieving the type of social order that
93 the country desires (Foundation for Urban Development in Africa, 2006:23).

94 5 b) Gender and Transport

95 In the developed countries since the 1970s, there has been growing awareness of wide differences in the ways in
96 which men and women travel ??Beuret, 1991).This increasing awareness is from studies carried out on women and
97 transportation. Highlight of some of these research findings in the developed countries included the following:
98). ? Women" entry into the workforce, along with their continued role as primary caretakers of domestic
99 responsibilities, has led to the emergence of? Women"

100 6 Global Journal of Human Social Science

101 Volume XII Issue X" IV Version I(D D D D)

102 A

103 7 Year

104 "knock-on" trips, or trips generated by the substitution of home production for market production. Women
105 are more likely than men to make these types of trips. (Rosenbloom 1993;Schintler, 2001). ? Complex travel
106 behavior such as trip chaining is more common for women than men even when both males and females are
107 in employment. Women stop more for running household errands than do men, on both inward and outward
108 commutes and irrespective of the number of persons in a household or its structure (Root et al, 2000; Schintler,
109 2001). ? Married women are more likely to make a greater variety of trips for young children, and more of
110 those trips are directly related to household responsibilities ??Rosenbloom, 1989) ? Women frequently use public
111 transportation for shopping and household errands and women workers combine these trips with the journey to
112 work to save precious time (Skinner and Borlaug, 1978; Hanson and Hanson, 1978; ??euret, 1991). ? Within the
113 same households, men and women often have differential access to family car, where there is only one automobile,
114 it is frequently the husband who uses it on a regular bases (Wekerle, 1980; ??anson and Hanson, 1980; ??euret,
115 1991;Rosenbloom, 1993). ? In studies of traveller information services, women are often less prone to switch
116 routes after receiving traveller information on alternative routes. Women tended to be more conservative in their
117 selection of travel alternatives (Abdel-Aty et al, 1996; Schintler, 2001) Historically, transportation planning and
118 engineering have been gender neutral. The needs and responsibilities of women which now extend beyond the
119 domestic sphere, due largely to the increase in female labour force participation play an important role in shaping
120 their travel activity patterns, specifically, in their impact on trip purpose, frequency and distance travel, mode
121 of transportation used, and complexity of trip making. However, as observed in the literature, transportation
122 planning models are not designed to capture these differences (Wekerle 1980; Schintler 2001). The design of the
123 transportation systems is such that it is primarily to carry workers to and from their jobs. Planning does not take
124 into account the fact that the journey to work for women workers is often more time consuming, more costly,
125 and more complicated than men's. Women frequently use public transportation for shopping and household
126 errands and women workers combine these trips with the journey to work to save precious time ??Skinner and
127 Borlaug, 1978;Hanson and Hanson 1978). Yet fare structures and the location of transit lines do not accommodate
128 this trips pattern. In addition mothers are generally responsible for taking children to child-care facilities and
129 picking them-up. These trips are not reflected in transportation models even though they require an extra trip
130 twice a day, sometimes in a direction away from work, and involve additional time and money (Wekerle 1980).
131 These models according to ??chintler (2001:356-357), assume that each traveler's primary concern is to minimize
132 travel time and cost, whereas other factors such as safety, comfort, and accessibility to opportunities may be
133 more important than travel time to many women, and that the unique circumstances and psychology of women
134 may lead them to very different rules of travel related decision-making than men, and this behaviour cannot be
135 accurately reflected in travel demand models based on rational behaviour and utility maximization.

136 In the developing countries and in Nigeria in particular, studies have shown that there are significant
137 differences between women and men intra-urban travel behaviour (Asiyanbola 1999;2002;Fadare and Morenikeji,
138 2001;Oyesiku and Odufuwa, 2002). A study carried out in Abeokuta, Ogun State revealed that women linked-
139 trips to and from work; women make more activity trips weekly than men and women and children depend
140 heavily on public transport for their intra-urban travel (Asiyanbola, 1999). Observation in Ibadan city revealed
141 that work trip distance is shorter for women than for men, women make domestic related non-work trips more
142 than men and walking as well as public transport are crucial in enabling access to various activities centers;
143 and in a household where there is one car, men use the car most ??Asiyanbola 2002). In Niger State, Fadare
144 and Morenikeji, (2001) found that among people without means of transport women make more trips than men,
145 but among the group with means of transport men have a higher mean trip rate than women. Also, study by
146 Oyesiku and Odufuwa (2002) on gender perspectives in travel behaviour of motorcycle passengers in Nigerian
147 intermediate cities shows that females frequently use motorcycle mode for short and long distance trips more
148 than males; the use of motorcycle has significant effects on the pattern of dressing of women and that two of
149 every three passengers that have motorcycle accidents are women.

