

1 Are Brand Value Reports Compatible with Financial Reports?

2 Murat Akyildiz

3 *Received: 6 December 2019 Accepted: 31 December 2019 Published: 15 January 2020*

4

5 **Abstract**

6 The purpose of this paper is to uncover whether brand value reports published by brand
7 valuation organizations are compatible with the financial reports and whether brand value
8 contributes to profitability and financial performance. For this purpose, four panel data model
9 were built up to investigate the impact of brand value on profitability and performance. The
10 data belongs to food companies which are among Turkey's top 100 listed brands. The data are
11 collected from the brand valuation report and financial statements published between the
12 years 2008-2018. Results of analysis indicate that there is no relationship between brand value
13 and financial performance. However, the relations between brand value and profitability ratios
14 are significant. This paper conclude that financial statements and brand valuation reports are
15 not sufficiently compatible with each other. Additionally, this paper suggests that Turkish
16 firms should try to increase their brand strengths.

17

18 **Index terms**— brand value, financial performance, brand equity, panel data. TOPSIS.

19 **1 Introduction**

20 Although the origin of the brand dates back 1500s BC, it has reached its current meaning after industrial revolution
21 (Perry & Wisnom, 2003). The reason why the brand has gained importance day by day is the assumption that
22 strong brands create value added for companies ??Kriegbaum, 1998; Kalicanin et al., 2015). That assumption
23 has promoted many companies to increase their financial performances via brand. This trend has also led to a
24 rise in the importance of brand value concept, which enables managers to compare their competitors.

25 Despite different findings, it is prevalent accepted that the brand value contributes positively to all activities
26 of the company by providing status (O'Cast and Frost, 2002) and reducing the importance of price (Stanton and
27 Furrel, 1987) as well as creating customer loyalty ??Pride and Ferrel, 1991). In a sense, brand value itself is a
28 kind of performance measure.

29 Therefore, brand value attracts attention of not only company managers but also of many stakeholders such
30 as investors and credit corporations. This interest has caused the establishment of various brand valuation
31 companies that aim to guide users' decision-making. Including "Interbrand" valuation firm which was founded in
32 1974 as the first one, Millward Brown and Brand Finance companies are considered among the most important
33 ones (Haig and ?lgüner, 2015). Today, majority of investors have been taking the reports published by brand
34 valuation companies into account to invest.

35 However, each of these companies adopts different valuation methods and accordingly they may calculate
36 brand value differently. Hence, one of the most important supporting resources for investors' decisionmaking is
37 the financial statements of companies.

38 Although, brand valuation reports include the information in financial statements, they contain data based on
39 subjective criteria and estimations. Yet financial statements indicate only the realized financial structure of the
40 firms preceding year. However, in the long-run, the increase or decrease in the brand value is expected to reflect
41 on financial performance and profitability. In other words, contribution of brand value to financial performance
42 and profitability requires both to be compatible with each other. Otherwise, inconsistency between them needs
43 questioning.

44 To date, considerable amount of research has dealt with testing the assumption that brand value contributes to
45 financial performance. Most of these studies tend to measure the relationship between brand equity and financial

4 MEASUREMENT OF FINANCIAL PERFORMANCE

46 performance (Barth et al., 1998; Abratt, R., & Bick, G., 2003; Kim, et al., 2005; Verbeeten & Vijn, 2010; Liu et
47 al., 2017). On the other hand, there are also studies using the term brand value although they employ the brand
48 equity measurement as in the study by ??eung and Ramasamy (2007).

49 However, particularly in Turkey, the amount of research using brand value published by consulting firms is still
50 very limited. From this point of view, the purpose of this paper is to determine whether brand values published
51 by brand valuation organizations are associated with the financial reporting system and whether brand value
52 contribute to profitability and financial performance. Moreover, this paper, which provides an idea about the
53 reliability level of the reports in relation to financial statements and brand value may provide invaluable insight
54 to investors and brand valuation organizations. It also contributes to the relevant literature.

55 2 II. The Measurement Methods of Brand Equity and Brand 56 Value

57 Brand equity (BE) briefly can define as the set of values created in consumers' minds because of comparing the
58 brand name, symbols and connotations of the products offered by the company with competitor brands ??Tiwari,
59 (2010). Research measuring brand equity uses non-monetary methods. Therefore, studies measuring brand equity
60 aim to measure what consumers' attitudes towards brand dimensions and how they perceive them. For example,
61 Aaker (1991Aaker (, 1996) measures brand equity with dimensions such as brand awareness, brand connotation,
62 perceived quality, and other brand assets (patents, trademarks, etc.).

63 Brand value (BV), on the other hand, is the embodied form of brand equity and expresses the monetary value
64 of the brand. Tiwari (2010) defines brand value as the sale or replacement value of the brand. Research that
65 measures brand value uses monetary methods. However, there are many monetary measurement methods such
66 as cost based, -market value, licensing, price-premium ??Kriegbaum, 1998). Brand valuation companies use a
67 mixed method that includes monetary and non-monetary approaches to calculate brand value. This paper, only
68 explains Brand Finance's brand valuation method because it is data source.

69 3 III. Brand Valuation Method of Brand Finance

70 Brand Finance is an England based consulting firm and has been publishing the most valuable 100 brands in
71 Turkey since 2008. We may summaries the method it used as follows:

72 Brand Finance defines the brand value as the part of the brand contribution that is able to transfer by
73 means of sale or license. Using a mixed method, Brand Finance bases on the brand strength index for brand
74 valuation. Brand strength consists of brand investments, brand capital and brand performance dimensions. These
75 dimensions, which consist of tangible and intangible qualities, are evaluated over 100 points. Brand Finance uses
76 it as brand strength score.

