

1 Functional Groups Detection: Do Chemistry Teachers 2 Demonstrate Conceptual Difficulties in Teaching?

3 Benjamin Anim-Eduful¹ and Kenneth Adu-Gyamfi²

4 ¹ University of Cape Coast

5 Received: 15 September 2021 Accepted: 1 October 2021 Published: 15 October 2021

6

7 **Abstract**

8 The chemistry chief examiner of the West African Examination Council has complaint a lot
9 about the weak performance of students on organic chemistry, including functional group
10 detection. The study, therefore, investigated whether senior high school teachers who teach
11 chemical concepts to students also demonstrated conceptual difficulties on functional group
12 detection under organic qualitative analysis. The study adopted convergent mixed methods
13 procedures to collect both quantitative and qualitative data from 47 chemistry teachers. The
14 47 teachers were sampled through multistage sampling procedures to respond to the Organic
15 Qualitative Analysis Diagnostic Test for Teachers. The quantitative data was analyzed using
16 means, standard deviations, and percentages to reflect no scientific understanding, partial
17 scientific understanding, and scientific understanding of functional group detection. The
18 qualitative data was open-coded and constantly compared to established teachers' alternative
19 conceptions and factual difficulties on functional group detection.

20

21 **Index terms**— alternative conceptions; factual difficulties; functional groups; teachers.

22 **1 Introduction**

23 nalysis of chemical compounds is one of the areas under chemistry that is classified into two categories. The
24 two categories are quantitative analysis and qualitative analysis. The quantitative analysis finds the amounts
25 of each atom of element or group present in a given solution whereas, the qualitative analysis finds the type of
26 each atom of element or group present in a given sample of solution (Matthews, 2011). The qualitative analysis
27 deals with the detections and identification of elements or group of atoms of elements present in a given solution.
28 This qualitative analysis is also classified into two categories: an inorganic qualitative and organic qualitative
29 analysis. The inorganic qualitative analysis is used to detect the presence of inorganic ions (anions and cations),
30 and gases or compounds in an unknown sample, whereas organic qualitative analysis is used to establish the
31 presence or absence of particular functional groups as specified in the Ministry of Education [MOE] (2010)
32 curriculum. According to Cooley and Williams (1999), qualitative analysis is of relevance and importance to
33 learning chemistry as it improves students' chemistry concepts understanding. The qualitative analysis increases
34 the conceptual understanding of chemical principles and the interactions of matter and its application in our
35 daily lives. The qualitative analysis concepts are difficult for students to learn as their understanding requires
36 process skills and an understanding of many chemistry concepts (Goh, Toh, & Chia, 1987).

37 Organic chemistry is part of senior high school chemistry as its concepts are applied in our everyday lives
38 (Yong, 1994). From the food we consume, dyes applied in our hair color, a medication used to treat sickness,
39 and our everyday lives are rooted in core organic chemical processes (Rice, 2016). These applications of organic
40 chemistry in our daily lives and the need for scientific progress necessitate constant attention to education in the
41 field. Organic compounds have unique groups called functional groups. "Functional groups are individual atoms
42 or groupings of atoms that are attached to the carbon chains or rings of organic molecules and give the molecules
43 their characteristic properties" (Petrucci, Herring, Madura, & Bissonnette, 2017, pp. 96.97). Functional group

1 INTRODUCTION

44 detection is a key in learning organic chemistry and that of organic qualitative analysis. Functional groups in
45 organic chemistry at the senior high school level are hydrocarbons (alkanes, alkenes, alkynes, and benzene),
46 alcohols (?????); aldehydes (??????); ketones (?? = ??); carboxylic acids (? ???????); esters (? ?????? ?);
47 and amides (? ??????? 2) (MOE, 2010). Functional group categorization is a common feature used by both
48 higher and lower ability students for classifying organic compounds (Domin, Al-Masum, & Mensah, 2008; Hassan,
49 Hill, & Reid, 2004). However, the categorization of organic compounds using functional groups is a difficulty
50 for students. A study by Strickland, Kraft, and Bhattacharyya (2010) pointed out that many organic chemistry
51 students could not explain vividly functional groups. To the students, all organic compounds appear to be very
52 similar, as a molecule composed of carbon, hydrogen, and oxygen.

53 According to O'Dwyer and Childs (2017), research studies comparing teachers' and learners' perspectives of
54 organic chemistry are rare. Teachers often struggle to make students aware of these due to their complexities.
55 This, perhaps, a contributing factor for many of studies, which identify students' and teachers' perception of
56 organic chemistry as one of the most difficult areas of chemistry (Childs & Sheehan, 2009; Greenbowe & Schroeder,
57 2008). Chemistry concepts are related to the structure of matter, which is difficult for many students because
58 chemistry curricula commonly incorporate many abstract concepts, which are central to further learning in both
59 chemistry and other sciences (Taber, 2002). These abstract concepts are relevant because chemistry concepts or
60 theories cannot be understood without these concepts insufficiently grasped by students (Coll & Treagust, 2001).
61 This abstract nature of chemistry, along and other content learning difficulties, means that chemistry contents
62 require a high-level skill set (Taber, 2002). Schwartz (1993) stated that, an aspect of acquiring new knowledge
63 is comprehending the relationships between various related concepts. Likewise, Deci, Vallerand, Pelletier, and
64 Ryan (1991) reported that learning is a combination of conceptual understanding and flexible use of knowledge.
65 In this sense, modern teaching approaches indicate that permanent learning of chemistry concepts depends on
66 the conceptual understanding of the teacher and the learner (Simsek, 2009). This implies that when concepts
67 are used accurately and conveniently to establish relationships, these concepts are properly learned, the effective
68 acquisition of knowledge is achieved. The problems that emerge when a relationship is not established between
69 the concepts cause not only a failure in learning but also lead to alternative conceptions (Nakhleh, 1992).

70 Conceptual understanding is generally learning with understanding (Driver, Asoko, Leach, Scott, & Mortimer,
71 1994). It is often contrasted with declarative knowledge learning, where the learner simply memorizes a
72 relationship between things, events, or processes (Darmofal, Soderholm, & Brodeur, 2002). To many, conceptual
73 understanding entails just more than rote memorization of relationships; but requires the ability to apply previous
74 learning across some kind of previously unexpected experiences (Smith & Ragan, 1999). Unless prior knowledge
75 is properly associated with new knowledge, learners may fail to correctly grasp new concepts, and this impedes
76 meaningful learning (Bodner, 1986).

77 An awareness of the fact that alternative conceptions prevent meaningful learning has paved the way for studies
78 that determine students' levels of conceptual understanding in science concepts including, those of chemistry
79 (Adu-Gyamfi & Ampiah, 2019; Adu-Gyamfi, Ampiah, & Agyei, 2015). Conceptual understanding can promote
80 students' learning and thus, has become an area of interest for educational research. Gaining insights into
81 students' existing conceptions might help educators design effective teaching approaches targeting conceptual
82 understanding. Determination of teachers and students' conceptual level in functional groups detection might
83 also help educators in selecting the more effective teaching strategy that promotes conceptual understanding
84 (Özkaya, Üce, Saricayir, & Sahin, 2006).

85 Conceptual understanding is an important goal in learning in general but is particularly relevant in science
86 education because such understanding is required to make sense of scientific phenomena. To understand means
87 being able to construct meaningful knowledge, interpret and explain (Anderson, Krathwohl, & Bloom, 2001).
88 Students taught to develop a conceptual understanding will be more proficient at problem-solving, abstract
89 reasoning, applying their knowledge to new situations, and more likely to connect to related information (Ormrod,
90 1999).

91 Sadler, Sonnert, Coyle, Cook-Smith, and Miller (2013) found that teachers' conceptual understanding of science
92 concepts, to extent, influences students' conceptual understanding of the concept taught. Hence, teachers' content
93 knowledge greatly improves students' understanding of science concepts and reduces alternative conceptions
94 among students. Studies that rigorously investigate the relationship between teachers' knowledge and their
95 students' gains in understanding of science concepts are rare (Baumert et al., 2010). Teachers' content knowledge
96 potentially affects their choice of instructional practice and their students' achievement gains (Hill, Rowan, &
97 Ball, 2005). It is found that science teachers with strong content knowledge can better communicate scientific
98 concepts and ideas and are skillfully able to engage students in the content (Ball, Thames, & Phelps, 2008).
99 Teachers with inadequate content knowledge mostly misrepresent the content to their students, resulting in
100 students developing alternative conceptions (Ball et al., 2008).

