

Emission of CO₂ from the Consumption of Electric Power and Fuel in Mato Grosso do Sul: A Data Envelopment Analysis

Raul Asseff Castelao¹, Daniel Massen Frainer², Celso Correia de Souza³ and Joao Bosco Ardues Carneiro Junior⁴

¹ Universidade Anhanguera-Uniderp

Received: 14 December 2019 Accepted: 3 January 2020 Published: 15 January 2020

7

Abstract

With the progress of humanity, energy production and consumption has gradually increased over the years. In mid-1970, energy production and consumption started to have importance not only to progress and to the society, but also to the environment and, in this case, its impacts on the environment also increased, causing, for example, greenhouse gas emissions. Thus, understanding the relationship between energy consumption and its effects on society and the becomes essential for companies to achieve the goals of sustainable development. In this sense, the objective of this article is to identify the municipalities of the state of Mato Grosso do Sul with greater efficiency in the years 1991, 2000 and 2010 from the data envelopment analysis of 78 municipalities. As a result, only one municipality has very high efficiency regarding the energy consumption, population density, gross domestic product and fuel consumption and observed a reversal of efficiency between the years of 1991, 2000 and 2010 resulting in a worsening in the efficiency of the municipalities in terms of the relationship of energy consumption and its effects on the population and the environment.

22

23 *Index terms—*

1 Introduction

25 economic growth and energy are related topics between themselves, in the light of the modifications of the energy matrix from the industrial revolution and, since then, the use of fossil energy in the world has been growing and creating a link of dependency with the productive sector. In addition to this question, higher energy consumption from the decade of 1970 draws attention to the effects on the environment (ANDRADE and MATTEI, 2011).

29 The energy consumption is an object of great discussions when it comes to the conditions of developing countries. Being the basis of productive activities, inevitably, the energy consumption causes impacts on the environment. Therefore, if in the past the energy was seen only as an input for the production, currently, is at the center of the debate of environmental preservation (MONTEIRO et al., 2012).

33 The study of the relationship among energy development, production and consumption and their effects, including greenhouse gas emission (GHG), it is a topic widely discussed in the national and international literature (DOGAN and SEKER, 2016; LIU, 2017) ??GUNNEY, 20019).

36 Some developed studies demonstrate the correlation and even the cause-and-effect relationship among energy consumption and the quality of life and social progress, as is the case mentioned by Palmira et al. ??2018), they describes that investment in renewable energy use benefits the society allowing, including a reduction in the emission of greenhouse effect gases.

40 In this sense, it is clear that the global model of production and use of energy, mostly depend on fossil fuels, which in turn emit greenhouse gases causing damage to the environment (HINRICHES and KLEINBACH, 2003).

42 According to the International Panel on Climate Change (IPCC), the advance of anthropogenic emissions of greenhouse gases is the predominant cause of global warming (LEAL, 2015). In a complementary way, the

1 INTRODUCTION

44 world energy report, produced by the International Energy Agency (IEA), exposes the report of 2018 that the
45 governments of the major world powers have made clear the message that, about to the promises on the issue
46 of climate change, that the use of fossil fuels, particularly natural gas and oil, will continue to be based on the
47 energy system (IEA, 2018).

48 Continuous Emissions of GHG will cause more heating and have the potential to seriously damage the natural
49 environment, and affect the global economy becoming the most urgent global threat more in the long term for
50 the prosperity and security of future generations (ZHANG, 2016).

51 The IEA projections indicate that global demand for energy will pass be 17.3 billion tons of oil equivalent
52 (toe) in 2030. In this case, the demand would be met by the supply of sources that emit greenhouse gases in
53 their majority, resulting in greater participation in the global energy matrix in 2030 ??IEA, 2018).

54 Due to that, the concern with the energy production and use, and their impacts on the environment and society,
55 has gained prominence, allowing the development of actions to improve the energy production and consumption
56 also guaranteeing the reduction of GHG emissions, among them, the CO 2.