77 Later, Brand Finance applies the calculated brand strength score to the copyright payment range. The Royalty
78 payment method bases on the assumption that a company does not own brand or licenses its brand from another
79 company. Royalty payment interval differs from sector to sector within the frame of existing license agreements.
80 For instance, in the case brand strength score is 75, in a sector where royalty payment interval is 1-5 percent,
81 royalty payment ratio is 4 percent. Next, company applies revenues estimated the calculated royalty payment
82 ratio to be obtained in the following years. In the last stage, it obtains net brand value by discounting proprietary
83 revenue after tax (Haig & ?lgüner, 2015).

84 IV.

85 4 Measurement of Financial Performance

86 The researchers examining the relationship between the monetary value of the brand and financial performance
87 adopt different financial measurement method. For example, Rasti and Gharibvand (2013) prefer book value and
88 shareholder value as financial performance criteria. Yeung & Ramasamy (2008) as well as Arora & Chaudhary
89 (2016) adopt performance criteria such as return on investment-ROI, return on asset -ROA, gross profit margin
90 -GPM, net margin -NM and pretax margin -PM. In addition some researchers adopt performance criteria such as
91 economic value added-EVA, return on sale-ROS and cash flow return on Investment-CFRI (Yükçü and Ata?an,
92 2010; Werbeeten and Win, 2010).

93 As a result, it is possible to say that a common consensus has not been reached, although it has been debated
94 for years how to measure the financial performance of businesses. Knight (1998) classifies the methods used
95 for measuring financial performance as income-based, cash-based, return-based and valuebased criterions. It is
96 claimed that each of these methods has weaknesses as well as strengths (Young & O'Byrne, 2001;. Rogerson,
97 1997; ??ttsan & Weissenrieder, 1996).

98 Each new method proposed for financial performance measurement is the result of new requirements that
99 emerge over time. The method chosen may vary depending on how the concept of performance is interpreted
100 and whose benefit is a priority. For example, traditional methods focus on company profitability whereas value
101 based methods focus on shareholder profitability.

102 As Buvaneswari and Venkatesh (2013) point out, financial performance should be considered not only as a
103 measure of how much revenue a company generates from operating activities, but also as a measure of how it uses

104 its resources and how good its financial health is. In this framework, the present study considers both long-term
105 financial health of companies and financial ratios that show their profitability. Aforementioned financial ratios
106 are as follows (Table I).

107 **5 Table I Financial ratios**

108 **6 Topsis Methodology**

109 It is Hwang and Yoon those that proposed the TOPSIS method for the first time. (Cheng-RU et al. 2008).The
110 standard TOPSIS method attempts to choose alternatives that simultaneously have the shortest distance from
111 the positive ideal solution and the farthest distance from the negative ideal solution. The positive ideal solution
112 maximizes the benefit criteria and minimizes the cost criteria, whereas the negative ideal solution maximizes
113 the cost criteria and minimizes the benefit criteria. TOPSIS makes full use of attribute information, provides
114 a cardinal ranking of alternatives and does not require attribute preferences to be independent. To apply this
115 technique, attribute values must be numeric, monotonically increasing or decreasing, and have commensurable
116 units (Wang & Elhag, 2006;Zavadskas et al., 2016). The TOPSIS method includes a six-step solution process
117 (Kobry?, 2016).

118 **7 Step1: Creation of a decision matrix**

119 The lines of the decision matrix A indicate the decision points, and the columns indicate the evaluation factors
120 used for decision-making. Matrix A is defined as the initial matrix and is illustrated as follows.

121 $A = \begin{matrix} 11 & 12 & \dots & 21 & 22 & \dots & 27 & 28 & \dots & 30 \end{matrix}$
122 ??.

123 **8 ??**

124 **9 ?? ??1 ?? ??2?. ?? ????**

125 In the ?? ??? matrix, "m" represents the number of decision points and "n" represents the number of evaluation
126 factors.

127 **10 Step 2: Creation of a normalized decision matrix**

128 The normalized "r" matrix obtained from matrix A is calculated using the following formula. $\begin{matrix} \dots & \dots \end{matrix} = \begin{matrix} \dots & \dots \end{matrix}$
129 $\begin{matrix} \dots & \dots \end{matrix} = \begin{matrix} \dots & \dots \end{matrix}$

130 Step 3: Creation of a weighted normalized decision matrix First, the weight of the evaluation factors is
131 determined (?? ??). Then the elements in each column of the matrix"r" are multiplied by the value"?? ??"
132 and matrix V is generated.

133 **11 Step 4: Indication of the positive and negative-ideal solution**

134 In the V matrix, the maximum and minimum values of rows and columns are determined. $\begin{matrix} \dots & \dots \end{matrix} = \{ \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \}$
135 $\begin{matrix} \dots & \dots \end{matrix} = \{ \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \}$

136 **12 minimum values in each column**

137 **13 Step 5: Calculation of distance of each alternative to positive 138 and negative ideal solution points**

139 Maximum-minimum points and distances to ideal points are calculated by the following formulas. $\begin{matrix} \dots & \dots \end{matrix} = \{ \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \}$
140 $\begin{matrix} \dots & \dots \end{matrix} = \{ \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \}$

141 The numbers of $\begin{matrix} \dots & \dots \end{matrix} = \{ \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \}$ to be calculated are the number of decision points.

142 Step 6: Calculation of the relative closeness of the decision points to the ideal solution $C_i = \frac{S_i}{S_i + S_m}$
143 $i = 1, 2, \dots, m$

144 Volume XX Issue VII Version I

145 **14 (H)**

146 Point $\begin{matrix} \dots & \dots \end{matrix} = \{ \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \}$ is in the range of $0 \leq \dots \leq 1$ and indicates proximity to the ideal solution VI.