101 In Ghana, the WAEC Chemistry Chief Examiner's reports have repeatedly identified weakness of most
102 students in functional group detection under organic chemistry both in practical or theory examination ??WAEC,
103 2001;2005;2007;2012;2014;2016;2017;. These reports suggest that SHS chemistry students have challenges with
104 the conceptual understanding of functional group detection. However, the reports were not clear about the
105 nature of the challenge and whether there was a problem with the teaching and learning. It was, therefore,
106 necessary to investigate whether chemistry teachers teaching functional groups through qualitative analysis in

107 Ghanaian senior high schools had conceptual difficulties on the concept and hence, their inability to help their
108 students develop the scientific conception of functional groups. Johnston (2005) opined that what is simple to
109 the chemistry teacher may not be so for the learner. Teachers with a better understanding of their learners'
110 cognition should be better able to adapt their lessons to facilitate a more holistic understanding of the content
111 (Azuka, Duruajaye, Okwuosa, & Jekayinka, 2013; Ogembol, Otunga, & Yaki, 2015; Unanma, Abugu, Dike,
112 & Umeobika, 2013). The teaching and learning process of science depends on the nature and structure of the
113 discipline. Ferguson & Bodner (2008) asserted that teachers should understand the nature of their content and
114 that teachers' understanding of that will influence the way they teach, and consequently the way their learners
115 learn the content (Childs & Sheehan, 2009; Simsek, 2009; Tatli & Ayas, 2013). Hence, the nature of the content
116 also influences the way the subject is taught and learned. Innovative learning strategies, therefore could be used
117 by teachers at all levels of chemistry education to enhance students' learning of chemistry (Eybe & Schmidt,
118 2004) ?? 2006). This is because those teachers could provide students with opportunities to develop a deep
119 understanding of concepts, internalize the concepts, and develop complex cognitive structures for connections to
120 other bodies of knowledge. Taber (2011) reiterated that a good number of students make meaning of concepts in
121 more or less similar ways as they are taught by their teachers. Hence, to investigate what is being learned, it is
122 equally important to know the teacher's knowledge of a specific content; and the need for this current research.

123 Juri?evi?, Gla?ar, Pu?ko, and Devetak (2008) found that teachers undergoing training in the colleges and
124 universities have conceptual difficulties with regards to learning of chemistry, and this greatly influences their
125 future teaching. Chemistry teachers' difficulties in chemistry concepts are potentially transferable to their
126 students, which mostly results in learners' misconceptions about chemistry (Chavan, 2017). Therefore, chemistry
127 teachers should be well equipped with the subject matter to help teach students true conception and avoid
128 misconceptions (Arokoyo & Amadi, 2018; Delmang & Gongden, 2016) on functional groups.

129 **2 II.**

130 **3 Research Design**

131 The convergent mixed methods design procedures (Creswell & Plano Clark, 2018) were adopted to investigating
132 whether teachers demonstrate conceptual difficulties in teaching organic functional group detection to their
133 SHS students. A diagnostic test was used through a cross-sectional survey to collect both quantitative and
134 qualitative data on teacher conceptual difficulties on functional group detection. From the diagnostic test,
135 the performance of teachers was analyzed using means, standard deviations, and percentages. This helped
136 to determine whether teachers demonstrated full scientific understanding, partial scientific understanding, or
137 no scientific understanding. After that we thematically analyzed the qualitative data to investigate whether
138 teachers had conceptual difficulties when they demonstrated any partial scientific understanding of functional
139 group detection. The quantitative and qualitative aspects were merged through discussion to investigate whether
140 chemistry teachers had conceptual difficulties on functional groups detection they teach students.

141 **4 III.**

142 **5 Sampling Procedure**

143 The research was carried out in the Central Region of the Republic of Ghana. Central Region was selected by the
144 researchers for the study due to the school types, proximity, and researchers' familiarity within the area. There
145 were 68 senior high schools in this region during the 2019/2020 academic year when the research was carried
146 out. The 68 schools were stratified into six Class A schools, 18 Class B schools, and 32 Class C schools. Of the
147 68 schools, 55 offered students chemistry as one of their elective subjects. From the 55 schools, 18 were selected
148 through the simple random procedures for Classes B and C schools and the purposive procedures for the Class
149 A schools. That is, six schools each from the three classes of the school. However, during the period of the data
150 collection, only 12 schools were available due to COVID-19 related issues and protocols. It was estimated that
151 there were nine teachers teaching chemistry in the 12 schools giving an accessible population of 108 teachers.
152 All chemistry teachers who had once taught organic chemistry and were willing and ready to respond to the
153 diagnostic test were purposively selected for the research. The purposive selection of the teachers was because
154 their experiences immensely contributed to the research. In all, 47 teachers were involved from the 12 schools.

155 **IV.**

156 **6 Data Collection Instrument**

157 The diagnostic test, Organic Qualitative Analysis Diagnostic Test for Teachers (OQADTT), was in two sections.
158 Section A sought for biodata of teachers: age, sex, class of the school, and teaching experience. Section B was
159 made of nine two-tier four-option multiple-choice test items. Teachers were required to correctly respond to each
160 item by selecting one of the four options with a reason. The reason provided for selecting a particular option
161 helped to explore the conceptual understanding of teachers. The other two tests items were not multiple-choice but
162 essay-type. The essay-type items involved the detection and analysis of functional groups with organic reagents.

11 RESULTS

163 Here, teachers' conceptual understanding and difficulty in conceptualizing functional groups were explored. That
164 is, their ability to:

- 165 1. Identify some functional groups like alkenes, alkynes, alkanols, benzene, alkanoic acids, and alkyl alkanoates.
- 166 2. Write observation that will be envisaged when known oxidizing and reducing agents reacts with certain organic
167 compounds.

168 Test items on OQADTT were constructed by the researchers. In designing the test, the researchers compared
169 the items to standardized questions on functional group detections and organic reactions in chemistry textbooks
170 and questions set by the WAEC for the West African Secondary School Certificate Examinations. The purpose
171 of the comparison was to ensure the content validity of OQADTT. To also ensure face validity of the instrument,
172 OQADTT was shown to two colleague chemistry teachers of author1 and a colleague science educator of author2
173 for expert advice and critique on the content. The face validity helped improve the quality of OQADTT items
174 before they were pilot-tested with ten teachers from senior high schools in the Sekondi-Takoradi Metropolis of the
175 Western Region. The pilot-testing of OQADTT helped determine the difficulty and discrimination indices of the
176 test items, which in turn helped improve the internal consistency of the instrument. Item 20 was modified into an
177 alkanol undergoing a complete oxidation reaction to form alkenone. Items 5, 7, 8, 9, 13, 17, and 18 were deleted
178 as they had similarities with the measurement of benzene, alkanols, amides, alkanoic acids, combustion reactions
179 of hydrocarbons, alkenes, and aldehydes, respectively on the essay-type items. The calculated Kuder-Richardson
180 (KR) 21 coefficient of reliability was 0.74 after we deleted the seven items.

181 V.

182 7 Data Collection Procedure

183 The research instrument (OQADTT) was administered by the researchers. During the administration of
184 OQADTT, a brief discussion on the purpose of the research was held between the researchers and teachers.
185 The briefing helped the research a lot as teachers appreciated the need to participate. After the briefing sessions,
186 researchers found out if chemistry teachers have covered enough on organic chemistry in each school and that
187 if they have been teaching organic chemistry in the last five years. The selected schools and teachers who had
188 not covered enough were exempted from the research. Other schools were made to replace those selected but
189 exempted schools. In all, it took four weeks to administer OQADTT.

190 8 VI.

191 9 Data Processing and Analysis

192 Each specific concept on OQADTT scores two marks, and this gave a total of 18 scores for the nine items. The
193 two essay-type items had 13 specific concepts that gave a total of 26 scores. The total score from OQADTT was
194 expected to be 44. The structure of the level of understanding informing the scores was adapted from previous
195 research in the area of conceptual understanding ??Ültay & Qalik, 2016) and modified to suit this research. The
196 three levels of conceptual understanding were; 1. A full scientific understanding was the first level that went with
197 correct content and reason responses; being two scores, 2. A partial scientific understanding was the second level
198 that went with correct responses for either content or reason but not both; being one score, and 3. A no scientific
199 understanding was the third level with incorrect responses for both content and reason; being zero score.