150 IV.

151 8 Research Methodology

152 The data needed for the study were generated from field survey. This was achieved with the use of structured
153 questionnaire which was administered in the study area. Some of the variables used are the urban transport
154 infrastructure condition which consists of road quality in terms of condition, drainage, pedestrianization and
155 parking. Other variables include condition of public transport (conventional and intermediate public transport
156 system. The variable used to detect intraurban travel of gender as indicated by weekly trips for The Data used
157 in the study were obtained from a cross-sectional survey of households through questionnaire administration. In
158 this household survey, the sampling frame utilized is the total number of estimated households in Ilorin municipal
159 area. The average household size declared for Nigeria in the result of the National Population Commission (NPC)

160 2006 household survey is 4.48. This was used to divide the 2006 population of each locality as defined by the
161 NPC in the Ilorin municipal area to get an estimate of the number of households.

162 To make for effective and objective coverage, due to non-availability of the list of all households in each locality
163 in Ilorin, the number of questionnaires administered in each locality was proportional to the total number of
164 estimated households in each locality. Random Systematic Sampling was used in the selection of houses along
165 the streets. The first house was selected by the use of random numbers and all subsequent units in the sample
166 were chosen at uniform intervals of twenty houses. Descriptive analysis in form of cross tabulation and chi-square
167 statistics were used to analyze the data collected. This is done with the aid of computer software program known
168 as Statistical Package for the Social Sciences (SPSS).

169 9 Discussion of Findings

170 Concerning road condition as observed by respondents and shown in table 1, 28.6% of the roads were tarred, 8.2%
171 were untarred, 56.8% were tarred but has developed potholes, 4.6% were not tarred but at the same time has
172 developed potholes, while 1.8% refused to respond to our question. This shows that there is need for government
173 to rehabilitate most of the road networks in the city. It could also be noted that poor state of road condition
174 also subjected people to various forms of difficulties like armed robbery, vehicle deterioration etc.

175 Responses of the people as shown in Table 2 reveal that 38.6% of the drainage conditions were bad, 39.2%
176 were fair, while 2.2% and 2.4% were said to be in good and very good condition. Since the drainage conditions
177 of the study area are mostly bad, this might no doubt be responsible for the deteriorating condition of the road.

178 Also in table 3, it is observed that 8.0% of the respondent reported that the condition of pedestrian are bad
179 and fair, while 1.8% said it is good. A significant proportion of 82.2% refused to respond to our question. It
180 could be deduced that pedestrian find a place on the road but the space is basically not designed for it. This
181 might be responsible for reasons while the respondents are not aware of the pedestrian (barrier) system.

182 It is also observed in table 4 that 78.2% of the respondents identified on street parking, while 3.2% noted off
183 street parking. It could be deduced that parking system in the city of Ilorin are on street. This might not be
184 unconnected with the fact that there is no enough provision for the off street parking which is very dangerous
185 to the road users. In table 5, 62% of the respondents said there are bus stops in the city, 27.8% said there is
186 no bus stop, 10.2% refused to respond. Here, the majority of the respondents declare the existence of bus stop.
187 Most of the traffic signs in Ilorin as given by the respondents and as shown in table 6 above are route directions
188 (93.4%), 3.2% of the respondents noticed speed limit, while none of the respondent aware of right-off-ways and
189 children/passengers crossing as far as traffic sign is concerned.

