

1 The Reason behind Lack of Household Recycling Participation A 2 Bangkok Metropolis Case Study

3 Dr. Ittiravivongs Achapan¹

4 ¹ Keio University, Tokyo, Japan.

5 *Received: 6 December 2011 Accepted: 1 January 2012 Published: 15 January 2012*

6

7 **Abstract**

8 Recycling has been encouraged broadly as a tool to diminish the destructive impacts of
9 excessive solid waste. However, recycling in most developing countries undergoes from lack of
10 household participation. The finding of this paper demonstrated that the major constraints
11 that impede recycling involvement are likely to come from hidden cost of recycling â?? the
12 poor access of facility, lack of recycling skill, and unavailability of information.

13

14 **Index terms**— Recycling, waste, household, behavior.

15 **1 Introduction**

16 Solid waste management has been historically challenged to societies. Improperly managed waste can pose
17 serious damages on human and environment. Changing in the patterns of production and consumption due to
18 urbanization and economic growth resulted in an increased amount and diverse types of solid waste. Recycling,
19 with its numerous benefits on reducing negative impacts from waste and conserving natural resources, has been
20 lightened into attention. For example, recycling of an aluminum can saves up to 97% of the energy for producing
21 new can from raw material; which is enough energy to keep a 100 watt light bulb burning for 4 hours, whereas
22 every ton of paper recycled saves 17 trees (Letcher and Shiel, 1986; Martin, 2003; Herlock, 2003).

23 **2 II.**

24 **3 Literature Review**

25 Once products are produced, the role of the household then becomes crucial. Household can make a number
26 of decisions regarding what to do with the products they purchased and indeed if to purchase such products
27 (Barr, 2002). Problem of municipal solid E-mail : achapan_i@yahoo.com waste and the achievement of recycling
28 program are therefore largely engaged in household decision making.

29 The literature on understanding and motivating people to recycle is marked by two major phases (Hornik,
30 Cherian, Madansky, and Narayana, 1995). In the primary phase, spanning a period from 1970s to early
31 1980s, researches emphasized external incentive such as monetary rewards and punishments, and sought to
32 the demographic characteristics. The studies generally found that recyclers reported monetary concerns as their
33 primary incentives. This phase led to a spread view that external incentive alone can initiate and sustain recycling
34 behaviors (Geller, Winett, and Everett, 1982). However, later research suggested that if the incentive were purely
35 economic and external, the desired behavior would vanish when the incentive was withdrawn (Pardini and Katzev,
36 1984). The second phase therefore emphasized on finding nonmonetary and lasting incentive to increasing recycling
37 with more concerns on intrinsic motivation such as locus of control III.

38 **4 The Theoretical Framework**

39 Theory of reasoned action (TRA) and theory of planned behavior (TPB) have been well acquainted as models
40 that provide framework to explain the determinants of behavior in social and psychological perspective. The

8 B) SAMPLING AND DATA COLLECTION

41 TRA suggests that behavior is a direct function of intention which is formed by attitude toward that behavior
42 and subjective norm. Attitude consists of beliefs about the consequences of performing the

43 5 A

44 6 Year

45 Nations worldwide have position recycling as one of the most sensible solutions both economically and ecologically
46 for managing municipal solid waste. Unfortunately, though an intensive call for household recycling participation
47 has been made, most of developing countries still experience low recycling rate. Since the achievement of recycling
48 practice depends largely upon the active and sustained involvement of people. It is essential to investigate barriers
49 impeding household recycling decision, and it is the main study of this paper. and personal satisfaction (De
50 Young, 1986). In addition to the foregoing intrinsic and extrinsic motivation approached, two other factors that
51 found to have an impact on recycling behavior are social pressure and perceived inconvenience of recycling. Social
52 pressure to recycle can result from a concern of perception from family, neighbors, and friends. Conversely, lack of
53 support, household may increase pressure not to recycle. The time, space, and trouble it takes to prepare, store,
54 and transport materials may also dissuade even intrinsically motivated individuals who believe that recycling will
55 have favorable environment result (Vining and Ebrey, 1990;Vining, Linn, and Burdge, 1992).