57 The reduction of CO 2 emissions is seen as one of the items of the Sustainable Development Goals (SDGs) of
58 the United Nations Organization (UNO). Goal 7, which deals with clean and affordable energy, establishes that
59 the reduction of emission levels of CO 2 is fundamental to achieving this goal (UN, 2018).

60 The ODS has been defined also in terms of identifying the need to work the use of energy related to sustainable
61 development. According to UN data (2016), the use of energy from fossil fuels is responsible for around 60% of
62 total GHG emissions, ratifying the importance of production and use of clean energy in order to mitigate GHG
63 emissions and for sustainable development (APERGIS et al., 2018).

64 Overall there are seventeen Sustainable Development Goals (SDGs) and 169 goals, which range from issues
65 such as, for example, combating poverty through the conservation of biodiversity in rivers, lakes, and oceans
66 (MARCOVITCH, 2016).

67 In Brazil, the electric energy consumption in 2016 amounted to 460.8 TWh, value 0.9% lower than the one
68 registered in 2015, and the per capita consumption of 2,228 kWhhab -1 . According to EFE (2017), the sectors
69 that contributed most to this reduction were the industrial (-1.3%), followed by energy (-7.7%) and commercial
70 (-2.4%).

71 In Mato Grosso do Sul (MS), in the last ten years, the main source of energy was water, however, the largest
72 source of energy consumption by the productive sector was the firewood, with 30% of the total, on average.
73 Still, the energy use increased from 5,077.89 tons of oil equivalent (toe) in 2010 to 5,379.66 in 2015, reaching to
74 consume 7,757.77 PTE in 2014, an increase of 5.94% (BEN-MS, 2016).

75 Regarding the emission of GHG emissions, in 2016, the total number of anthropogenic emissions associated
76 with the Brazilian energy matrix reached 428.95 million tons of carbon dioxide equivalent (Mt CO2-eq), being
77 the largest part (194.3 Mt CO2-eq) generated by the transport sector. In 2010, the carbon intensity of the
78 economy was 0.15 kg CO 2 (US\$ppp) -1 . According to IEA (2014), Brazil remains less intense in carbon about
79 European economies (-11%), North American (-50%), and Chinese (-70%). The Brazilian electrical sector issued,
80 on average, 101.3 kg CO 2 to produce 1 MWh of energy, very low index when compared with countries of the
81 European Union (366.2) (489.2) and China (772.1) (EPE, 2017).

82 The system of Estimates of Emissions and Removals of Greenhouse Effect Gases (SEEG) produces annual
83 estimates of emissions of greenhouse gases (GHG) in Brazil, according to the guidelines of the Intergovernmental
84 Panel on Climate Change (IPCC). From the data of the platform SEEG, 1.58 billion tons of CO 2, being that
85 the change of land use forest was dumped in the country, an increase of 12% compared to the year 2015.

86 Historically, 83% of the CO 2 emissions in Mato Grosso do Sul, between 2002 and 2014 occurred in function
87 of the sector of land use change. The energy sector is the second sector that emitted CO 2 the most along the
88 historical series, 15.45%, and the fourth and fifth placings, respectively, industry and waste, with 0.93% and
89 0.004% ??SEEG, 2017).

90 When disaggregating the MS data of the sectors regarding the emission of CO 2 of the SEEG basis, it is
91 realized that the land use change for farming and other activities represents 83.6% of the total real change of
92 soil, being the main source of induction for the emission of CO 2 in the State. In the case of the energy sector
93 (which belongs to the group of services), the transport activity represents 60.7% of the total of the sector.

94 The average estimated emission of CO 2 , the group land-use change, is approximately 30.76 million tons and
95 the energy sector of 5,690 million tons. Industrial processes and wastes have an average of 342 thousand tons
96 and 1.43 billion tons of CO 2 . With the record of emissions in 2015 and 2016, MS is in 14th place in the ranking
97 of Brazilian state emitters of CO 2 ??SEEG, 2017).