200 We used means, standard deviations, and percentages to analyze the data. A mean between 0.0 to 0.49 was
201 considered a no scientific understanding, between 0.50 and 1.49 as a partial scientific understanding, and between
202 1.50 and 2.0 as a full scientific understanding. For the qualitative aspect, the explanations given by the selected
203 teachers for any content response were open-coded and constantly compared. We then made meanings of them
204 to develop themes to present any conceptual difficulties teachers had on organic functional group detection.

205 10 VII.

206 11 Results

207 To provide the answers on whether chemistry teachers teaching functional groups through qualitative analysis
208 do demonstrate conceptual difficulties, we first investigated their levels of conceptual understanding. This was
209 important as we needed to appreciate whether teachers demonstrated partial scientific understanding of functional
210 group detection and to be able to investigate their conceptual difficulties. The results are presented in Table 1.
211 In general, teachers demonstrated partial scientific understanding on functional group detection. This is because
212 the mean scientific understanding of teachers on all items was 1.00 (SD = 0.894). For instance, to ascertain that
213 propane readily dissolves in tetrachloromethane, Item 6 was used. The results from Table 1 show that 21.3% of
214 the teachers at a mean of 1.28 (SD=0.852) demonstrated a partial scientific understanding of the concept. This
215 indicates that 25.5% teachers had no scientific understanding, and 53.2% had a full understanding of the concept.
216 Hence, teachers have a partial scientific understanding that propane readily dissolves in tetrachloromethane. To
217 ascertain that alkenes and alkynes are organic compounds that usually undergo addition reactions, Item 5 was
218 used. The results show that 27.7% of the teachers at a mean of 1.47 (SD=0.718) demonstrated a partial scientific
219 understanding of the concept. This indicates that 12.8% teachers had no understanding and 59.6% had a full

220 scientific understanding of the concept. Hence, teachers have a partial scientific understanding that alkenes and
221 alkynes are organic compounds that usually undergo addition reactions. On Item 10, the results show that
222 36.2% of the teachers at a mean of 1.43 (SD=0.683) demonstrated a partial scientific understanding on the fact
223 that ethene decolorizes both Br_2/CCl_4 and acidified KMnO_4 . This indicate that 53.2% of the teachers
224 fully understood and 10.6% had no understanding on the concept. Hence, teachers have a partial scientific
225 understanding that ethene is an organic compound that decolorizes both Br_2/CCl_4 and acidified KMnO_4 . On
226 Item 12, the results show that 31.9% of the teachers at a mean of 0.70 (SD=0.778) demonstrated a partial scientific
227 understanding that propene gives a brown color solution with alkaline potassium tetraoxomanganate(VII). This
228 indicates that 48.9% teachers had no understanding and 19.1% had a full scientific understanding of the concept.
229 Hence, teachers have a partial scientific understanding that propene gives brown colour solution with alkaline
230 potassium tetraoxomanganate (VII).

231 On Item ?14B that investigated conceptual understanding of the formation of propene from the dehydration
232 of propanol using concentrated tetraoxosulphate(VI) acid, none of the teachers at a mean of 0.89 (SD=1.005)
233 demonstrated a partial scientific understanding, and 46.8% had no scientific understanding, and 53.2%
234 demonstrated a full scientific understanding. Hence, teachers have no partial scientific understanding but
235 a full understanding that propene is formed when propanol is dehydrated in the presence of concentrated
236 tetraoxosulphate(VI) acid and heat. To ascertain that an alkene functional group is present in propene, Item
237 ?14B was used. The results show that none of the teachers at a mean of 0.94 (SD=1.009) demonstrated
238 a partial scientific understanding. This indicates that 46.8% teachers fully understood and 53.2% teachers
239 did not understand the concept. Hence, teachers have no partial scientific understanding but a full scientific
240 understanding that an alkene functional group is present in propene. On Item 15? that investigated dehydration
241 as a type of chemical reaction involved in the conversion of propanol to propene, the results show none of
242 the teachers at a mean of 1.02 (SD=1.011) demonstrated a partial scientific understanding, but 51.1% fully
243 understood. and 48.9% demonstrated no scientific understanding of the concept. Hence, teachers demonstrate
244 no partial understanding but a full understanding that dehydration is the type of chemical reaction involved in
245 the conversion of propanol to propene.

246 To ascertain that 2-butyne is unsaturated and will decolorizes bromine solution, Item 18 was used. The results
247 show that 40.4% of the teachers at a mean of 0.66 (SD=0.700) demonstrated a partial scientific understanding
248 of the concept. This indicates that 46.7% of teachers had no scientific understanding and 12.8% of teachers had
249 full scientific understanding of the concept. Hence, teachers have a partial scientific understanding that 2-butyne
250 is unsaturated and can decolorize bromine solution. On Item 8, the results show that 36.2% of the teachers at a
251 mean of 1.43 (SD=0.683) demonstrated a partial scientific understanding that complete hydrogenation of benzene
252 gives cyclohexane. This indicates that 10.6% of teachers had no scientific understanding and 53.2% of teachers
253 had full scientific understanding of the concept. Hence, teachers have a partial scientific understanding that
254 complete hydrogenation of benzene gives cyclohexane. On Item 21, the results show that 14.9% of the teachers
255 at a mean of 0.96 (SD=0.932) demonstrated a partial scientific understanding that either bromine solution or
256 acidified KMnO_4 is used to distinguish between benzene and ethene. This indicates that 44.7% of teachers had
257 no scientific understanding and 40.4% of teachers fully understood the concept. Hence, teachers have a partial
258 scientific understanding that either bromine solution or acidified KMnO_4 is used to distinguish between benzene
259 and ethane.

260 In the area of detection of a functional group of alkanols, the results on Item 9 show that 38.3% of the
261 teachers at a mean of 0.98 (SD=0.794) demonstrated a partial scientific understanding that secondary alkanol
262 undergoes a complete oxidation reaction to produce an alkenone. This indicate that 29.8% of teachers fully
263 understood and 31.9% of teachers had no scientific understanding of the concept. Hence, teachers have a partial
264 scientific understanding that secondary alkanol undergoes a complete oxidation reaction to produce an alkenone.
265 To ascertain that ethanol and propanoic acid are produced when ethyl propanoate undergoes acid hydrolysis,
266 Item ?14D was used. The results show that none of the teachers at a mean of 1.02 (SD=1.011) demonstrated a
267 partial scientific understanding. This indicates that 48.9% teachers had no scientific understanding and 51.1% of
268 teachers had full understanding of the concept. Hence, teachers have no partial scientific understanding, but a
269 full scientific understanding that ethanol and propanoic acid are produced when ethyl propanoate undergoes acid
270 hydrolysis. On Item ?14D, the results show that none of the teachers at a mean of 0.89 (SD=1.005) demonstrated
271 a partial scientific understanding of the fact that alkanol and alkanoic acid functional groups are present when
272 ethyl propanoate undergoes acid hydrolysis. This indicates that 44.7% of teachers fully understood, and 55.3% of
273 teachers had no scientific understanding of the concept. Hence, teachers have no partial scientific understanding,
274 but a full scientific understanding that alkanol and alkanoic acid functional groups are present when ethyl
275 propanoate undergoes acid hydrolysis. To ascertain that that oxidation is the type of chemical reaction involved
276 in the conversion of propanol to propanoic acid, Item 15? was used. The results show that none of the teachers
277 at a mean of 1.23 (SD=0.983) demonstrated partial scientific understanding of the concept. This indicates that
278 most (61.7%) teachers had full scientific understanding, and 38.3% of teachers had no understanding of the
279 concept. Hence, teachers demonstrate no partial scientific understanding but a full scientific understanding that
280 oxidation reaction occurs in the conversion of propanol to propanoic acid. On Item 16, the results show that
281 36.2% of the teachers at a mean of 0.62 (SD=0.709) demonstrated partial scientific understanding of the fact
282 that an alkanol reacts with yellow-colored potassium heptaoxodichromate (VI) solution and changes it to green.

11 RESULTS

283 This indicates that 12.8% of teachers fully understood, and 51.1% of teachers demonstrated no understanding of
284 the concept. Hence, teachers have a partial scientific understanding that an alkanol reacts with yellow-colored
285 potassium heptaoxodichromate (VI) solution and changes it to green. On Item 20, the results show that none
286 of the teachers at a mean of 0.85 (SD=1.000) demonstrated a partial scientific understanding of the concept.
287 This indicates that 57.4% of teachers demonstrated no scientific understanding, and 42.6% of teachers had full
288 understanding on the concept. Hence, teachers demonstrate no partial scientific understanding but a full scientific
289 understanding that yellow precipitate is formed when an alkanol is treated with a hot solution of iodine in sodium
290 hydroxide.