56 behavior multiplied by one's valuation of these consequences. Subjective norm is seen as a combination of
57 perceived expectations from relevant individuals or the groups with intentions to comply with the expectations,
58 namely it is one's perception that most people who are important to him think he should or should not perform
59 the behavior in question. When one has high intention, it is likely that he or she will perform the behavior
60 (Fishbein and Ajzen, 1975). The TPB is an extension of TRA proposed by Ajzen (1985) . In addition to the
61 attitude and subjective norm, TPB adds the concept of perceived behavioral control (PBC) which is developed
62 from self-efficacy theory originated by Bandura (1977) into the model to include non-volitional behavior or those
63 requiring resources, opportunities, and specific skills. The PBC refers to the individual's possible beliefs of
64 difficulty in completing a certain behavior and influences both intention and behavior. The TRA and TPB
65 have been extensively applied to predict recycling behavior in many occasions (Boldero, 1995 ;Taylor and Todd,
66 1995;Cheung, Chan, and Wong, 1999;Chu and Chiu, 2003; ??onglet, Philips, and Bates, 2004, to name a few).

67 However, many researchers supported that there are other variables besides elements of TRA and TPB
68 that predict environmental behaviors ??Boldero,1995;Cheung, Chan and Wong ,1999;Barr, 2002;Chu and Chiu,
69 2003). Vining and Ebrey (1990) found a positive relationship between availability of monetary incentive and
70 recycling behavior, where Goldsby (1998) found a negative effect of economic incentive on recycling involvement.
71 Knowledge and information were also found to have positive impact on recycling behavior (Vining and Ebrey,
72 1990;Barr, 2002). In addition, convenience factors were argued to be a barrier to recycling action in many
73 researches (Gamba and Oskamp, 1994;Tucker, 1999;Barr, 2002). With the aim to investigate promising
74 constraints of household recycling participation, this study integrated relevant factors in accordance with previous
75 studies and employed the TPB as the critical framework of the research.

76 IV.

77 7 Research Design a) Instrument development

78 This research selected Thailand as a case study to investigate the situation of household recycling behavior
79 in urban developing countries. The data of this research were collected from personal interviews based on a
80 structured questionnaire, designed follow the previous literatures. To examine the quality of the questionnaire
81 items, pre-tests were carried out two times in November and October 2010 prior to the main survey which
82 is conducted during the period of December 2010 to January 2011. Participants in the pre-tests were 80 Thai
83 citizens who have been resided in Bangkok not less than 90 days. The internal consistency of question dimensions
84 was measured by Conbach's alpha coefficient which indicates the degree to which a set of items measures a single
85 unidimensional latent construct, values from 0 to 1. Values above 0.7 indicate a good internal consistency
86 (Cronbach, 1951).

87 The results of the second pre-test were satisfied in every question with the alpha coefficients over 0.71. The
88 verified questionnaire survey consisted with 3 parts; 1) questions regarding respondents' profile, 2) questions
89 regarding recycling behavior and intention, and 3) six-point scales question items of promising explanatory
90 factors (strongly disagree=1 to strongly agree=6). The definitions of technical terms using in the questionnaire
91 were clarified to the respondents prior to the interview to avoid error answers from misunderstanding.

92 8 b) Sampling and data collection

93 The Bangkok capital city was selected for the study area. The target population was individuals who have been
94 inhabited in Bangkok at least 90 days. Multistages sampling method was applied to gather research samples.
95 Features of total fifty districts in Bangkok were firstly examined in the first step. As the research target is urban
96 waste recycling, the inner-Bangkok area, which is classified as residential and business area (BMA data center,
97 2009), was selected as the interest group. Pathumwan district was randomly selected from 21 districts located

98 in inner-Bangkok in the following stage by drawing lots. Next, the required sample size was calculated by using
99 Krejcie and Morgan's formula (Krejcie and Morgan, 1970).