190 10 Global Journal of Human Social Science

191 Volume XII Issue W XIV Version I 7 is Para-transit (96%), 0.2% of the respondent said it is mass transit, 0.6%
192 said both of them exists, while 3.2% give no response. The same table (4.9) revealed that 6.6% of the mass transit
193 are Articulated Buses, 4.6% are Double Decker buses. It could also be established from the table 4.9 above that
194 majority of the Para-transit public transport system are taxi cab (63.4%), 15% are Motorcycle, 9.6% are mini bus
195 (Hiace, Liteace & Urvan), 7.6% are Tricycle while 2.6% are other forms of Vehicles. Table 8 shows the waiting
196 and travel time of commuters in the study area. Accordingly, it is observed that 23.4% of respondents waited
197 less than 5 minutes before they get vehicle. Another 40% of respondents waited 5 -10 minutes, 14% waited 11
198 -20 minutes, 10.6% waited 21-30 minutes, while 9% and 3% of respondents waited 31-59 minutes and 1 hour &
199 above respectively. It is observed that majority of respondents waited between 5 and 10 minutes, situation which
200 is not too good for transportation. In table 11 majority of respondents (60%) uses between 20 and 40 minutes
201 before getting to destinations. This is a reflection of bad transport infrastructure.(D D D D) A 2 14

202 11 Year

203 Also in the table 8, it is observed that 15% of the respondents uses less than 20 minutes before getting to their
204 destination. Another 14.8% uses between 50 minutes and 1 hour while 8% and 2.2% uses 1hour to 2 hours and
205 2 hours and above respectively. The implication of this is that the travel time of people in the study area is
206 not encouraging given that they consume long time before reaching destination. This might be due to the poor
207 transport infrastructure condition. Source : Author's Fieldwork, 2010.

208 It is observed from the table 9 that 2.4% of respondents reported that the engine of the vehicles used by public
209 transport operators are good but clothe tearing body. Another 17.6% of them noted that the body of vehicle is
210 good but smoke bearing engine. Only 2.2% of respondents gave account that the engine and body of the vehicle
211 are good. Moreover, 38.6% of respondents are of the opinion that the vehicles are fairly maintained, while 39.2%
212 of them noted that the conditions of public transport vehicles are rickety and ill maintained.

213 The implication of this is that services of the intra-urban transportation will be in pathetic situation as people
214 will not enjoy their services.

215 12 Year

216 It is observed here that majority of the respondents in the study area gave accounts of the fact that the conditions
217 of the vehicles of transports operators are noting to write home about. This explains why road worthiness of
218 these vehicles is questionable.

219 13 a) Intra-Urban Travel Pattern in Ilorin

220 Concerning the female folk, it is observed that their travel pattern is far more differ than male counterparts. In
221 essence, women make more activity trips weekly than men in trip purposes like childcare, personal healthcare,
222 shopping and religious purposes.

223 Other activity trips which women do more are fetching water, waste disposal, social functions which include
224 wedding ceremony and house warming, as well as visit to relatives.

225 14 VII.

226 15 Planning Implication, Policy Issues and Conclusion

227 This study made assessment of intra-urban transport and gender travel behaviour in Ilorin, Nigeria. The result
228 showed unprecedented existence of urban transport problems of inadequate and poorly maintained infrastructural
229 facilities, accidents; the relative immobility Year of the disadvantaged shown in, for instance, in waiting for long
230 periods at the bus stops; pollution from transport; traffic congestion and the related parking problems, etc is
231 becoming acute in the city. This is due to the city's rapid economic and industrial developments which have
232 resulted in the large expansion of the city's areal extent.

233 The city of Ilorin, like many cities in Nigeria, has been growing in recent years in all directions without
234 planning. Lack of physical planning in many parts of Ilorin city has contributed in no small measure. It gives
235 rise to the almost disorganized arrangements of buildings, which in turn negates and continue to prevent the
236 development of better sections of the city. Even in the areas, which appear to be better planned, there is no
237 adequate provision of sidewalks to facilitate pedestrian movements. Where sidewalks exist, they are usually
238 taken over by roadside traders (Filani 1994;Egunjobi 1999), forcing pedestrians more to walk on road pavements.
239 According to ??ilani (1994:188), this, in essence means constant conflicts between pedestrians and motorists.
240 Also most of the existing roads in the city were constructed in the late 1940s and early 1950s when the city's
241 economic base and territorial extent were very limited (Filani 1994). At that time the major commercial and
242 industrial activities were concentrated in a few pockets area and fewer vehicles were in circulation within the city.