98 Due to the emission of GHG emissions in the environment, derived from the production and consumption
99 process, which in turn, demand energy, this article has as objective to identify the municipalities of the state of
100 Mato Grosso do Sul with greater efficiency, being that the interpretation of this efficiency means having good
101 results in the local quality of life with low consumption of electrical energy and fuels.

102 Thus, the work has sought to describe the effects of GHG emissions in a state that has three biomes (Pantanal,
103 Cerrado and Atlantic Forest), among which two are recognized by ??NESCO (2000) as humanity world heritage.
104 Therefore, the relevance of the work consists of identifying the municipalities that best promote quality of life for
105 its citizens with low power consumption, thus ensuring better conservation and maintenance of natural resources
106 existing in the state.

107 **2 II.**

108 **3 Material and Methods**

109 In the present study, the universe considered are 78 cities of Mato Grosso do Sul, where the indicators related
110 to growth and economic development, as well as the consumption of electrical energy in these municipalities
111 will be analyzed. The municipality of Paraíso das Águas was created in 2003 and, therefore, has no data in the
112 same period of research, being thus removed from the survey universe. The historical and comparative statistical
113 methods will serve as auxiliary methods in the search for the identification of the efficiency of the municipal
114 energy consumption.

115 From the context that energy efficiency can contribute to the environment and the society itself it will be carried
116 out, using data envelopment analysis (DEA), based on secondary data, if there is efficiency in the use/consumption
117 of electric energy in the selected municipalities.

118 The data envelopment analysis (DEA) was developed by ??harnes et al. (1978) and is based on the use of
119 linear programming for analysis of measures of comparative efficiencies of the so-called decision making units
120 (DMU), which uses the same inputs to generate the same outputs (ANGULO- MEZA et al., 2005).

121 The DMU 0 technical efficiency will be achieved through a PPNL (problem of non-Linear Programming),
122 model (1), in which the technical efficiency is obtained by maximizing the division between the weighted sum of
123 "Outputs" (outputs) by the weighted sum of the "inputs" (inputs) (FERREIRA and GOMES, 2009).

124 (1) subject to:

125 Where: H 0 = efficiency of DMU 0 ; r = quantity of inputs; s = quantity of outputs; n = number of DMU; y
126 jk = value of the dmu output j k ; x ik = value of the input i for the DMU k ; u j = weight on the output j; v i
127 = weight on the input i; y j0 = value of the output j of the DMU 0 (DMU 0 = DMU observed); x I0 = value of
128 the input of the DMU 0 .

129 The model (1) involves searching for values for u and v, also called multipliers, which are the weights, to
130 maximize the weighted sum of the outputs (output virtual) divided by the weighted sum of the inputs (input)
131 of the DMU 0 in the present study, subject to the restriction that this ratio is lower than or equal to one, for all
132 the DMU k . This function is subject to the restriction that when the same set of coefficients of you j input and
133 output v i are applied to all other units of services that are being compared, no unit will exceed 100% efficiency,
134 or a ratio of 1.00.

135 In general, there are two models of DEA: BCC and CCR. The DEA -BCC model is based on the condition
136 of scale variable returns, while the DEA-CCR model is based on constant scale returns. The data envelopment
137 analysis also us to be oriented to inputs or outputs. In the case of being oriented to inputs, efficiency means
138 that there should be reduction of resources, maintaining the same level of production, and the version is oriented
139 toward outputs, remains unchanged the inputs ??BANKER et al., 1984).

140 The DEA models may produce DMUs falsely v, because, if the DMU's number is too large, the application
141 of the BCC model, usually results in benevolent results due to the characteristics of the mathematical model,
142 which does not happen with the CCR model (ALI, 1993; ANGULO-MEZA et al., 2005).

143 In order to avoid the false-positive results the reversed border will be used for the analyzes of the results. The
144 reversed border takes into consideration the reversal between input and output, allowing two interpretations: (i)
145 the inefficient border consists of DMUs with the worst managerial practices, and (ii) that these same DMUs have
146 the best practices, considering the opposite bias (SOARES DE MELLO et al., 2003).