100 According to the population and housing statistic provided by Department of Provincial Administration (2009),
101 Pathumwan district has a population (N) of 58,858 people (male 27,463; female 31,395) as of 2009. Based on
102 the sampling formula, 381 samples were required at 5% margin error. In the final stage, required sample for
103 4 sub-districts in Pathumwan district was calculated by the ratio-sampling method. As total sample=381 for
104 Pathumwan district based on 2009 data, 131 samples were required for Rounghmuan subdistrict (N sub =20,031),
105 130 samples were required for Lumphinee sub-district (N sub =20,278), 70 samples were required for Wangmai
106 sub-district (N sub =10,905), and 50 samples were required for Pathumwan sub-district (N sub =7,644).

107 V.

108 **9 Data Analysis a) Descriptive analysis**

109 Most of the respondents were female (56.7%), completed undergraduate school (63.3%), single (70.9%), living in
110 a single house (55.9%), and having personal monthly income in a range of 10,001 to 20,000 Thai baht (41.7%).
111 The median age of the respondents was 28

112 **10 b) Principal component analysis**

113 Principal component analysis (PCA) was carried out prior to the analysis to examine the empirical dimensions
114 of questionnaire data measured on ordinal scales (Kaiser, 1974;Field, 2005). The result of principle component
115 analysis of twenty-seven items showed no problematic collinearity across dimensions. KMO=0.73 showed a modest
116 sampling adequacy of factor analysis. The Bartlett's test is highly significant at p-value equal to .00, approved
117 that the PCA is applicable. The factor loadings demonstrated 6 dimensions. All components in aggregate
118 explained 92.76% of the total variance in the overall data.

119 **11 c) Logistic regression analysis**

120 Logistic regression analysis was employed to examine the significant impacts of variables. To test whether the
121 factors present direct effects on recycling behavior or indirect effects via recycling intention, explanatory variables
122 in the study were estimated in two stages; the first stage with recycling intention as the dependent variable, the
123 second stage with recycling behavior as the dependent variable. Both intention to recycle and recycling behavior
124 were measured by selfreport binary scale treated as dummy variables coded as 1 = yes and 0 = no.

125 A two-step hierarchical logistic regression analysis was applied in the first stage. The sociodemographic
126 variables which are classified as the factors at the lowest level were firstly entered. The seven variables together
127 provided a model that correctly classified 64% of the sample (82.3% of sample with intention to recycle; 36% of
128 sample with no intention to recycle). Hosmer and Lemeshow test was significant demonstrated that the model
129 with only demographic variables did not adjust well to the data. Entering the ten variables on the next step
130 amplified the percentage of respondents correctly classified to 90% (92.2% of sample with intention to recycle;
131 86.7% of sample with no intention). Hosmer and Lemeshow test become insignificant. Omnibus test of model
132 coefficients was significant showed that inclusion of the second-step variables improved the model. Nagelkerke R 2
133 improved from .116 to .738. The value of -2log -likelihood also decreased from 476.680 to 210.823 presented more
134 accurate the predictions of the model. The attitude toward recycling, external subjective norm, awareness of
135 recycling benefit, perceived facility condition, and perceived recycling skill were significant predictors of recycling
136 intention.