147 **15 Methodology a) Sampling and data**

148 The data belongs to food companies which are the among Turkey's top 100 listed brands. The data are obtained
149 from the annual brand valuation reports and financial statements published between 2008 and 2018.The companies
150 included in the research are selected based on three basic criteria.1) To operate in the same industry 2) to be
151 within the brand valuation report during the research period 3) to reach the financial statements of the companies
152 on Public Disclosure Platform (PDP). I reduced financial ratios including the period 2008-2018 into a single ratio

153 by using TOPSIS method. The table below displays the brand values published by Brand Finance by years.
 154 (Table II). LBV is an independent variable in all models. LFP, LROS, LROA and LROE are dependent variables
 155 for each model. In models where ?? 0 symbolizes constant parameter, "?" is slope parameter; "U" is error term,
 156 "i" subscript indicates units (firms) and "t" subscript indicates time (i.e. years). I used software of the stata15
 157 and e-views10 for the statistical analyses i.

158 16 Cross sectional dependency and unit root tests

159 Because of the fact that in panel data analyses non-stationary series lead to spurious regression the first step to
 160 be taken is to determine whether the series is stationary or not. The relevant literature suggests first-generation
 161 unit root tests, if not cross-sectional dependency, otherwise second-generation unit root tests. ??Tato?lu, 2013b).
 162 According to Pesaran CD test, there is not cross sectional dependency except for LFP and LBV Therefore, I
 163 preferred second-generation unit root tests for the LFP, LBV and first generation unit root test for the others.

164 Second-generation unit root tests consisting of three groups aim to reduce the effect of correlation between
 165 units. Even though the first group of tests reduces the correlation between units, it may not be applicable in
 166 some cases. MADF (Multivariate Augmented Dickey Fuller), which is one of the second group tests requires
 167 $T > N$ condition while SURADF (seemingly unrelated regressions augmented Dickey Fuller) is considered more
 168 suitable for time series rather than panel data ??Tato?lu, 2018). The tests in the third group eliminate the
 169 correlation between the units by estimating the factor loads. I preferred the second-generation Pesaran CD unit
 170 root, which is preferred for non-stationary series and low number of units. The second and first generation test
 171 results of unit root are as follows (Table VI and VII). Stationarity refers to the resistance of a variable's series
 172 to the shocks it has been exposed to over the long term. Temporary shock effects imply the stationarity of the
 173 series while the permanence of shock effects indicates that the series has lost its stationarity. In other words, its
 174 parameters such as arithmetic mean and variance of the series do not change in the long term despite the shocks.
 175 The relationship between nonstationary variables may cause spurious regression. To overcome this problem of
 176 non-stationarity an econometric analysis of panel data has increasingly moved towards the cointegration model.
 177 Nevertheless, traditional Engle and Granger (1987) cointegration analysis cannot be applied if the stationarity
 178 level of the series is different (i.e., X series I (0) and Y series I (1)).

179 In the first model, although independent variable is stationary, dependent variable (LFP) is not stationary.
 180 However, when the first differences method is conducted to LFP series, the series become stationary (Table
 181 VIII ARDL model could be expressed together with error correction models. Error correction models may be
 182 grouped into two main categories as first and second generation. Dynamic fixed effects (dfe), pooled mean group
 183 estimator (pmg), mean group estimators (mg), and random coefficient model (rcm). General characteristic of first
 184 generation estimators is that they do not consider inter-unit correlation. Conversely, second-generation estimators
 185 such as common correlated effects (cce), augmented mean group (amg) and dynamic common correlated effects
 186 (dcce) consider inter-unit correlation. Additionally, though some of first generation estimators take homogeneity
 187 and some heterogeneity into consideration all of second-generation estimators consider heterogeneity ??Tato?lu,
 188 2018; ??72; ??73). Therefore, determining the most suitable estimation model requires conducting homogeneity
 189 and cross section dependency tests. Swammy test results point out that the model established with LFP and
 190 LBV variables is heterogeneous {Chi (2)10=141.02; p=0.000}. LM test shows that the remains in model with
 191 aforementioned variables include inter-unit correlation (LM-71.32; p=0.000). These results point out that the
 192 best estimators for the model-1 are second-generation error correction models.

193 Augmented mean group estimator (AMG), one of the second-generation error correction models is estimated
 194 with first difference method by adding $T-1$ number time dummy variable in the first stage. In the second stage,
 195 the estimations made in the previous stage are added to error correction model established for each unit. In the
 196 third stage, the AMG estimator adapts the ARDL model proposed by Pesaran and Smith to the MG model.
 197 In the third stage, the AMG estimator uses the following estimator by adapting the ARDL model proposed by
 198 Pesaran and Smith to the MG model ??Tato?lu, 2018: 279-303). So model-1 can be written as follows. Table
 199 VIII:

200 17 Volume XX Issue VII Version I

201 ??????? ?? =? ?? (?????? ?? ?? ?1 -? ?? ? ??????? ?? ?? ?1)+? ?? =1 ??1 ? ?? * ??????? ?? ?? +? ??
 202 =1 ??1 ? ?? * ??????? ?? ?? +? ?? ?? +? ?? ?? ? = (1 ? ? ?? =1 ?? ? ??), ??=1 ?? ?? ?? /(1 ? ?
 203 ??); ? ?? * = ?? ?? =?? +1 ?? ? ?? ; ? ?? * = ?? ?? =?? +1 ?? ? ??

204 Here "???" represents long period, "???" and "???" are represent short period and "???" is error correction parameter.