291 In the area of detection of a functional group of alkanoic acids, Item 11 was used to investigate whether
292 hydrogen gas is liberated when alkanoic acid reacts with sodium metal. The results from Table 1 show that 40.4%
293 of the teachers at a mean of 1.30 (SD=0.720) demonstrated a partial scientific understanding on the concept. This
294 indicates that 14.9% of teachers demonstrated no scientific understanding, and 44.7% of teachers demonstrated a
295 full scientific understanding of the concept. Hence, teachers demonstrate a partial scientific understanding that
296 hydrogen gas is liberated when alkanoic acid reacts with sodium metal. On Item 13, the results show that 27.7% of
297 the teachers at a mean of 1.00 (SD=0.860) demonstrated a partial scientific understanding of a complete oxidation
298 of propanol to propanoic acid. This indicates that 36.2% of teachers demonstrated no scientific understanding,
299 and 36.2% of teachers fully understood the concept. Hence, teachers have a partial scientific understanding that a
300 complete oxidation of propanol in the presence of oxidizing agents such as potassium heptaoxodichromate (IV) and
301 heat produces propanoic acid. To ascertain whether teachers understand that propanoic acid is produced when
302 propanol undergoes oxidation reaction in the presence of acidified potassium dichromate (VI), Item ?14A was
303 used. The results show that none of the teachers at a mean of 1.06 (SD=1.009) demonstrated a partial scientific
304 understanding of the concept, 46.8% of teachers demonstrated no scientific understanding, and 53.2% of teachers
305 had a full scientific understanding of the concept. Hence, teachers have no partial scientific understanding,
306 but a full understanding that propanoic acid is produced when propanol undergoes oxidation reaction in the
307 presence of acidified potassium dichromate(VI). On Item ?14E, the results show that none of the teachers at
308 a mean of 0.98 (SD=1.011) demonstrated a partial scientific understanding, 51.1% of teachers, no scientific
309 understanding, and 48.9% of teachers fully understood the concept. Hence, teachers have no partial scientific
310 understanding, but a full scientific understanding that both ethanol and propanoic acid are produced when ethyl
311 propanoate undergoes acid hydrolysis. On Item ?14A, the results show that none of the teachers at a mean of 1.02
312 (SD=1.011) demonstrated a partial scientific understanding on the fact that an alkanoic acid functional group
313 is present when propanol undergoes oxidation reaction in the presence of acidified potassium dichromate(VI),
314 48.9% of teachers demonstrate no scientific understanding, and 51.1% of teachers had a full understanding of
315 the concept. Hence, teachers have no partial scientific understanding, but a full scientific understanding that
316 an alkanoic acid functional group is present when propanol undergoes oxidation reaction in the presence of
317 acidified potassium dichromate(VI). On Item ?14E, the results show that none of the teachers at a mean of
318 0.85 (SD=1.011) demonstrated a partial scientific understanding of the fact that both alkanol and alkanoic acid
319 functional groups are present when ethyl propanoate undergoes acid hydrolysis. This indicates that 57.4 % of
320 teachers demonstrated no scientific understanding, and 42.6% of teachers fully understood the concept. Hence,
321 teachers have no partial scientific understanding, but a full understanding that both alkanol and alkanoic acid
322 functional groups are present when ethyl propanoate undergoes acid hydrolysis. On Item 19, the results show
323 that none of the teachers at a mean of 0.98 (SD=1.011) demonstrated a partial scientific understanding of the
324 fact that carbon(IV) dioxide is evolved when propanoic acid reacts with sodium hydrogenglucoxocarbonate(IV),
325 51.1% of teachers demonstrated no scientific understanding, and 48.9% of teachers fully understood the concept.
326 Hence, teachers have no partial scientific understanding, but a full understanding that carbon (IV) dioxide is
327 evolved when propanoic acid reacts with sodium hydrogenglucoxocarbonate(IV).

328 In the area of detection of a functional group of alkyl alkanoates, Item 7 investigated whether teachers
329 scientifically understand that ethyl methanoate is an ester and sweet-scented. The results show that 27.7%
330 of the teachers at a mean of 1.47 (SD=0.718) demonstrated a partial understanding of the concept, 12.8% of
331 teachers have no scientific understanding, and 59.6% of teacher fully understood the concept. Hence, teachers
332 demonstrate partial scientific understanding that ethyl methanoate is an ester, and hence, is sweetscented. On
333 Item ?14C, the results from Table 1 show that none of the teachers at a mean of 0.94 (SD=1.009) demonstrated
334 a partial scientific understanding, 55.3% of teachers demonstrated no understanding, and 44.7% of teachers fully
335 understood that ethyl propanoate is produced when propanoic acid reacts with ethanol. Hence, teachers have no
336 partial understanding, but a full scientific understanding that ethyl propanoate is produced when propanoic acid
337 reacts with ethanol. On Item ?14C, the results show that none of the teachers at a mean of 0.72 (SD=0.971)
338 demonstrated a partial scientific understanding of the fact that an alkyl alkanoate functional group is present
339 in a product formed from chemical reaction between propanoic acid and ethanol. This indicates that 63.8% of
340 teachers demonstrated no scientific understanding, and 36.2% of teachers fully understood the concept. Hence,
341 teachers have no a partial understanding, but a full understanding that an alkyl alkanoate functional group is
342 present in a product formed from chemical reaction between propanoic acid and ethanol. On Item 15?, the results
343 show that none of the teachers at a mean of 1.02 (SD=1.011) demonstrated a partial scientific understanding of
344 the fact that the conversion of propanol to ethyl propanoate is an esterification. This indicates that 48.9% of
345 teacher demonstrated no scientific understanding, and 51.1% of teachers fully understood the concept. Hence,

346 teachers have no partial understanding, but a full scientific understanding that the type of chemical reaction
347 involved in converting propanol to ethyl propanoate is an esterification.

348 In the area of an amide functional group detection, Item 17 was used. The results show that 23.4% of the
349 teachers at a mean of 0.83 (SD=0.868) demonstrated a partial scientific understanding of the concept. This
350 indicates that 46.8% of teachers demonstrated no scientific understanding, and 29.8% of teachers had a full
351 understanding of the concept. Hence, teachers have a partial scientific understanding that ammonia gas is
352 evolved when an amide is warmed with dilute sodium hydroxide solution.

353 In the area of the carbonyl groups, Item 22 was used to investigate whether teachers have an understanding
354 that the ammoniacal silver nitrate or Fehling's solution is used to distinguish between alkanals and alkenones.
355 The results from Table 1 show that only 4.3% of the teachers at a mean of 0.51 (SD=0.856) demonstrated partial
356 understanding of the concept. This indicates that 72.3% of teachers demonstrated no scientific understanding,
357 and 23.4% of teachers had fully understood the concept. Hence, teachers have a partial understanding that either
358 the ammoniacal silver nitrate or Fehlings solutions can be used to distinguish between alkanals and alkenones.

359 To further investigate the conceptual difficulties teachers may have on teaching organic functional group
360 detection to students, the explanation aspects of the teachers who demonstrated partial scientific understanding
361 were examined. This was important as it helps identify any alternative conceptions and other factual difficulties
362 teachers had on functional group detection. For instance, Item 5 was less difficult for teachers with an index
363 of 0.87. Of the 47 teachers, none of them demonstrated any alternative conceptions, but 27.66% of teachers'
364 explanations were in the category of factual difficulties relating to alkenes and alkynes undergoing an addition
365 reaction. The evidence of factual difficulties in a teacher's explanations is:

366 **12 Factual**

367 difficulties: teachers explained that hydrocarbons undergo an addition reaction. An excerpt is:
368 alkenes and alkynes are hydrocarbons hence undergo addition reactions (Teacher, 23). Also, Item 6
369 was less difficult for teachers with an index of 0.74. Of the 47 teachers, an equal proportion (14.93%) of
370 teachers' explanations were alternative conceptions and factual difficulties relating to propane readily dissolves
371 in tetrachloromethane, but not alkene and alkyne molecules. The evidence of alternative conceptions and factual
372 difficulties is:

373 Alternative conceptions: alkenes and alkynes are polar compounds and thus, decolorize polar tetrachloromethane. An excerpt is:

375 alkenes and alkynes are polar compounds thus decolorize polar tetrachloromethane" (Teacher, 6).