137 In the second stage, a three-step hierarchical logistic regression analysis was employed to measure the predictors
138 of actual recycling behavior. The sociodemographic variables entered on the first step provided a model that
139 correctly classified 63.3% of the sample (74.2% of recycler; 48.8% of non-recycler). Hosmer and Lemeshow test
140 was still significant. Entering psychological, situational, and economic variables on the second step increased
141 the percentage of respondents correctly classified to 89% (90.3% of recycler; 87.2% of non-recycler). Hosmer
142 and Lemeshow test became insignificant. Omnibus test of model coefficients showed a significant contribution
143 of the entered variables. Nagelkerke R 2 increased from .141 to .731. The value of -2log-likelihood decreased
144 from 478.459 to 221.105. All goodness-of-fit indicators demonstrated a more accuracy of the model. The resident
145 year, perceived facility condition, perceived personal recycling skill, and perception of having adequacy recycling
146 information significantly predicted recycling behavior in this level. The entry of the recycling intention variable
147 on the last step improved the model substantially. The percentage of respondents correctly classified increased to
148 94.5% (96.3% of recycler; 92.1% of non-recycler). Hosmer and Lemeshow test was not significant. Omnibus test of
149 model coefficients at step and model level were both significant. Nagelkerke R 2 improved to .878. The value of -
150 2log-likelihood decreased to 116.357. The resident year, perceived facility condition, perceived personal recycling
151 skill, perception of having adequacy of recycling information, and recycling intention significantly predicted
152 recycling behavior. The significant impact of resident year, which in part reflected degrees of expertise in the
153 facilities and services in the community, supported that a better understanding in the recycling system tended
154 to positively affect recycling involvement of people. Summary of results demonstrated in table 1 and 2, where
155 $\text{Exp}()$ = Exponent of and statistically significant at the *0.05 and **0.01 level.

156 **12 VI.**

157 **13 Discussion and Conclusion**

158 The results of analysis show that key factors that influence final decision of household whether to recycle or not
159 recycle are all regarding to costs of recycling; both economic (e.g., monetary transaction cost) and non-economic
160 cost (e.g., opportunity cost or effort). If people have less skill, less information, and find it difficult to get access
161 to recycling facility, they are likely to decline to get involved. The figure. Other things being constant, a rise in
162 the variable costs of recycling lead to an upward shift of MC R , results in a lower quantity of recycling and an
163 increase in amount of disposal.

164 **14 Year**

165 Given there are two choices of waste treatment for household; recycling or disposal, and consider lack of facility,
166 lack of skill, and inadequacy of recycling information as variable costs of recycling. MC R represents marginal
167 cost of recycling. MC D represents marginal cost of disposal and all social costs are assumed to be included in
168 the marginal cost of disposal. According to Tietenberg (2006), efficient amount of recycling will be attained at
169 the MC D =MC R .

170 Additionally in the developing countries with ineffective garbage system, MC D is lower, which further cause
171 lower recycling rate. Consequently, intensive attentions should be paid on lack of fundamental services, facilities,
172 and information. Household should be educated how to recycle in practice, which could be executed by conducting
173 workshops or seminars. These altogether could reduce cost of recycling (shift MC R1 to MC R2) and thus enlarge
174 the recycling involvement of household (from Q 1 to Q 2). This study also has some limitations. First, the
175 behavior concerned in this study was self-reported so the respondents might be selfaware or have bias on reporting
176 their recycling behavior. Alternative methods, such as a diary report, might be combined to resolve this limitation
177 in the future study. In addition, the current survey covered only one geographical area. Future research might
178 enlarge study areas and additionally investigate the identifiable recycling behavior of population with different
179 life styles and cultures. ^{1 2 3}

Figure 1:

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US)