205 18 b. Stationary panel data models and model selection

206 Literature suggests either fixed effects or random effects model in the stationary panel data models, if there is
 207 unit or time effect. Otherwise, it suggests classic model. Literature suggests that random effects model should
 208 be preferred for estimations conducted for a large mass. Panels with no unit and time effect are defined as
 209 homogeneous and others as heterogeneous panels ??Tato?lu, 2013a).

210 I conducted F" test for unit effect and LR (like hood ratio) test for time effect. I also performed Hausman
 211 test to choose between fixed effect and random effects. The table below shows test results. (Table IX). Since the

212 unit effect is not constant in random models, it is shown in the margin of error, not in the fixed parameter (Vit= 213 ?? + ?? ????). Here the term ?? 0 represents constant, other ? the slope and ?? ???? represent all residual 214 errors.

215 **19 VII.**

216 **20 Assumption Tests**

217 Consistent estimates depend on whether selected models meet assumptions. General assumptions about our 218 preferred panel data models are summarized below.

219 **21 a) Distribution of error terms**

220 The null hypothesis states that U_{it} means are equal to zero. Results of Jarque Bera tests are as follows (Table 221 X).

222 **22 b) Heteroscedasticity**

223 In panel data models, it is expected from error term to be homoscedastic within unit and inter-units. We employed 224 Breush Pagan Lagrange Multiplier test to examine heteroscedasticity in random effects model and altered Wald 225 test for fixed effect model. Test results Autocorrelation means that there is a significant relationship between 226 the unit values of successive error terms. Annual or seasonal period difference between error terms shows the 227 degree of autocorrelation. In case where there is a significant relation between t period errors and $t-1$ period 228 in an annual time series, there is first order autocorrelation. We performed LM test for random effect model 229 and DW test for fixed effect model to understand whether there is an autocorrelation. Test results indicate the 230 presence of autocorrelation for all models exclusive of forth model (Table XII). One of the general assumptions 231 of panel data models is that error terms are not correlated according to the units. Literature suggests Pesaran 232 CD test to investigate cross section dependency for both random and fixed effect models in cases of $T > N$. Test 233 results are as follows (

234 **23 e) Robust estimator for deviation from the assumption**

235 In cases where there is at least one of the heteroscedasticity, autocorrelation or correlation between the units, 236 literature suggests correction of standard errors or using robust estimators without changing parameter . Robust 237 estimators conduct the corrections needed when the panel data models do not meet the assumptions.

238 **24 VIII.**

239 **25 Findings a) Effects of brand value on financial performance**

240 Estimation results of AMG, which is one of the second-generation error correction models and developed to 241 correct heteroscedasticity and correlation between units as is below (Table XIV). Wald test indicates that model 242 is significant ($\text{Chi}^2 (4) = 36.97$; $p=0.000$). Error correction parameter of the model is negative and significant 243 (-1.019). However, it seems that there is no significant relationship between financial performance and brand 244 value in both the short and the long period

245 **26 b) Effects of brand value on profitability rates**

246 Second, third and fourth models aim to examine the effect of LBV on LROS, LROA and LROE. Although 247 third and fourth models do not include cross section dependency (correlation between units), they have 248 heteroscedasticity and autocorrelation. The test results of all three models indicate that the relationship between 249 dependent and independent variables are significant.

250 **27 IX.**

251 **28 Discussion**

252 Although there are many studies examining the relationships between brand value and financial performance, 253 most of them approach the issue from the different point of views. If we ignore research that measures the 254 relationship between brand equity and financial performance, we can say that the main source of discrepancy 255 at issue is related to the measuring of financial performance. This distinctness makes it difficult to compare 256 directly the results of researches regarding the financial performance. For instance, Yeung and Ramasamy accept 257 market returns and stock market as external financial performance measure (2008) while they accept ROA, ROE 258 and ROI as an internal performance measure. Another example is article of ??asti and Gharibvan (2013). The 259 authors adopt EBIT (Earnings before interest and tax) and dividend yield as financial performance measure. 260 The results of the aforementioned researches indicate that the brand value relation with the EBIT and stock 261 market, but not to the dividend income and market return.

262 Contrary to the research results pointing out the relationship between brand value and financial performance,
263 the results indicating the relationship between brand value and profitability rates are directly comparable. On
264 the other hand, some of the directly comparable studies support our research results while others do not. For
265 example, the research results of Ceylan (2019) as well as Yeung and Ramasamy (2008) support our research while
266 Chaudhary's (2016) research results do not.

267 The results of the research conducted by Yeung and Ramasamy (2008) indicate that the brand value had a
268 positive effect on the internal performance criteria such as ROI, ROA, GPS and PM. Ceylan (2019) concludes
269 that the brand value had positive effects on the profitability of the assets. However, she calculates the brand
270 value using the Hirose model. Results of the study in banking sector by Arora and Chaudhary (2016) indicate
271 that brand value relation to ROA and ROE however, this relationship is negative. The researchers interpret this
272 result as the fact that the expenses made to increase brand value have reduced the return. However, results of
273 this study point out that brand value positively affects profitability rates (ROS-ROA and ROE).

274 Normally, brand value is expected to make a positive contribution to financial performance and profitability
275 in every condition, as they greatly reduce price flexibility and isolate the competition strategies of competitors.
276 Whereas the results of our research indicate that "brand-value" does not affect financial performance but it affects
277 profitability rates positively. This result may result from the financial rates, which we use to calculate financial
278 performance. When we consider that some of the rates used for financial performance are affected not only by
279 brand strengths but also by management skills, it is possible to say that the result is reasonable. Contrary to
280 financial performance, it is more likely that strong brands affect profitability rates because of generating more
281 profitability of high price.