376 **13 Both alkenes and alkynes are polar ? the reason why they 377 can decolorize tetrachloromethane (Teacher, 17).**

378 Factual difficulties: alkenes and alkynes usually undergo an addition reaction because the pi bonds in the carbon-
379 carbon multiple bonds are very strong to break by tetrachloromethane solution. An excerpt is:

380 alkenes and alkynes undergo an addition reaction because pi bonds in the carbon-carbon double and triple
381 bonds are strong hence unreactive to polar tetrachloromethane (Teacher, 42).

382 Item 8 was less difficult for teachers with an index of 0.87. Of the 47 teachers, an equal proportion (25.37%)
383 of teachers' explanations were categorized into alternative conceptions and conceptual difficulties. The evidence
384 of alternative conceptions and factual difficulties is:

385 Alternative conceptions: hydrogenation of benzene produces cycloalkane compounds. An excerpt is: benzene
386 hydrogenate to produce cyclohexane because benzene is a cyclic compound with double bonds between each other
387 carbon atoms ??Teacher,31).

388 ? when hydrogen is added to benzene, the double bonds break and cyclohexane is formed (Teacher, 10).

389 Factual difficulties: Some teachers simply mentioned that benzene hydrogenates to form hexane with no scientific
390 explanation. An excerpt is: complete hydrogenation of benzene produces hexane ??Teacher,24). Benzene is
391 hydrogenated to form hexane (Teacher, 33).

392 Item 10 was less difficult for teachers with an index of 0.89. Of the 47 teachers, an equal proportion (36.17%)
393 of teachers' explanations were alternative conceptions and factual difficulties, respectively, relating to ethene
394 decolorizes both Br₂ /CCl₄ and acidified KMnO₄. The evidence of alternative conceptions and factual
395 difficulties is:

396 Alternative conceptions: (i) ethane is saturated and hence, decolorizes Br₂ /CCl₄ and acidified KMnO₄ .

397 **14 Excerpts are:**

398 Ethane is an alkane, and being saturated molecule changes (Br₂ /CCl₄) and acidified (KMnO₄) solutions
399 white ppt (Teacher, 25).

400 Ethane is saturated and all saturated organic compounds change the color of acidified KMnO₄ (Teacher, 6).

401 (ii) propane to decolorize Br₂ /CCl₄ and acidified KMnO₄ . An excerpt is:

402 propane changes Br₂ /CCl₄ and acidified KMnO₄ to colorless (Teacher, 12). Factual difficulties: some
403 of the teachers could only restate that ethene changed (Br₂ /CCl₄) and acidified (KMnO₄) solutions

14 EXCERPTS ARE:

404 with no justification for the process. The excerpts are: ? ethene is the compound as it changes color of (Br
405 2 /CCl 4) and acidified (KMnO 4) solutions ??Teacher,39). ethene changes color of (Br 2 /CCl 4) and
406 acidified (KMnO 4) solutions ??Teacher,46). Item 12 was difficult for teachers with an index of 0.51. Of the
407 47 teachers, 31.91% of teachers' explanations were alternative conceptions with no factual difficulties relating to
408 propene gives brown color solution with alkaline potassium tetraoxomanganate(VII). The evidence of alternative
409 conceptions is: Item 18 was moderately difficult for teachers with an index of 0.53. Of the 47 teachers, 19.15%
410 of teachers' explanations were alternative conceptions and 21.28% were factual difficulties relating to 2-butyne
411 is unsaturation and thus, decolorizes bromine solution. The evidence of alternative conceptions and factual
412 difficulties is:Alternative conceptions: (i)

413 Alternative conceptions: (i) 2-butyne is an alkane and thus decolorizes bromine solution. An excerpt is: alkane
414 such as 2-butyne decolorizes bromine solution (Teacher, 19). Factual difficulties: some teachers did not know
415 that 2butyne is an unsaturated hydrocarbon. An excerpt is: 2-butyne contains alkanoic functional group acid;
416 hence, changes color of bromine solution to colorless ??Teacher,35).

417 Also, Item 21 was moderately difficult for teachers with an index of 0.55. Of the 47 teachers, 19.15% of
418 teachers' explanations were alternative conceptions and 2.13% were factual difficulties relating to bromine solution
419 or acidified KMnO 4 used to distinguish between benzene and ethene. The evidence of alternative conceptions
420 and factual difficulties is:

421 Alternative conceptions: (i) bromine atom is used to distinguish between benzene and ethene. An excerpt is:
422 benzene and ethene is differentiated using bromine atom (Teacher, 3). the bromine atom in bromine solution can
423 be used to differentiate ethene and benzene (Teacher, 17). Factual difficulties: (i) some teachers did not know
424 that indicators are not reagents for detection of functional groups, but that of titration. An excerpt is: benzene
425 changes phenolphthalein from colorless to pink but ethene is unreactive to phenolphthalein (Teacher, 8).

426 Item 9 was less difficult for teachers with an index of 0.68. Of the 47 teachers, 38.30% of teachers' explanations
427 were alternative conceptions with no factual difficulties relating to secondary alkanol undergoes a complete
428 oxidation to produce an alkenone. The evidence of alternative conceptions is:

429 Alternative conceptions: (i) the presence of the two hydroxyl groups on secondary alkanols oxidize completely
430 to produce ketones. An excerpt is:

431 secondary alkanols undergo complete oxidation to produce alkenone because in secondary alcohols there are
432 two hydroxyl (-OH) groups present hence forming an alkenone" (Teacher, 12).

433 usually for secondary alcohols the hydroxyl groups are two on the carbon giving alkenone on complete oxidation
434 (Teacher, 5).

435 Factual difficulties: (i) some teachers only stated that secondary alkanols can form alkenones with no further
436 explanation. An excerpt is: Secondary alkanols can form alkenones (Teacher, 28).

437 Item 16 was very difficult for teachers with an index of 0.43. Of the 47 teachers, 21.28% of teachers' explanations
438 were alternative conceptions and 14.89% were factual difficulties relating to alkanol reacts with a yellow color
439 potassium heptaoxodichromate(VI) solution, and changes it to green. The evidence of alternative conceptions
440 and factual difficulties is:

441 Alternative conceptions: (i) alkanols react with yellow potassium heptaoxodichromate(VI) solution to form
442 white precipitate. An excerpt is:

443 alkanol react with yellow color of potassium heptaoxodichromate(VI) solution to form a white precipitate
444 (Teacher, 5). Items 11 was less difficult for teachers with an index of 0.83. Of the 47 teachers, 40.43% of teachers'
445 explanations were alternative conceptions without any factual difficulties relating to hydrogen gas is liberated
446 when alkanoic acid reacts with sodium metal. The evidence of alternative conceptions is:

447 Alternative conceptions: (i) a black precipitate is formed when alkanoic acid reacts with sodium metal. An
448 excerpt is: propanoic acid reacts with sodium metal to produce black precipitate (Teacher, 16).

449 (ii) carbonyl group reacts with sodium metal to liberate a hydrogen gas. An excerpt is: a hydrogen gas is
450 liberated when alkanals reacts with sodium metal (Teacher, 32). Item 13 was moderately difficult for teachers
451 with an index of 0.64. Of the 47 teachers, 27.66% of teachers' explanations were alternative conceptions without
452 any factual difficulties relating to a complete oxidation of propanol produces propanoic acid. The evidence of
453 alternative conceptions is:

454 Alternative conceptions: complete oxidation of propanol produces propyl propanoate. An excerpt is:

455 Propyl propanoate is produced when propanol oxidizes completely (Teacher, 32).

456 Item 7 was less difficult for teachers with an index 0.85. Of the 47 teachers, 27.66% of teachers' explanations
457 were in the category of factual difficulties without any alternative conceptions relating to the sweet scent
458 associated with alkyl alkanoate functional group detection. The evidence of factual difficulties is:

459 Factual difficulties: (i) some teachers did not know that methanamide is not an ester. An excerpt is:
460 methanamide is an ester so is sweet-scented (Teacher, 32).

461 (ii) some teachers did not know that sodium ethanoate is a salt but an ester. An excerpt is: sodium ethanoate
462 is an ester so is sweet-scented ??Teacher,17).

463 If sodium ethanoate is sweet-centred, then is likely an ester (Teacher, 23) Item 17 was moderately difficult for
464 teachers with an index of 0.51. Of the 47 teachers, 12.77% of teachers' explanations were alternative conceptions,
465 and 10.64% were factual difficulties relating to ammonia gas is evolved when amide is warmed with dilute sodium
466 hydroxide solution. The evidence of alternative conceptions and factual difficulties is:

467 Alternative conception: hydrogen gas is evolved when amide reacts with dilute sodium hydroxide solution. An
468 excerpt is: hydrogen gas is liberated when amide reacts with dilute sodium hydroxide solution (Teacher, 41).