243 Consequently, the roads are narrow, winding and lacking in pedestrian sidewalks and adequate parking
244 facilities. The existing transport systems fall far short of the ever increasing commuter traffic demand and
245 the complexity of intra-urban journey patterns. This has resulted in excess capacity utilization, which has
246 contributed to the deterioration of the roads. Moreover, as there are very few organized parking lots people
247 suffer stress in search for parking space. Vehicles and their owners are subjected to dangers in nonconventional
248 car parks. Parking space inadequacy is the result of illegal street parking, which has already, reaches crisis
249 proportions in the city. In addition, such vehicles parked on the streets are ready targets of thieves and reckless
250 drivers. Vehicles are always double-parked along the verges of the main roads thereby decreasing their lane
251 capacity. As a result, traffic congestion, "hold-ups" and bottlenecks are a common feature, particularly during
252 rush hours.

253 The issue of concern therefore is to make intraurban transportation services not only affordable, accessible, safe
254 and appropriate, but also gender sensitive. These will facilitate the achievement of the Millennium Development
255 Goal Number 3, which is to promote gender equality and empowerment. This is because, services which are
256 gender-sensitive would improve the potential of women to enjoy and exercise their full human rights -political,
257 economic, social, civil and cultural; would facilitate greater equality between women and men; and would
258 contribute to greater equity (O'Connell, 2000). To achieve this: a. Among local decision makers -elected
259 representatives, officials, service planners, and deliverersand civil society organizations including NGOs and
260 community-based organizations there is the need to build greater awareness of and sensitivity to gender differences
261 as this is fundamental to developing gender sensitive services (O'Connell 2000). b. There is the need to develop
262 transportation planning models that capture gender differences in trip purpose, frequency and distance travel,
263 mode of transportation used and complexity of trip making. There is the need to improve public transport. This
264 could be achieved through increasing subsidies for on import duties of vehicles, spare parts and fuels in order
265 to reduce fares or increase services, providing more buses, staff, stations and bus stops. c. There is an urgent
266 need for planning. That is, urban development and transport have to be pursued together at the same time.
267 Provision of efficient public transport should precede any major housing development. d. Measures should be
268 taken to avoiding alienation of any existing right-of-way, especially in the dense areas. A design of integrated
269 metropolitan transport master plans with a clear vision of train, bus and taxis as well as urban motorcycle and
270 nonmotorized transport roles is needed. e. Urban transportation policies, which emphasize accessibility, that is,
271 reducing the need to travel, should be pursued. Such policies relate to land use planning and decentralization of
272 activity areas and the prioritization of walking and cycling over motorized transport.

273 16 Global

Figure 1: A

274 1 2 3

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US)

³© 2012 Global Journals Inc. (US) 20 2012

1

Road condition		Gender		Total
		Male	Female	
Tarred	Frequency	44	99	143
	%(Row)	30.8	69.2	100
	%(Column)	22.2	32.8	28.6
Untarred	Frequency	0	41	41
	%(Row)	0.0	100	100
	%(Column)	0.0	13.6	8.2
Tarred but has developed potholes	Frequency	134	150	284
	%(Row)	47.2	52.8	100
	%(Column)	67.7	49.7	56.8
Untarred but has developed potholes	Frequency	20	3	23
	%(Row)	87.0	13.0	100
	%(Column)	10.1	1.0	4.6
No Response	Frequency	0	9	9
	%(Row)	0.0	100	100
	%(Column)	0.0	3.0	1.8
Total	Frequency	198	302	500
	%(Row)	39.6	60.4	100
	%(Column)	100	100	100

$\chi^2 = 65.837$, df = 4, P<0.05 = 0.000

Source: Author's Fieldwork, 2010

Figure 2: Table 1 :

2

	Drainage condition		Gender		Total
			Male	Female	
Very good	Frequency	0	12	12	
	%(Row)	0.0	100	100	
	%(Column)	0.0	4.0	2.4	
Good	Frequency	0	11	11	
	%(Row)	0.0	100	100	
	%(Column)	0.0	3.6	2.2	
Fair	Frequency	83	113	196	
	%(Row)	42.3	57.7	100	
	%(Column)	41.9	37.4	39.2	
Bad	Frequency	73	120	193	
	%(Row)	37.8	62.2	100	
	%(Column)	36.9	39.7	38.6	
No Response	Frequency	42	46	88	
	%(Row)	47.7	52.3	100	
	%(Column)	21.2	15.2	17.6	
Total	Frequency	198	302	500	
	%(Row)	39.6	60.4	100	
	%(Column)	100	100	100	