282 The profitability rate that the brand value contributes the most is ROE. One percent increase in brand value
283 contributes to the ROE at the level of 0.41 percent. These rates are 0.22 percent for ROA and 0.18 percent for
284 ROS. Although strong brands are expected to contribute most to the profitability of sales, it is quite interesting
285 that they contribute to the lowest level.

286 Even if the positive effect of the increase in brand value on the sales is statistically significant, it may be
287 interpreted that the contribution level is extremely low. The reason for this is the compulsory expenditures that
288 companies make to protect the brand strength besides creating a brand. Such a result is not compatible with
289 the importance attributed to the brand.

290 29 X.

291 30 Conclusion

292 What conclusion should we draw from this study? In my opinion, I can say this study points out two possible
293 problems. The first possible problem is that Turkish companies do not have a strong brand. For this reason, it
294 is possible to say that Turkish firms need to put much more effort to increase their brand values, which may also
295 enhance their competitive strength.

296 The second possible problem is possibility of investor losing trust in the brand valuation reports and financial
297 statements. The reason is that brand valuation reports and financial statements are not compatible with each
298 other. Where as it is expected that the reports at issue associate with each other's especially in the long term.
299 Otherwise, investors may distrust about the financial statements and brand valuation reports. I can say that the
300 problem is in the financial statements probably, when we consider that the brand valuation companies use the
301 information in the financial statements.

302 In fact, it is known that accounting manipulations in corporate "financial reports" are performed in all
303 countries and in every age. In other words, many companies manipulate their financial reports to some extent to
304 achieve their "budget" goals and in order to show that managers are successful. Additionally, many companies
305 manipulate to some reasons such as greed, desperation, immorality or tax evasion. (Bhasin, 2016). Generally,
306 such manipulative behaviors are prevented by accounting standards. When evaluated in this context; the results
307 also may be interpreted as a sign that accounting standards should still be developed XI.

308 31 Limitations and Future Research

309 The findings and insight gained from this research are valid and significant. However, some limitations cannot be
310 overlooked. First, the sample size involved in this research is small because the number of companies meeting the
311 selection criteria as explained in the sampling method is limited. Second, the time dimension is not sufficient for
312 some of the error correction models. Third, the numerator and denominator, which show debt ratio and leverage
313 ratio were inverted to ensure that the rates used to calculate financial performance are in the same direction (e.g.,
314 "Assets/Debts" instead of "Debts/Assets"). Finally, even if the data is subjected to logarithmic transformation,
315 LFP and LROS are not normally distributed. Therefore, the results cannot be generalized. Future research may
316 assess these models for the companies other than food industry in order to explore generalizability of the findings.

317 1 2

¹Year 2020 © 2020 Global Journals Are Brand Value Reports Compatible with Financial Reports?

²© 2020 Global Journals

I

Solvency	CR	Current Ratio
Turnover	AR	Acid Ratio
Financial structure	STR	Stock Turnover Ratio
Profitability	AT	Asset Turnover)
	FAT	Fixed Asset Turnover
	LR	Leverage Ratio
	DR	Dept Ratio
	ROE	Return on Equity
	ROA	Return on Asset
	ROS	Return on Sale

As in other similar studies measuring financial performance by using multiple financial ratios, the present study also employs the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method (Inani and Gupta, 2017; Zavadskas, et al. ;2016; Fenk and Wang, 2000; Yükçü and Ata?an, 2010; Yu-Jie, W. 2008).

V.

Figure 1: Table I :

II

YILLAR/FIRMA	MIGROSBIM	TAT	Kent	BANVITULKER
2008	735	582	75	64
2009	1213	688	102	76
2010	1234	923	131	99
2011	812	1182	92	68
2012	653	965	64	103
2013	680	1395	77	111
2014	610	1120	60	106
2015	547	1387	69	107
2016	512	668	82	111
2017	531	742	104	55
2018	638	584	78	66
2019	235	308	38	41

I formed a total of 11-decision matrix belonging to six firms among 2008-2018, by using the profitability ratios (a decision matrix per year). Due to space

concerns, only the matrix displaying the year 2008 included (Table III).

Figure 2: Table II :

III

2013	1.756	3.465	3.555	5.646	2.726	3.467
2014	1.914	3.595	4.606	5.714	2.816	3.733
2015	1.787	4.823	7.555	8.453	3.847	4.972
2016	1.335	4.254	7.27	5.93	3.892	4.018
2017	1.724	3.406	4.86	5.134	3.583	3.037
2018	1.808	2.669	1.473	1.905	2.043	1.899
2019	1.940	2.665	1.469	1.702	2.085	1.887

b) Developing econometric model

2008	CR	STR	AR	AT	FAT	ROS	ROE	ROA	DR	L
Migros	1.354	6.946	0.948	0.593	3.045	0.0950	0.076	0.056	1.284	1
Bim	0.761	20.151	0.346	5.057	10.496	0.0350	0.564	0.179	0.465	1
Tat	0.973	5.206	0.582	1.195	4.033	0.0200	0.078	0.024	0.431	1
Kent	0.797	7.228	0.575	0.991	2.844	0.0520	0.160	0.051	0.469	1
Banvit	1.354	11.038	1.011	1.591	5.085	0.0050	0.035	0.007	0.266	1
Ülker	1.245	2.399	1.089	0.151	1.077	0.3670	0.149	0.055	0.590	1

Table IV indicates the financial performance scores calculated for 11 years using the TOPSIS method

Table IV: Financial performance scores

	MIGROS	BIM	TAT	KENT	BANVIT	ULKER
2008	2.714	5.062	4.965	5.077	4.496	5.422
2009	1.874	3.878	3.956	5.798	3.546	4.318
2010	1.92	3.873	4.159	5.355	3.895	4.947
2011	2.092	4.757	4.974	6.573	4.069	5.127
2012	2.047	4.457	4.663	7.548	3.717	4.391