147 If a DMU has high efficiency, this must be a result close to 1 in the standard default border and low level
148 about the reversed border. Thus, it is not enough for the DMU to have a result considered efficient in what it is
149 considered the best, but also it may not have poor performance when the analysis is its weak points ??PIMENT
150 et al., 2004).

151 In addition to the use of the reversed border, the composed border will be used for data analysis, whose
152 result is through the standard border and the inverted one, using the arithmetical average between the standard
153 efficiency, and the value of the complement of reversed efficiency, equation (??).

154 (2)

155 Those DMUs with efficiencies equal to 1 at the composed border will be considered with ideal levels of
156 efficiencies. In table 1 the ranges of scales of efficiency for the DMUs in analyzes are described, taking as a
157 reference to the ranges of the results of the Human Development Index (I.D.A.) of UNDP. This scale of outcome
158 is adopted due to dealing with I.D.H. as being one of the most robust and accepted parameters for measuring
159 the development, both human and social of a given locality. For the analysis of the use of electrical energy in
160 Mato Grosso do Sul, it takes into account that each of the 78 selected municipalities will be a DMU. The array
161 of variables is given in Table 2. For the calculation of demographic density, it was necessary to calculate year
162 to year, the ratio between the size of the population and the size of the municipality to define this indicator
163 from year to year. For the years 1991, 1995, 1998, 2000 and 2010 the areas of the municipalities are informed
164 and were replicated for the remaining years sequentially. The size of the population of the municipalities, either
165 estimate or census, are made available annually. The consumption of electrical energy, the GDP, and estimation
166 of emission of CO 2 have data for all years.

167 Due to the data availability, the historical series covers the years 1991, 2000 and 2010. The option for the
168 used variables had as a first criterion to be variables which the UN works on measuring sustainable development

6 CONCLUSION

169 through its guide "Sustainable Development Indicators: landmark and methodologies" and second, to be able to
170 describe the variables, population growth and its consequent pressure on the environment, in this case, measured
171 by the CO₂ emission.

172 Based on the selected variables, it is assumed that these can be considered as primary indicators of CO₂
173 emission in the cities of Mato Grosso do Sul. Still, the energy consumption and total fuel (petrol, ethanol, diesel
174 and aviation kerosene) remain as proxy variable for the impact on the environment through CO₂ emission.

175 4 III.

176 5 Results and Discussion

177 After the development of the models application, it was possible to observe that the best model, one that showed
178 the best results was the DEA -BCC model, both directed to inputs and products, therefore, was the one that
179 best represented the production border of the DMU's, in the specific case, the municipalities.

180 In response to the objective of the study, it was chosen to emphasize to the products-oriented models by
181 adopting the bias to produce better results (maximize production), keeping constant the resources, i.e., it is
182 sought to increase the products without changing the inputs.

183 The main concept regarding the best assessment, i.e., more efficiency, is not the municipality that holds more
184 volume, but rather, the one uses the best resources that the same has. Therefore, the best municipality is the
185 one that shows more efficient allocation of resources and investments, increasing the products/services offered to
186 the local population, and not the one that holds greater absolute volume of resources.

187 From the results obtained in the DEA _BCC, model, it is noted that there is a reversal of efficiency along
188 the historical series (Table 1). While in 1991, 28% of the 78 cities studied had high and very high efficiencies, in
189 2010, twenty years later, only 8% reported similar results. Only Jaraguari remained as high efficiency and very
190 high in 1991, 2000 and 2010. In contrast, as the years went by a significant increase of municipalities in the range
191 from very low efficiency was registered, leaving 28% from 78 to 59% of the total.

192 The year of 1991 can be considered the best of the studied period, because it presents a greater number
193 of municipalities considered of high and very high efficiencies. As hypotheses for these results, the size of the
194 population and the level of economic activity that was relatively minor compared to the year 2000 and 2010, can
195 explain, at least in part, this beneficial effect for the municipalities and the environment.