³© 2012 Global Journals Inc. (US) 20 2012

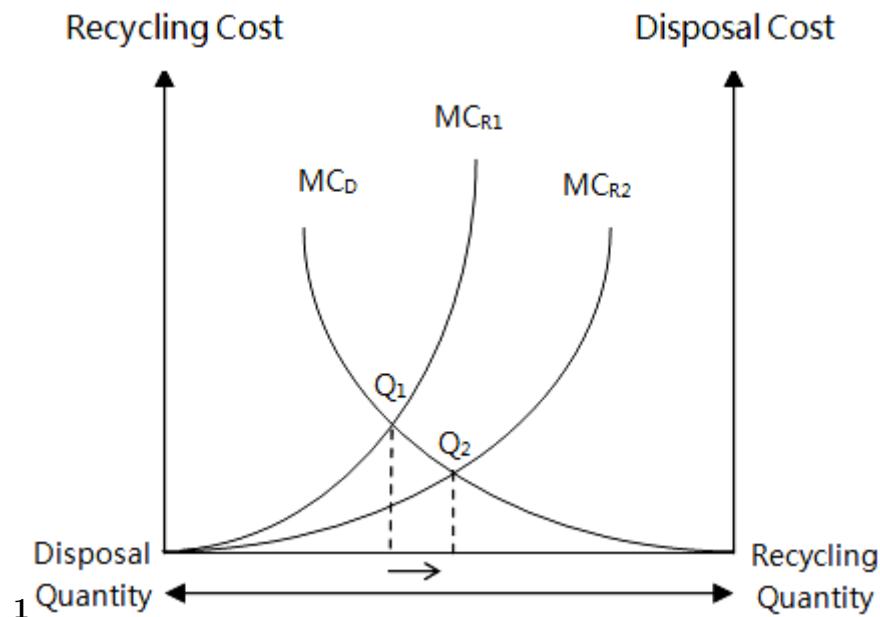


Figure 2: Figure 1 :

2 34

Volume XII Issue W XII Version I

D D D D) A

(

Global Journal of Human Social Science

Figure 3:

2

Predictors	Step1	Exp()	Step2	Exp()	Step3	Exp()	
Gender	-.412	.662	.370	1.448	.562	1.755	
Single							
Married	-.034	.966	1.076	2.932	.313	1.367	
Divorce	-	.349	-.662	.516	-.230	.794	
			1.054				
House type	-.302	.739	-.293	.746	.027	1.027	
Income less than 10000 baht							
Income 10001-20000 baht	-.115	.891	-.266	.766	.819	2.268	
Income 20001-30000 baht	-.222	.801	.762	2.142	1.461	4.312	
Income 30001-40000 baht	-.763	.466	.805	2.236	2.383	10.832	Year
Income 40001-50000 baht	-.001	.999	-.519	.595	1.319	3.738	
Income more than 50000 baht	.169	1.184	1.482	4.402	1.743	5.713	
Junior high school or lower							
High school	-.370	.690	-1.316	.268	-1.272	.280	
Undergraduate	-.373	.689	-1.808	.164	-2.177	.113	
Graduate or higher	-	.364	-1.678	.187	-2.343	.096	
			1.010				
Age	.032	1.032	-.032	.969	-.021	.980	
Resident year	.052**	1.053	.049*	1.051	.070*	1.073	
Attitude toward recycling							
Internal subjective norm	.309	1.362	-.728	.483			
External subjective norm	.333	1.395	.504	1.656			
Awareness of recycling benefit	.328	1.388	.110	1.117			
Economic incentive	.226	1.254	-.069	.933			
Perceived space needed for recycling	-.316	.729	-.353	.702			
Perceived time needed for recycling	-.020	.980	.370	1.448			
Perceived facility condition	.221	1.247	.099	1.104			
Perceived recycling skill	1.653**	5.220	.840**	2.317			
Adequacy of recycling information	1.491**	4.441	1.302*	3.677			
Intention to recycle	.850*	2.339	1.391*	4.018			
			5.486**	241.280	D		
					D		
					D		
)		
					A		
					(

Figure 5: Table 2 :

180 [Environment and Behavior] , *Environment and Behavior* 26 p. .

181 [Field ()] , A Field . Discovering statistics using SPSS. Thousand Oaks 2005. Sage Publications. (2nd edition)

182 [Kaiser ()] 'An index of factorial simplicity'. H Kaiser . *Psychometrika* 1974. 39 p. .

183 [Bma and Center ()] *Bangkok Metropolitan Administration*, Bma , Center . <http://203.155.220.118/info/Default.asp> 2009. Thailand.

184

185 [Barr ()] S Barr . *Household Waste in Social Perspective: Values, Attitudes, Situation and Behavior*. Ashgate : Aldershot publisher, 2002.

186

187 [Fishbein and Ajzen ()] *Belief, attitude, intention, and behavior: An introduction to theory and research*, M Fishbein , I Ajzen . 1975. Reading, Boston: Addison Wesley.

188

189 [Cronbach ()] 'Coefficient alpha and the internal structure of tests'. L Cronbach . *Psychometrika* 1951. 16 p. .