Figure 3: Table III :

V

Data set	Pesaran CD test	p
LFP	8.4511	0.0000
LBV	5.7085	0.0000
LROS	-1.6223	0.1047
LROA	-1.1075	0.2681
LROE	-1.4374	0.1506
p<0.05		

Figure 4: Table V :

VI

						59
						Volume XX Issue VII Version I
						(H)
	t-bar	cv10	cv5	cv1	Z[t] bar	p
LFP	-1.381	-2.220	-2.370	-2.260	0.790	0.770* non-stationary series
LBV	-1.843	-2.220	-2.370	-2.260	-0.299	0.383* non -stationary series
P>0.05						

[Note: T]

Figure 5: Table VI :

VII

	LROS		LROA		LROE	
	statisitic	p	statisitic	p	statisitic	p
Levin Li Chu (t)	-5.652	0.0000*	-9.9634	0.0000*	-10.352	0.0000*
Im pesaran Shin (W)	-3.606	0.0002*	-7.4259	0.0000*	-7.781	0.0000*
ADF -Fisher (chi squire)	34.138	0.0006	63.998	0.0000*	63.998	0.0000*
	*					
PP Fisher (chi square)	34.001	0.0007*	70.034	0.0000*	73.829	0.0000*
P<0.05;						
ii. Panel data model selection						
a. Panel data model selection in non-stationary series						

Figure 6: Table VII :

Series: D(LFP) Method	Unit root test for LFP series (First gen
Null: Unitroot (assumes common unitroot process)	Statistic
Levin, Lin & Chu t*	-2.36571 0.0000*
Pesaran Smith and Shin suggest (2001) Auto	
Regressive Distributed Lag model (ARDL) which is a	
special type of cointegration test for cases when	
stationarity level of series are different I(0) and I(1). While	
cointegration tests estimate long-term relationships	
between the variables, error correction models (ECM)	
estimate both long term and short-term relationships.	

Figure 7:

IX

Models	Test ad?	Null Hypotesis	Test ?statisti?i	p
Model -2	F	?? 0 : ??? = 0	F (5,59)=14.28	0.0000*
	LR	?? 0 : ?? ?? = 0	Chi2 (01)=0.00	1.000
	Hausman	?? 0 : ??? = r	Chi2 (1)=1.50	2.201(re)
Model -3	F	?? 0 : ??? = 0	F (5,59)=4.480	0.0009*
	LR	?? 0 : ?? ?? = 0	Chi2 (01)=2.8e-14	1.0000
	Hausman	?? 0 : ??? = r	Chi2 (1)=2.98	0.0840 (re)
Model -4	F	?? 0 : ??? = 0	F (5,59)=11.98	0.0000*
	LR	?? 0 : ?? ?? = 0	Chi2 (01)=0.000	1.0000
	Hausman	?? 0 : ??? = r	Chi2 (1)=8.35	0.0039(fe)
Model -2:				

[Note: (One way random effects model) Model -3: ?????? ??? = ?? 0?? + ?? ?? ??? ????? + ?? ??? (One way random effects model) Model -4: ?????? ??? = ?? 0?? + ?????? ??? + ?? ??? (One way fixed effects model)]

Figure 8: Table IX :

X

Are Brand Value Reports Compatible with Financial Reports?

Modeller	Jarkue	Year 2020
?? ??? = 0; (Model 2)	Bera	61
?? ??? = 0 (Model 3)	0.891	Volume XX Issue VII Version I
?? ??? = 0 (Model 4)	0.746	(H)
P> 0,05; **p>0.01	3.098	Global Journal of Human Social Science -
		P
		0.9230*
		0.0580*
		0.0143**

© 2020 Global Journals

Figure 9: Table X :

XI

Model	Null Hyp	Test Statistic	p
Model 2 (re)	Var(u)=0	Breush Pagan LM, Chibar2 = 71,84	0.0000
Model 3 (re)	Var(u)=0	Breush Pagan LM,,	0.0010
		Chibar2(01)=9.61	
Model 4 (fe)	?? ?? 2 = ?? 2	Wald testi, Chi2 (6)= 978.04	0.0000

p<0,05
c) Autocorrelation

Figure 10: Table XI :

XII

Model	Test ?statisiti?i	p
Model 2 (re)	LM (lambda=0) = 24.97 Pr>chi2 (1)	0.0000*
	ALM (lambda=0) = 2.34 Pr>chi2 (1)	0.1262
	Joint (var(u)=0, lambda=0) =74.18 LM (lambda=0) = 7.20 Pr>chi2 (1)	0.0000*
Model 3 (re)	Joint (var(u)=0, lambda=0) =11.88 Modified Bhargava et al. DW=1.89 ALM (lambda=0) =2.27 Pr>chi2 (1)	0.0425*
Model 4 (fe)	Joint (var(u)=0, lambda=0) =11.88 Modified Bhargava et al. DW=1.89 (?f db<DW<4-db Baltagi Wu LBI= 2.09 P<0.05 d) Cross section dependency (Correlation among units)	0.0000* n= 66 için db=1.37 No aotocorela- tion) 1.37<1.89<2.63

Figure 11: Table XII :

XIIIXIII

Model 2	Model 3	Model 4
Pesaran= -1.402	Pesaran = -1.329	Pesaran: -0.748
P=1.839	P= 1,816	P= 1,816

Figure 12: Table XII Table XIII :

XIV

			xtmg	dLFP	dLBV	dlLFP	lLFP	lLBV	aug
dLFP	Coef	Std Err		z	p>Z	[95% Interval]	Conf.		
dLBV	.0578541	.0780104		0.74	0.458	.0950435		.2107518	
dlLFP	.5636441	.1037567		5.43	0.000	.3602847		.7670036	
lLFP	-1.018913	.2006249		-5.08	0.000	1.412131		-	
lLBV	-.0434217	.1250677		-0.35	0.728	-.28855		.2117066	
00000Rc	1.024834	.2012054		5.09	0.000	.6304785		1.419189	
cons	.8251058	.8490087		0.97	0.331	.8389207		2.489132	
Wald chi2(4)	= 36.97	Prob > chi2		=		0.0000			

Variable 00000Rc refers to the common dynamic process.