469 Item 22 was very difficult for teachers with an index of 0.28. Of the 47 teachers, an equal proportion (4.26%)
470 of teachers' explanations were alternative conceptions and factual difficulties relating to the Tollen's reagent or
471 Fehling's solutions is used qualitatively to distinguish between carbonyl functional groups. Most of the teachers
472 failed to provide reasons for the options they selected. Evidence of conceptual difficulties is:

473 Factual difficulties: aldehydes react with Tollen's reagent to form an acidic solution. An excerpt is:
474 aldehyde like propanal ($\text{CH}_3\text{CH}_2\text{CHO}$) reacts with Tollen's reagent to form acid solutions (Teacher, 16).
475 It reacts with Tollen's reagent to produce an acid (Teacher, 9).

476 15 VIII. Discussion

477 Teachers' demonstration of the low (partial) level of conceptual understanding of functional group detection is not
478 only limited to hydrocarbons but nonhydrocarbons (such as alkanols, alkanoic acids, alkyl alkanoates, amides,
479 alkanals, and alkenones) as well. This low level of conceptual understanding of detection of functional groups
480 of saturation and unsaturation carbon compounds means that teachers are not rightly addressing the targeted
481 specific objectives of the curriculum (MOE, 2010), where students are to test for saturation and unsaturation
482 using acidified and alkaline purple ????????? 4 , ??? 2 /?? 2 ???. Teachers may not only have problems with
483 enacting the curriculum (MOE, 2010) with appropriate pedagogical knowledge but may have problems of content
484 knowledge of that they are supposed to teach to students. This is also evident as teachers demonstrate a low
485 conceptual understanding of functional group detection of benzene using cold dilute ????????? 4 , ??? 2 /?? 2
486 ?? or ??? 2 /?????? 3 , and to test for alkanals and alkenones using 2, 4-dinitrophenylhydrazine, Fehling's
487 or Benedict's solution, and Tollen's reagent (ammoniacal silver nitrate). Teachers could be just transferring
488 information (Jonassen, Peck, & Wilson, 1999) on organic chemistry from textbooks to their students with no
489 meaningful learning from both sides. Teachers may have not sufficient mental models (Konicek-Moran & Keeley,
490 2015) of functional groups of organic compounds. This is because teachers have a low conceptual understanding
491 that alkanols change yellow heptaoxodichromate(VI) solution green. These conceptual difficulties could account
492 for teachers' inability to demonstrate a full scientific understanding of functional group detection but a partial
493 scientific understanding, and even no scientific understanding in some instances. Not only is functional group
494 detection under organic chemistry difficult for students (Goh et al., 1987), but also difficult for teachers who
495 teach the students. Teachers' conceptual difficulties in detecting all functional groups either through the use
496 of suitable organic reagents or the use of chemical reactions could be partly due to their insufficient knowledge
497 of organic chemistry (Coll & Treagust, 2001; ??icoll, 2001) when they were in high school or college students,
498 their inability to identify chemical structures of organic compounds, and give correct names of these organic
499 compounds (Adu-Gyamfi et al., 2017).

500 Also, the results showed that even though teachers are unable to identify most organic chemical reactions, the
501 very few who are able fail to state and explain clearly the functional group present in those compounds. Hence,
502 teachers are unable to give correct chemical structures of organic compounds undergoing chemical reactions.
503 Teachers demonstrate factual difficulties, and alternative conceptions on functional group detection. Alternative
504 conceptions seem to be a common phenomenon with students about chemical concepts globally, and the same
505 can be said to teachers under organic qualitative analysis where functional groups are detected. Teachers in
506 this study are demonstrating alternative conceptions, and other factual difficulties of functional group detection
507 and that could be a contributing factor to students' alternative conceptions on chemical concepts. Teachers
508 being a contributing factor to students' alternative conceptions is a confirmation of conceptual misunderstanding
509 (a category of alternative conceptions) based on teacher's inability to use chemistry lessons to help students
510 challenged their preconceived notions and nonscientific beliefs they bring to the classroom (Adu-Gyamfi &
511 Ampiah, 2019).

512 Teachers' demonstration of a wide range of factual difficulties and alternative conceptions of functional group
513 detection could be partly due to the difficult nature of organic qualitative analysis (Stieff, 2007). Organic
514 chemistry is known to be difficult for students. These teachers likely had difficulties learning the content at the
515 high school and college levels and even at the university hence, their possible difficulties in teaching the concept.
516 The nature of the content influences the way the subject is taught and learned (Tatli & Ayas, 2013). This
517 implies that teachers' difficulties in conceptualizing difficult content are potentially transferable to their students,
518 resulting in learners' alternative conceptions about the concepts (Chavan, 2017).

519 Teachers' alternative conceptions and factual difficulties could be partly due to teachers' weak content
520 knowledge. Teachers' deep and strong content knowledge is a necessary tool in students' learning (Adu-Gyamfi
521 et al., 2018; Aregawi & Meressa, 2017). A good number of students make meaning of concepts in similar
522 ways as their teachers (Taber, 2011). Teachers' understanding of science content influences the way they teach,
523 and consequently, the way their learners learn the content (Childs & Sheehan, 2009; Greenbowe & Schroeder,
524 2008; Simsek, 2009; Tatli & Ayas, 2013). Teachers' weak content knowledge could partly be due to teachers'
525 demonstration of factual difficulties: which are teachers' conceptions developed from false ideas learned at the
526 early ages and have remained unchallenged; lack of preparation before teaching the content; not specializing in
527 chemistry at the university level; lack of frequent teaching of organic chemistry and functional groups content to
528 students.

529 If WAEC Chief Examiner on chemistry complaints about students' poor show on organic chemistry, then the
530 study shows that what students learn is equally dependent on the teacher's knowledge of that specific content.
531 The results show that teachers, just as their students, also have little knowledge about organic reagents needed to
532 test for the various functional groups, and give exact colour changes that occurs during these functional groups
533 detection. Teachers also fail to provide names and explain reagents needed to detect for these functional groups.
534 For instance, teachers have factual difficulties distinguishing reactions between saturation and unsaturation,
535 primary and secondary alkanols, alkyl alkanoates, amides, and alkanals and alkenones. The results further show
536 that teachers have factual difficulties and alternative conceptions in identifying the name of particular chemical
537 reaction such as oxidation, dehydration and esterification. This implies that not only do teachers have conceptual
538 difficulties in providing and predicting final product in organic reactions with reasons (Tang, Zain, & Abdullah,
539 2010), but will find it difficult to teach them. This study also confirms an earlier work (Goh et al., 1987) that
540 qualitative analysis (functional group detection) is difficult and that teachers who do not have adequate and
541 sufficient understanding of the scientific concept can misrepresent the content to their students, causing them to
542 have misunderstandings (Ball et al., 2008).

543 IX.

16 Conclusion

544 The study has shown that functional group detection under organic qualitative analysis was difficult for teachers
545 and they, therefore, demonstrate conceptual difficulties on the concept. The teachers' conceptual difficulties were
546 qualitatively seen as alternative conceptions and factual difficulties. Those alternative conceptions and factual
547 difficulties were seen under various functional groups as saturated and unsaturated hydrocarbons, alkanols,
548 alkanoic acids, alkyl alkanoates, alkenones and aldehydes, and amides. The study has added to the literature
549 that alternative conceptions exist in functional group detection as there are in other areas of chemistry. As
550 teachers demonstrated a partial scientific conceptual understanding of functional group detection, the Ministry
551 of Education through the Ghana Education Service should liaise with the teacher education universities to
552 organise short courses for teachers to help upgrade their content knowledge in chemistry. And as teachers' factual
553 difficulties and alternative conceptions existed on functional group detection, chemistry educators and researchers
554 should design and develop instructional strategies that challenge alternative conceptions among teachers.