190 [Hornick et al. ()] 'Determinants of Recycling Behavior: A Synthesis of Research Results'. J Hornick , J Cherian , M Madansky , C Narayana . *The Journal of Socio-Economics* 1995. 24 p. .

191

192 [Krejcie and Morgan ()] 'Determining sample size for research activities'. R V Krejcie , D W Morgan . *Educational and Psychological Measurement* 1970. 30 p. .

193

194 [Tonglet et al. ()] *Determining the drivers for householder pro environmental behavior: waste minimization compared to recycling. Resources, Conservation and Recycling*, M Tonglet , P S Phillips , M P Bates . 2004. 42 p. .

195

196

197 [Tietenberg ()] *Environmental and Natural Resource Economics*, T Tietenberg . 2006. Boston: Prentice Hall. (7th edition)

198

199 [Gamba and Oskamp ()] *Factors influencing community residents' participation in commingled curbside recycling programs*, R Gamba , S Oskamp . 1994.

200

201 [Chu and Chiu ()] 'Factors influencing household waste recycling behavior: Test of an integrated model'. P.-Y Chu , J.-F Chiu . *Journal of Applied Social Psychology* 2003. 33 p. .

202

203 [Ajzen ()] 'From intentions to actions: A theory of planned behavior'. I Ajzen . *Action control: From cognition to behavior*, J Kuhl, & J Beckmann (ed.) (New York) 1985. Springer-Verlag.

204

205 [Tucker ()] 'Normative influences in household recycling'. P Tucker . *Journal of Environmental Planning and Management* 1999. 42 p. .

206

207 [Office of Education Council, Ministry of Education, Thailand. Average Years of Educational Attainment of Thai Population ()] *Office of Education Council, Ministry of Education, Thailand. Average Years of Educational Attainment of Thai Population*, http://www.onec.go.th/onec_administrator/uploads/Book/991-file.pdf 2008. 2009. National Statistical Office and Office of the National Economic and Social Development Board, Office of the Prime Minister, Thailand. Core Economic Indicators of Thailand

208

209

210

211

212 [Geller et al. ()] *Preserving the environment: New strategies for behavioral change*, S E Geller , R A Winett , P B Everett . 1982. New York: Pergamon.

213

214 [Cheung et al. ()] 'Reexamining the theory of planned behavior in understanding wastepaper recycling'. S Cheung , D Chan , Z Wong . *Environment and Behavior* 1999. 31 p. .

215

216 [Bandura ()] 'Self-Efficacy: Toward a Unifying Theory of Behavioral Change'. A Bandura . *Psychological Review* 1977. 84 p. .

217

218 [De Young ()] 'Some psychological aspects of recycling'. R De Young . *Environment and Behavior* 1986. 18 p. .

219 [Letcher and Shiel (ed.) ()] *Source separation and Citizen Recycling*, R Letcher , M Shiel . W. Robinson (ed.) 1986. New York: John Wiley & Sons. (The Solid Waste Handbook)

220

221 [The 2009 population and housing census] <http://www.dopa.go.th> *The 2009 population and housing census*, Department of Provincial Administration, Ministry of Interior

222

223 [Pardini and Katzev ()] 'The effects of strength of commitment and newspaper recycling'. A U Pardini , R D Katzev . *Journal of Environmental Systems* 1984. 13 p. .

224

225 [Boldero ()] 'The prediction of household recycling of newspapers: The role of attitudes, intentions, and situational factors'. J Boldero . *Journal of Applied Social Psychology* 1995. 25 (5) p. .

226

227 [Taylor and Todd ()] 'Understanding Household Garbage Reduction Behavior: A Test of an Integrated Model'. S Taylor , P Todd . *Journal of Public Policy & Marketing* 1995. 14 p. .

228

229 [Vining and Ebreo ()] 'What makes a recycler? A comparison of recyclers and nonrecyclers'. J Vining , A Ebreo . *Environment and Behavior* 1990. 22 p. .

230

231 [Vining et al. ()] 'Why recycle? A comparison among recycling motivations in four communities'. J Vining , N Linn , R J Burdge . *Environmental Management* 1992. 16 p. .

232