X² = 18.383, df = 4, P<0.05 = 0.001

Source: Author's Fieldwork, 2010

Figure 3: Table 2 :

3

	Pedestrian system		Gender		Total
			Male	Female	
Good	Frequency	0	9	9	
	%(Row)	0.0	100	100	
	%(Column)	0.0	3.0	1.8	
Fair	Frequency	13	27	40	
	%(Row)	32.5	67.5	100	
	%(Column)	6.6	8.9	8.0	
Bad	Frequency	10	30	40	
	%(Row)	25.0	75.0	100	
	%(Column)	5.1	9.9	8.0	
No Response	Frequency	175	236	411	
	%(Row)	42.6	57.4	100	
	%(Column)	88.4	78.1	82.2	
Total	Frequency	198	302	500	
	%(Row)	39.6	60.4	100	
	%(Column)	100	100	100	

X² = 11.833, df = 3, P<0.05 = 0.008

Source: Author's Fieldwork, 2010

Figure 4: Table 3 :

4

Pedestrian system		Male	Gender	Total
		Female		
On street parking	Frequency	152	239	391
	% (Row)	38.9	61.1	100
	% (Column)	76.8	79.1	78.2
Off street parking	Frequency	0	16	16
	% (Row)	0.0	100	100
	% (Column)	0.0	5.3	3.2
No Response	Frequency	46	47	93
	% (Row)	49.5	50.5	100
	% (Column)	23.2	15.6	18.6
Total	Frequency	198	302	500
	% (Row)	39.6	60.4	100
	% (Column)	100	100	100

$\chi^2 = 14.358$, df = 2, P < 0.05 = 0.001

Source: Author's Fieldwork, 2010

Figure 5: Table 4 :

5

Bus Stop		Male	Gender	Total
		Female		
Yes	Frequency	97	213	310
	% (Row)	31.3	68.7	100
	% (Column)	49.0	70.5	62.0
No	Frequency	67	72	139
	% (Row)	48.2	51.8	100
	% (Column)	33.8	23.8	27.8
No Response	Frequency	34	17	51
	% (Row)	66.7	33.3	100
	% (Column)	17.2	5.6	10.2
Total	Frequency	198	302	500
	% (Row)	39.6	60.4	100
	% (Column)	100	100	100

$\chi^2 = 28.870$, df = 2, P < 0.05 = 0.000

Source: Author's Fieldwork, 2010

[Note: A Year]

Figure 6: Table 5 :

6

Road Traffic		Gender		Total
		Male	Female	
Speed Limit	Frequency	4	12	16
	% (Row)	25.0	75.0	100
	% (Column)	2.0	4.0	3.2
Route Directions	Frequency	190	277	467
	% (Row)	40.7	59.3	100
	% (Column)	96.0	91.7	93.4
No Response	Frequency	4	13	17
	% (Row)	23.5	76.5	100
	% (Column)	2.0	4.3	3.4
Total	Frequency	198	302	500
	% (Row)	39.6	60.4	100
	% (Column)	100	100	100

$\chi^2 = 31.491$, df = 2, $P < 0.05 = 0.017$

Source: Author's Fieldwork, 2010

VI.

Figure 7: Table 6 :

7

Public Transport	Frequency	Percentage (%)
Public Transport		
Mass-transit	1	0.2
Para transit	480	96.0
Both	3	0.6
No Response	16	3.2
Total	500	100
Mass Transit		
Articulated Buses Double Decker Buses No Response Total	33 23 444	6.6 4.6 88.8
	500	100
Para-Transit Taxi Cab Mini bus Motorcycle Tricycle Others Total	317 48 75	63.4 9.6 15.0
	38 13 500	7.6 2.6 100

Source: Author's Fieldwork, 2010

Majority of Public Transport System operating in Ilorin Metropolis as observed in table

Figure 8: Table 7 :

8

Public Transport	Frequency	Percentage (%)
Waiting time		
Less than 5 minutes		
5 -10 minutes		
11 -20 minutes		
21 -30 minutes		
31 -59 minutes		
1 hour and above		

Figure 9: Table 8 :

9

Condition of Vehicle	Frequency	Percentage (%)
Good Engine but Bad Body	12	2.4
Good body but Bad Engine	88	17.6
Good Body and Engine	11	2.2
Fairly maintained	193	38.6
Rickety & ill maintained	196	39.2
Total	500	100

Figure 10: Table 9 :

10

Trip Purpose	0	1	2	Male	5	6	7	0	1
								3	

Generally, it is observed as shown in table 10 that there is a remarkable difference in the travel Source : Aut

behaviour of men and women in Ilorin. Accordingly, the travel patterns of male have more spread in weekdays than females. The spread is particularly noticeable in travel for work trips, children school, recreation and funeral ceremony.