Item	Understanding level						M	SD		
	No Scientific Understanding		Partial Scientific Understanding		Full Scientific Understanding					
	n	%	n	%	n	%				
hydrocarbons										
6	12	25.5	10	21.3	25	53.2	1.28	0.852		
5	6	12.8	13	27.7	28	59.6	1.47	0.718		
10	5	10.6	17	36.2	25	53.2	1.43	0.683		
12	23	48.9	15	31.9	9	19.1	0.70	0.778		
?14B	22	46.8	0	0	25	53.2	0.89	1.005		
?14B	25	53.2	0	0	22	46.8	0.94	1.009		
15?	23	48.9	0	0	24	51.1	1.02	1.011		
18	22	44.7	19	40.4	6	12.8	0.66	0.700		
8	5	10.6	17	36.2	25	53.2	1.43	0.683		
21	21	44.7	7	14.9	19	40.4	0.96	0.932		
alkanols										
9	15	31.9	18	38.3	14	29.8	0.98	0.794		
?14D	23	48.9	0	0	24	51.1	1.02	1.011		
?14D	26	55.3	0	0	21	44.7	0.89	1.005		
15?	18	38.3	0	0	29	61.7	1.23	0.983		
16	24	51.1	17	36.2	6	12.8	0.62	0.709		
20	27	57.4	0	0	20	42.6	0.85	1.000		
alkanoic acid										
11	7	14.9	19	40.4	21	44.7	1.30	0.720		
13	17	36.2	13	27.7	17	36.2	1.00	0.860		
?14A	22	46.8	0	0	25	53.2	1.06	1.009		
?14E	24	51.1	0	0	23	48.9	0.98	1.011		
?14A	23	48.9	0	0	24	51.1	1.02	1.011		
?14E	27	57.4	0	0	20	42.6	0.85	1.011		
19	24	51.1	0	0	23	48.9	0.98	1.011		
alkylalkanoates										
7	6	12.8	13	27.7	28	59.6	1.47	0.718		
?14C	26	55.3	0	0	21	44.7	0.94	1.009		
?14C	30	63.8	0	0	17	36.2	0.72	0.971		
15?	23	48.9	0	0	24	51.1	1.02	1.011		
amides										
17	22	46.8	11	23.4	14	29.8	0.83	0.868		
alkanals and alkanones										
22	34	72.3	2	4.3		23.4	0.51	0.856		
					11					

Figure 1: Table 1 :

556 [Ültay and Çalik ()] 'A Comparison of Different Teaching Designs of 'Acids and Bases' Subject'. N Ültay , M
557 Çalik . *Eurasia Journal of Mathematics* 2016. 12 (1) p. . (Science & Technology Education)

558 [Grayson et al. ()] 'A four level framework for identifying and classifying student conceptual and reasoning
559 difficulties'. D J Grayson , T R Anderson , L G Crossley . *International Journal of Science Education*
560 2001. 23 p. .

561 [Anderson et al. ()] *A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of
562 educational objectives*, L W Anderson , D R Krathwohl , B S Bloom . 2001. Boston: Allyn & Bacon.

563 [Matthews ()] *Advanced chemistry*, P Matthews . 2011. New York: Cambridge University Press.

564 [Taber ()] *Alternative conceptions in chemistry: Prevention, diagnosis and cure*, K S Taber . 2002. London: The
565 Royal Society of Chemistry.

566 [Delmang and Gongden ()] 'Ameliorating students' performance and attitude towards chemistry through chem-
567 istry problemsolving techniques'. T K Delmang , E J Gongden . *International Journal of Scientific Research
568 in Education* 2016. 9 (2) p. .

569 [Arokoyo and Amadi ()] 'Analytical survey of students' attitudes towards teaching and learning of Mathematics
570 and Chemistry in senior secondary schools'. A A Arokoyo , J C Amadi . *International Journal of Scientific
571 Research and Innovative Technology* 2018. 5 (9) p. .

572 [Azuka et al. ()] 'Attitudes of primary mathematics teachers towards the use of activitybased learning methods
573 in teaching mathematics in Nigeria schools'. B F Azuka , D Durujaiye , S D Okwuosa , O Jekayinka .
574 *International Journal of Educational Learning* 2013. 1 (1) p. .

575 [Chief examiner's report on West African senior school certificate examination (2001)] *Chief examiner's report
576 on West African senior school certificate examination*, 2001. May/June chemistry practical. Accra: Wisdom
577 Press. West African Examinations Council

578 [Chief examiner's report on West African senior school certificate examination (2003)] *Chief examiner's report
579 on West African senior school certificate examination*, 2003. May/June chemistry practical. Accra: Wisdom
580 Press. West African Examinations Council

581 [Chief examiner's report on West African senior school certificate examination (2004)] *Chief examiner's report
582 on West African senior school certificate examination*, 2004. May/June chemistry practical. Accra: Wisdom
583 Press. West African Examinations Council

584 [Chief examiner's report on West African senior school certificate examination (2005)] *Chief examiner's report
585 on West African senior school certificate examination*, 2005. May/June chemistry practical. Accra: Wisdom
586 Press. West African Examinations Council

587 [Chief examiner's report on West African senior school certificate examination (2006)] *Chief examiner's report
588 on West African senior school certificate examination*, 2006. May/June chemistry practical. Accra: Wisdom
589 Press. West African Examinations Council

590 [Chief examiner's report on West African senior school certificate examination (2007)] *Chief examiner's report
591 on West African senior school certificate examination*, 2007. May/June chemistry practical. Accra: Wisdom
592 Press. West African Examinations Council

593 [Chief examiner's report on West African senior school certificate examination (2012)] *Chief examiner's report
594 on West African senior school certificate examination*, 2012. May/June chemistry practical. Accra: Wisdom
595 Press. West African Examinations Council

596 [Chief examiner's report on West African senior school certificate examination (2014)] *Chief examiner's report
597 on West African senior school certificate examination*, 2014. May/June chemistry practical. Accra: Wisdom
598 Press. West African Examinations Council

599 [Chief examiner's report on West African senior school certificate examination (2015)] *Chief examiner's report
600 on West African senior school certificate examination*, 2015. May/June chemistry practical. Accra: Wisdom
601 Press. West African Examinations Council

602 [Chief examiner's report on West African senior school certificate examination (2016)] *Chief examiner's report
603 on West African senior school certificate examination*, 2016. May/June chemistry practical. Accra: Wisdom
604 Press. West African Examinations Council

605 [Chief examiner's report on West African senior school certificate examination (2017)] *Chief examiner's report
606 on West African senior school certificate examination*, 2017. May/June chemistry practical. Accra: Wisdom
607 Press. West African Examinations Council

608 [Chief examiner's report on West African senior school certificate examination (2018)] *Chief examiner's report
609 on West African senior school certificate examination*, 2018. May/June chemistry practical. Accra: Wisdom
610 Press. West African Examinations Council

611 [Driver et al. ()] 'Constructing scientific knowledge in the classroom. Educational researcher'. R Driver , H Asoko
612 , J Leach , P Scott , E Mortimer . *Journal of Science Education* 1994. 23 (7) p. .

613 [Taber ()] 'Constructivism as educational theory: Contingency in learning, and optimally guided instruction'. K
614 S Taber . *Educational theory*, J Hassaskhah (ed.) (Hauppauge, NY) 2011. Nova Science Publishers, Inc. p. .

615 [Bodner ()] 'Constructivism: A theory of knowledge'. G M Bodner . *Journal of Chemical Education* 1986. 63
616 (10) p. .

617 [Ball et al. ()] 'Content knowledge for teaching: What makes it special'. D Ball , M H Thame , G Phelps .
618 *Journal of Teacher Education* 2008. 59 (5) p. .

619 [Creswell and Clark ()] *Designing and conducting mixed methods research*, J W Creswell , V L Clark . 2018.
620 Thousand Oaks, California: SAGE Publications, Inc. (rd ed.)

621 [Tang et al. ()] 'Development and evaluation of a chemistry educational software for learning organic reactions
622 using qualitative reasoning'. A Y C Tang , M Zain , S Abdullah , R . *International Journal of Education and
623 Information Technologies* 2010. 3 (4) p. .

624 [Yong ()] 'Developments in chemical education in China-STS education and social organic chemistry'. W Yong .
625 *Journal of chemical education* 1994. 71 (6) p. 509.

626 [Chavan ()] 'Difficulties encountered by science teachers during teaching concepts of science difficulties encoun-
627 tered by science teachers during teaching concepts of science'. R Chavan . *Physical Science Education Journal*
628 2017. 1 p. .

629 [Johnston ()] *Early explorations in Science*, J Johnston . 2005. Maidenhead: Open University Press. (nd ed.)

630 [Tatli and Ayas ()] 'Effect of a virtual chemistry laboratory on students' achievement'. Z Tatli , A Ayas .
631 *Educational Technology & Society* 2013. 16 (1) p. .