Figure 13: Table XIV :

XV

		xtgls	LROS	LBV	i(id)	t(t)	panels (correlated)		
LROS	Coef.	Std. Err.					z	P>z	[95% ConfInterval]
LBV	.1891839	.0310992					6.08	0.000	.1282306 .2501371
_cons	-4.005708	.1962197					-	0.000	-4.390292 -
							20.41		3.621125
Wald	= 37.01	Prob> chi2					=		
chi2(1)							0.0000		
Table XVI: Relation between BV and ROA (Model 3)									
		xtgls	LROA	LBV	i(id)	t(t)	panels (correlated)		
LROA	Coef.	Std. Err.					z	P>z	[95% ConfInterval]
LBV	.2209399	.0517723					4.27	0.000	.119468 .3224118
_cons	-4.003274	.3248985					-	0.000	-4.640063 -
							12.32		3.366485
Wald	= 18.21	Prob> chi2					=	0.0000	
chi2(1)									
Table XVII: Relation between LBV and LROE (Model 4)									
		xtgls	LROE	LBV	i(id)	t(t)	panels(hetero)		
LROE	Coef.	Std. Err.					z	P>z	[95% ConfInterval]
LBV	.4122762	.0687638					6.00	0.000	.2775016 .5470508
_cons	-3.891073	.3830425					-	0.000	-4.641823 -
							10.16		3.140323
Wald	= 35.95	Prob> chi2					=	0.0000	
chi2(1)									

Figure 14: Table XV :

318 .1 Year 2020

319 Are Brand Value Reports Compatible with Financial Reports?

320 [Tato?lu () , F Y Tato?lu . *Panel veri Ekonometrisi. ?stanbul: Beta* 2013.

321 [Tato?lu () ?leri Panel Veri Analizi, F Y Tato?lu . 2013. ?stanbul: Beta.

322 [Buil et al. ()] ‘A Cross National Validation of the Consumer Based Brand Equity’. I Buil , L De Chertanory , E Martinez . *Journal of Product and Brand Management* 2008. 17 (6) p. .

323 [Kobry? ()] *A data pre-processing model for the TOPSIS method. Folia economic Stetinensis*, A Kobry? . 2016. p. .

324 [Huang ()] ‘A Review of Brand Valuation Method’. C W Huang . *Journal of Service Science and Management* 2015. 8 (1) .

325 [Buvaneeswari and Venkatesh ()] ‘A Study on Financial Performance with Special Reference to Sundaran Hydraulics Limited Chennai’. R Buvaneeswari , M Venkatesh . *International Journal of Advanced Research in Management and Social Scince* 2013. 2 (3) .

326 [Ceylan ()] *A Study on The Brand Value-Profitability Relationship: Hirose method and Panel Causality Analyses, Muhasebe ve Finansman Dergisi*, E I Ceylan . 2019. p. .

327 [Bhasin ()] ‘Accounting Manipulations in Corporate Financial Reports: Study of an Asian Market’. L B Bhasin . *International Journal of Management Sciences and Business Research* 2016. 5 (11) p. .

328 [Liu et al. ()] ‘Applying consumer-based brand equity in luxury hotel branding’. M T Liu , I A Wong , T H Tseng , A W Chang . *Journal of Business Research* 2017. p. .

329 [Yu-Jie ()] ‘Applying FMCDM to Evaluate Financial Performance of Domestic Airlines in Taiwan’. W Yu-Jie . *Expert Systems with Applications* 2008. 34 (3) p. .

330 [Werbeten and Wijn ()] ‘Are Brand Equity Measures Associated with Business-Unit Financial performance? Empirical Evidence from Netherlands’. H M Werbeten , P Wijn . *Journal of Accounting, auditing and Finance* 2010. 25 (4) p. .

331 [Pesaran and Shin ()] ‘Bound Testing Approaches to the analysis to the analysis of level relationship’. M H Pesaran , Y Shin , SmithR . *Journal of Economic Society* 2001. 75 p. .

332 [Kalicanin et al. ()] *Brand Orientation and Financial Performance Nexus. Industrial*, D Kalicanin , S Veljković , Z Bogetic . 2015. 43 p. .

333 [Yeung and Ramasamy ()] *Brand value and Firm Performance. Brand management*, M Yeung , B Ramasamy . 2008. 15 p. .

334 [Barth et al. ()] ‘Brand Values and Capital Market Valuation’. M Barth , M B Clement , G Foster , R Kasznik . *Review of Accounting Studies* 1998. 3 (1-2) p. .

335 [Ottoson and Weissenrieder (1996)] *Cash Value Added -a New Method for Measuring Financial Performance*, E Ottoson , F Weissenrieder . 10.2139/ssr:10.2139/ssr. <http://dx.doi.org/10.2139/ssr:10.2139/ssr> 1996. March 1. April 20. 2018.

336 [Engle and Granger ()] ‘Cointegration and Error Correction: Representation, Estimation and Testing’. Engle , G Granger . *Econometrica* 1987. 1987. 55 p. .