Figure 11: Table 10 :

275 [London] , London . University of London Press Ltd.

276 [Mabogunje ()] , Akin L Mabogunje . 1968. Urbanization in Nigeria.

277 [Fernando ()] 'Balancing the Load'. P Fernando . *Gender Issues in Rural Transport. London. International Forum for Rural Transport and Development* 1997. IFRTD.

278 [Peters ()] 'Gender and Transport in Less Developed Countries; A Background Paper in Preparation for CSD-9'. D Peters . *Paper Commissioned by UNED Forum*, (London) 2001.

281 [Okoko ()] 'Gender and Transport: Women's Proclivity to Minimize Car Use in Akure, Nigeria. Pak'. E Okoko . *J. Soc. Sci* 2007. 4 (1) p. .

283 [Oyesiku and Odufuwa ()] 'Gender Perspectives in Travel Behaviour of Motorcycle Passengers in Nigeria Intermediate Cities'. O Oyesiku , B Odufuwa . *CODATU X Conference Proceedings on Urban Mobility for All. Zeitlinger*, (Netherlands) 2002.

286 [Fadare and Morenikeji ()] 'Gender-bias in Intra-Urban Trip Pattern in Niger State'. S Fadare , W Morenikeji . *Nigeria. International Journal of Transport Studies* 2001. p. .

288 [Grieco and Turner (1997)] M Grieco , J Turner . *Gender Issues in Transport. International Forum on Urban Poverty Proceedings of the International Conference on Urban Poverty*, (Florence, Italy, HABITAT) 1997. 13 Nov.. p. .

291 [Hanson and Hanson ()] *Impact of women employment on Household Travel Patterns. Papers presented at the conference on women's transportation*, S Hanson , P Hanson . 1978. 1978. Washington D.C Sept.

293 [Filani (ed.) ()] *Mobility Crisis and the Federal Government's Mass Transit Programme*, M O Filani . Onakomaiya S.O. and Oyesiku O.O. (ed.) 2002.

295 [Layi (1999)] *Our Gasping Cities An Inaugural Lecture delivered at the University of Ibadan on Thursday, Egunjobi Layi* . 1999. 21 st October.

297 [Physical Planning and Development in Nigeria, Department of Geography and Regional Planning Environment] 'Physical Planning and Development in Nigeria, Department of Geography and Regional Planning'. Environment p. . Olabisi Onabanjo University, Ago-Iwoye

300 [School of Environmental Technology] *School of Environmental Technology*, Akure. p. .

301 [Tanimowo and Atolagbe ()] N B Tanimowo , A M Atolagbe . *Land use and Intra-Urban Travels*, 2006.

302 [Filani (ed.) ()] *Transportation*, M O Filani . Filani, M.O., Akintola, F.O. and Ikporukpo, C.O. (ed.) 1994. 1994. Ibadan: Rex Charles. p. . (Ibadan Region)

304 [Ogbomosho (ed.)] *Urban Environmental sustainability; Interventions and Responses*, Ogbomosho . J. A. Fadamiro et al (ed.) Nigeria: Urban Design Research.

306 [Schintler ()] 'Women and Travel'. L Schintler . *Handbook of Transport system and Traffic Control*, K J Button, D A Hensher (ed.) (New York) 2001. Elsevier Science Ltd. p. .

308 [Asiyanbola ()] 'Women Intra-Urban Travel Pattern: A case study of Abeokuta'. R A Asiyanbola . *Ife Social Science Review* 1999. 17 (2) p. .

310 [Rosenbloom (ed.) ()] *Women's Travel Pattern at Various Stages of Their Lives*, S Rosenbloom . Cindi K, Monk J (ed.) 1993. London, Routledge. p. . (Full Circles: Geographies of Women over the Life Course)