632 [Özkaya et al. ()] 'Effectiveness of conceptual change-oriented teaching strategy to improve students' understand-
633 ing of galvanic cells'. A R Özkaya , M Üce , H Saricayir , M Sahin . *Journal of Chemical Education* 2006. 83
634 (11) p. .

635 [Hill et al. ()] 'Effects of teachers 'mathematical knowledge for teaching on student achievement'. H C Hill , B
636 Rowan , D Ball . *American Educational Research Journal* 2005. 42 p. .

637 [Eybe and Schmidt ()] 'Group discussions as a tool for investigating students' concepts'. H Eybe , H J Schmidt
638 . *Chemistry Education Research and Practice* 2004. 5 (3) p. .

639 [Adu-Gyamfi et al. ()] 'High school chemistry students' alternative conceptions of H₂O, OH⁻, and H⁺ in
640 balancing redox reactions'. K Adu-Gyamfi , J G Ampiah , D D Agyei . *International Journal of Development
641 and Sustainability* 2015. 4 (6) p. .

642 [Aregawi and Meressa ()] 'How to improve students' participation in chemistry class: The case of 2 nd Year
643 chemistry students taking the course practical organic chemistry'. B Z Aregawi , H M Meressa . *International
644 Journal of Engineering Development and Research* 2017. 5 (4) p. .

645 [Ormrod ()] *Human learning*, J E Ormrod . 1999. New Jersey: Merrill-Prentice Hall.

646 [Hassan et al. ()] 'Ideas underpinning success in an introductory course in organic chemistry'. A K Hassan , R A
647 Hill , N Reid . *The Royal Society of Chemistry: University Chemistry Education* 2004. 8 p. .

648 [Greenbowe and Schroeder ()] 'Implementing POGIL in the lecture and the science writing Heuristic in the
649 laboratory. Student perceptions and performance in undergraduate organic chemistry'. T J Greenbowe , D
650 Schroeder . *Chemistry Education Research and Practice* 2008. 9 p. .

651 [Smith and Ragan ()] *Instructional design*, P L Smith , T J Ragan . 1999. New York, NY: Wiley.

652 [Juri?evi? et al. ()] 'Intrinsic motivation of pre-service primary school teachers for learning chemistry in relation
653 to their academic achievement'. M Juri?evi? , S A Gla?ar , C R Pu?ko , I Devetak . *International Journal of
654 Science Education* 2008. 30 (1) p. .

655 [Coll and Treagust ()] 'Learners' mental models of chemical bonding'. R K Coll , D F Treagust . *Research in
656 Science Education* 2001. 3 (1) p. .

657 [Jonassen et al. ()] *Learning with technology: A constructivist perspective*, D H Jonassen , K L Peck , B G Wilson
658 . 1999. Upper Saddle River, NJ: Merrill Publishing.

659 [Ferguson and Bodner ()] 'Making sense of the arrow-pushing formalism among chemistry majors enrolled in
660 organic chemistry'. R Ferguson , G M Bodner . *Chemistry Education Research and Practice* 2008. 9 p. .

661 [Stieff ()] *Mental rotation and diagrammatic reasoning in science curriculum and instruction*. *Learning and
662 Instruction*, S Stieff . 2007. 17 p. .

663 [Deci et al. ()] 'Motivation and education: the selfdetermination perspective'. E L Deci , R J Vallerand , L G
664 Pelletier , R M Ryan . *Journal of Education and Psychology* 1991. 26 (3) p. .

665 [Rice ()] *Organic chemistry through visualization*, L Rice . 2016. Dublin. Dublin City University

666 [Petrucci et al. ()] R H Petrucci , F G Herring , J D Madura , C Bissonnette . *General chemistry: Principle &
667 modern applications*, (Ontario) 2017. Person Canada Inc. (th ed.)

668 [Cooley and Williams ()] ‘Qualitative analysis in the beginning organic laboratory’. J H Cooley , R V Williams
669 . *Journal of Chemical Education* 1999. 76 p. .

670 [Unanma et al. ()] ‘Relationship between teachers’ educational qualifications and student’s achievement in
671 chemistry: A Case Study of Owerri West LGA’. A O Unanma , H O Abugu , R C Dike , U C Umeobika .
672 *Journal of Research & Method in Education* 2013. 1 (1) p. .

673 [Adu-Gyamfi and Ampiah ()] ‘Students’ alternative conceptions associated with application of redox reactions
674 in everyday life’. K Adu-Gyamfi , J G Ampiah . 10.20849/aes.v4i1.590. *Asian Education Studies* 2019. 4 (1)
675 p. .

676 [Ogembol et al. ()] ‘Students’ and Teachers’ Attitude and Performance in Chemistry in Secondary Schools’. J O
677 Ogembol , H Otunga , R N Yaki . *Global Journal of Interdisciplinary Social Science* 2015. 4 (3) p. .

678 [Domin et al. ()] ‘Students’ categorizations of organic compounds’. D S Domin , M Al-Masum , J Mensah .
679 *Chemistry Education Research and Practice* 2008. 9 p. .

680 [Adu-Gyamfi et al. ()] ‘Students’ difficulties in IUPAC naming of organic compounds’. K Adu-Gyamfi , J G
681 Ampiah , J Y Appiah . *Journal of Science and Mathematics Education* 2017. 6 (2) p. .

682 [P?narba?? and Canpolat ()] ‘Students’ understanding of solution chemistry concepts’. T P?narba?? , N
683 Canpolat . *Journal of Chemical Education* 2003. 80 (11) p. .

684 [Baumert et al. ()] ‘Teachers’ mathematical knowledge, cognitive activation in the classroom, and student
685 progress’. J Baumert , M Kunter , W Blum , M Brunner , T Voss , A Jordan , U Klusmann , Y M Tsai .
686 *American Educational Research Journal* 2010. 47 (1) p. .

687 [Adu-Gyamfi et al. ()] ‘Teachers’ problems of teaching of oxidationreduction reactions in high schools’. K Adu-
688 Gyamfi , J G Ampiah , D D Agyei . 105281/zenodo.1471731. *European Journal of Education Studies* 2018. 5
689 (5) p. .

690 [Konicek-Moran and Keeley ()] *Teaching for conceptual understanding in science*, R Konicek-Moran , P Keeley
691 . 2015. NSTA Press.

692 [Teaching syllabus for chemistry: Senior high school 1-3. Accra: Author ()] *Teaching syllabus for chemistry: Se-
693 nior high school 1-3. Accra: Author*, 2010.

694 [Schwartz ()] ‘The construction and analogical transfer of symbolic visualizations’. L D Schwartz . *Journal of
695 Research in Science Teaching* 1993. 30 (10) p. .

696 [Simsek ()] ‘The effect of animation and cooperative learning on chemistry students’ academic achievement and
697 conceptual understanding about aqueous solution’. U Simsek . *World Applied Science Journal* 2009. 7 (1) p. .

698 [Goh et al. ()] *The effect of modified laboratory instruction on students’ achievement in chemistry practical*, N
699 K Goh , K A Toh , L S Chia . 1987. Singapore. Institute of Education

700 [Sadler et al. ()] ‘The influence of teachers’ knowledge on student learning in middle school physical science
701 classrooms’. P M Sadler , G Sonnert , H P Coyle , N Cook-Smith , J L Miller . *American Educational
702 Research Journal* 2013. 50 (5) p. .

703 [Darmofal et al. ()] *Using concept maps and concept questions to enhance conceptual understanding. Paper pre-
704 sented at the Frontiers in Education*, D L Darmofal , D H Soderholm , D R Brodeur . 10.1109/fie.2002.1157954.
705 <http://dx.doi.org/10.1109/fie.2002.1157954> 2002. 2002. nd Annual. 32.

706 [Strickland et al. ()] ‘What happens when representations fail to represent? Graduate students’ mental models
707 of organic chemistry diagrams’. A M Strickland , A Kraft , G Bhattacharyya . *Chemistry Education Research
708 and Practice* 2010. 11 (4) p. .

709 [Childs and Sheehan ()] ‘What’s difficult about chemistry? An Irish perspective’. P E Childs , M Sheehan .
710 *Chemistry Education Research and Practice* 2009. 10 p. .

711 [O’dwyer and Childs ()] ‘Who says organic chemistry is difficult? Exploring perspectives and perceptions’. A
712 O’dwyer , P E Childs . *Science and Technology Education* 2017. 13 (7) p. . (Journal of Mathematics)

713 [Nakhleh ()] ‘Why some students don’t learn chemistry’. M B Nakhleh . *Journal of Chemical Education* 1992.
714 (3) p. .