337 [Keller ()] ‘Conceptualizing, measuring and Managing Customer-Based Brand Equity’. K L Keller . *Journal of marketing* 1993. 57 (1) p. .

338 [Zavadskas et al. ()] ‘Development of TOPSIS Method to Solve Complicated Decision-Making Problems: An Overview on Developments from’. E K Zavadskas , A Mardani , Z Turskis , A Jusoh , K M Nor . *International Journal of Information Technology & Decision Making* 2016. 2000 to 2015. 15 (3) p. .

339 [Pesaran and Smith ()] ‘Estimating Long-Run relationship from Dynamic Heterogeneous Panels’. M H Pesaran , R P Smith . *Journal of Econometrics* 1995. 68 p. .

340 [Young and Breyne ()] *EVA and value based management*, S D Young , S F Breyne . 2001. USA: McGraw-Hill.

341 [Inani and Gupta ()] ‘Evaluating financial performance of Indian IT firms: an application of a multi-criteria decision-making technique’. S K Inani , R Gupta . *International Journal of Behavioural Accounting and Finance* 2017. 6 (2) p. .

342 [Cheng-Ru et al. ()] ‘Financial Service of Wealth Management Banking: Balanced Scorecard Approach’. W Cheng-Ru , C.-T Lin , P.-H Tsai . *Journal of Social Sciences* 2008. 4 (4) p. .

343 [Stanton and Furrel ()] *Fundemental of Marketing, Eight Edition*, W Stanton , Charles Furrel . 1987. Mc Grav Hill, USA.

344 [Wang and Elhag ()] ‘Fuzzy TOPSIS Method Based On Alpha Level Sets with an Application to Bridge Risk Assessment. Expert Systems with Applications’. Y M Wang , T S Elhag . *Expert Systems with Applications* 2006. (31) p. .

31 LIMITATIONS AND FUTURE RESEARCH

373 [Arora and Chaudhary ()] 'Impact of Brand Value on Financial Performance of Banks: An Empirical Study on
374 Indian Banks'. S Arora , N Chaudhary . *Universal Journal of Industrial and Business management* 2016. 4
375 (3) p. .

376 [Rogerson ()] 'Intertemporal Cost Allocation and Managerial Investment Incentives: A Theory Explaining the
377 Use of Economic Value Added as a Performance Measure'. W P Rogerson . *Journal of Political Economy*
378 1997. 105 (4) p. .

379 [Aaker ()] *Managing Brand Equity: Capitalizing on the Value of Brand name*, D Aaker . 1991. New York: Free
380 Press.

381 [Erdil and Uzun ()] 'Marka Olmak'. T S Erdil , Y Uzun . *Beta* 2010.

382 [Perry and Wisnom ()] *Markanın DNA'sı?n İstanbul, Turkey: Media Cat yay?nlar?*, A Perry , D Wisnom . 2003.

383 [Pride and Ferrel ()] *Marketing Concept and Strategy, Seventh Edition*, W Pride , O C Ferrel . 1991. Houghton
384 Mifflin Company, USA.

385 [Aaker ()] 'Measuring Brand Equity across Products and markets'. D A Aaker . *California Management Review*
386 1996. 38 (3) p. .

387 [Strack and Wills ()] 'RAVE?Integrated Value Management for Customer, Human, Supplier and Invested
388 Capital'. R Strack , U Wills . *European Management Journal* 2002. 20 (2) p. .

389 [Tiwari ()] 'Separation of Brand Equity and Brand Value'. M K Tiwari . *Global Business Review* 2007. 11 (3)
390 p. .

391 [Granger and Newbold ()] 'Spurious Regression in Econometrics'. C W Granger , P Newbold . *Journal of
392 Econometrics* 1974. (2) p. .

393 [O'cass and Frost ()] *Status Brands: Examining the Effects of Non-product Related Brand Association on the
394 Status and Consumption1 Journal of Product and Brand Management*, A O'cass , H Frost . 2002. 11 p. .

395 [Samadi et al. ()] 'The Impact of Social-Cultural Innovation and Brand Performance of the Companies Listed in
396 Tehran Stock Exchange'. M Samadi , M Bagheri , M Ghanavati . *Research Journal of International Studies*
397 2010. (15) p. .

398 [Rasti and Gharibvand ()] 'The Influence of Brand Value on selected Malaysian's Companies Book Value and
399 Shareholders'. P Rasti , S Gharibvand . *Review of Contemporary Business Research* 2013. 2 (1) p. .

400 [Kim and Kim ()] 'The Relation between Brand Equity and Firms' Performance in Luxury Hotels and Chain
401 Restaurants'. H Kim , W G Kim . *Tourism Management* 2005. 26 p. .

402 [Yükçü and Ata?an ()] *TOPSIS Yöntemine göre performans de?erleme*, S Yükçü , G Ata?an . 2010. MUFAD.
403 18 p. .

404 [Haig and ?lgüner ()] *Türkiyenin en de?erli markalar?n?n y?ll?k raporu*, D Haig , M ?lgüner . [tarihindewww.
405 brandfinans.comadresindenload?nd](http://tarihindewww.brandfinans.comadresindenload?nd) 2015. 2016. Aral?k.

406 [Kreigbaum (1998)] *Valuation of Brand-A Critical comparison of Different Methods*, C Kreigbaum . 1998. April
407 8. Dresden, Germany. Tehhnische Universite Dresden

408 [Knight ()] *Value Based Management: developing systematic approach to creating shareholder value*, J A Knight
409 . 1998. New York: McGraw Hill.

410 [Abratt and Bick ()] 'Valuing Brands and Brand Equity: Methods and Processes'. R Abratt , G Bick . *Journal
411 of Applied Management and Entrepreneurship* 2003. 8 (1) p. .