196 The municipality of Jaraguari presents itself as the best efficiency considering the historical series, followed by
197 Bandeirantes and Ribas do Rio Pardo. The fact that the ten-best place on efficiency are the municipalities with
198 less than twenty thousand inhabitants, with little dynamic economic matrix.

199 Regarding the main cities of the State in terms of population, the best place from the geometric mean was
200 Corumbá, in 29th position. Campo Grande, the capital of the State, appears in 43rd position, Dourados in 51st
201 and Três Lagoas in 52nd position.

202 In the variation among the years considered in the survey, it was noted a significant improvement in the
203 efficiency of the largest municipalities of MS (Table 2). In table 3 the position of each municipality of MS for
204 each year studied is exhibited. From these results it is possible to observe the existence of change for lower in
205 most of the municipalities in the passage of the years 1991 to 2010, and soon after, a slight improvement between
206 2000 to 2010. This result might have been achieved due to improvements in both energy consumption and by
207 part of the population and economic growth.

208 More abrupt variations also stand out such as, for example, Bandeirantes, Costa Rica, Inocência, Jardim,
209 Miranda, Nova Alvorada do Sul and Sidrolândia which changed the efficiencies more significantly, both for the
210 purpose of better or worse efficiencies.

211 Regarding the general index calculated based on the efficiency of municipalities, Jaraguari leads the ranking,
212 followed by municipalities Bandeirantes, Ribas do Rio Pardo, Bataguassu and Chapadão do Sul. Ladário, Santa
213 Rita do Pardo, Douradina, Sete Quedas and Paranhos have the lowest efficiency (Table 4).

214 Volume XX Issue III Version I The general result reveals no municipality with a result considered as being
215 of full efficiency, one where the combination among the development of the population, environment and society
216 itself happens without loss of structural funds for any one of these variables, However, there have been many
217 municipalities considered of low degree of efficiency.

218 6 Conclusion

219 From the use of the data envelopment analysis, it was possible to identify that only the municipality of Jaraguari
220 is the one that presents better results in terms of efficiency and its relationship with the environment.

221 The existence of a reversal of efficiency between the years of 1991, 2000 and 2010 was observed regarding a
222 larger number of municipalities with very low degree of efficiency and low in 2010 compared with 1991, i.e., a
223 worsening is depicted in the municipalities efficiency considering the variables of energy consumption, population
224 density, GDP and fuel consumption.

225 Part of this result can be explained by the increase of population and economic growth (measured by GDP)
226 once when there is an increase of these two variables, the trend, *ceteris paribus*, is that there is greater pressure
227 on the fuel and energy consumption.

228 Although there are improvements in 2010, the largest cities in the State also presented results of average
229 efficiency, corroborating with the result somewhat positive in terms of emission of greenhouse effect gases in the
230 state of Mato Grosso do Sul.

231 From this result, the necessity is evident of deepening the construction of public policies and even of the
232 population awareness regarding the use/demand for energy and fuel in order to settle the emission of greenhouse
gases, especially carbon dioxide in Mato Grosso do Sul, aiming at the environment and wellbeing preservation.

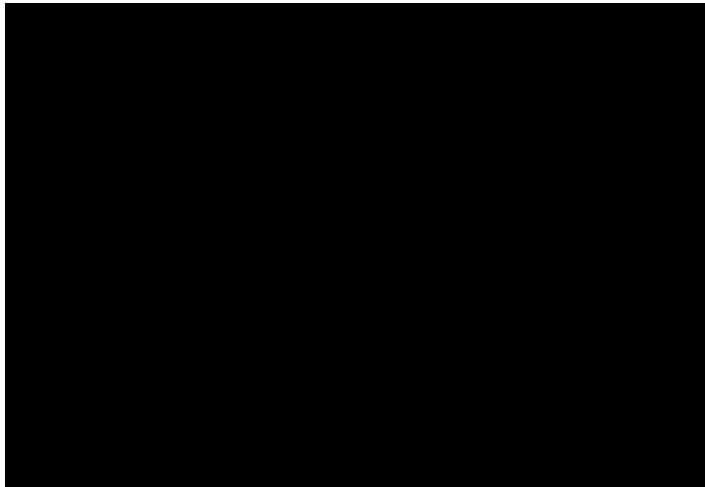


Figure 1:

1

Range of efficiency	Level of efficiency in the Standard border	Level of efficiency in the Reversed border
0.0000 -0.4999	Very low	Fully Efficient
0.5000 -0.5999	Low	Very High
0.6000 -0.6999	Medium	High
0.7000 -0.7999	High	Medium
0.8000 -0.9999	Very High	Low
1	Fully Efficient	Very low

Source: Adapted from PNUD (2013).

Figure 2: Table 1 :

233
234

6 CONCLUSION

2

Year 2020

12

Volume XX Issue III Version I

Variable	Residential consumption of energy	Source	Function
Demographic density	GDP	SEMA-GRO	Input
Consumption	Fuel	IBGE	Input
		IBGE	Output
		SEMA-GRO	Output

(B)

Global Journal of Human Social

Science -

© 2020 Global Journals

Figure 3: Table 2 :

1

Level of efficiency	1991	2000	2010
Fully Efficient	-	-	-
Very High	15%	10%	4%
High	13%	4%	4%
Medium	23%	21%	10%
Low	21%	19%	23%
Very Low	28%	46%	59%

Figure 4: Table 1 :

2

Municipality	1991	2000	2010
Campo Grande	52nd	50th	30th
Corumbá	43th	51th	22nd
Dourados	53rd	52nd	51th
Três Lagoas	55th	65th	32nd

Figure 5: Table 2 :

13
 Volume XX
 Issue III
 Version I
 (B)

Locality	1991	2000	2010	Locality	1991	2000	2010
Água Clara	67	7	44	Itaporã	57	32	38
Alcinópolis	70	11	21	Itaquiraí	72	46	11
Amambai	39	24	39	Ivinhema	34	62	25
Anastácio	3	31	62	Japorã	75	70	31
Anaurilândia	38	21	56	Jaraguari	2	4	5
Angélica	45	61	36	Jardim	4	71	70
Antônio João	26	56	42	Jateí	44	66	52
Aparecida do Taboado	20	44	55	Juti	17	28	41
Aquidauana	11	74	61	Ladário	64	77	76

Figure 6: Table 3 :

6 CONCLUSION

4

Locality	Compound	Position	Locality	Compound	Position
Jaraguari	0.86332	1st	Eldorado	0.50262	40th
Bandeirantes	0.797855	2nd	Dois Irmãos do Buriti	0.502114	41st
Ribas do Rio Pardo	0.764601	3rd	Ivinhema	0.501462	42nd
Bataguassu	0.718993	4th	Campo Grande	0.5	43th
Chapadão do Sul	0.699744	5th	Pedro Gomes	0.490507	44th
Terenos	0.697507	6th	Alcinópolis	0.487272	45th
Sao Gabriel do Oeste	0.678401	7th	Rochedo	0.485895	46th
Miranda	0.671448	8th	Nioaque	0.485031	47th
Costa Rica	0.659078	9th	Tacuru	0.478134	48th
Selvíria	0.658475	10th	Aral Moreira	0.475379	49th
Rio Verde de Mato Grosso	0.655793	11th	Angélica	0.467874	50th
Coxim	0.624702	12th	Dourados	0.466595	51th
Nova Alvorada do Sul	0.619682	13th	Três Lagoas	0.448169	52nd
Cassilândia	0.610265	14th	Mundo Novo	0.44206	53rd
Guia Lopes da Laguna	0.606411	15th	Itaquiraí	0.428691	54th
Batayporã	0.598736	16th	Jateí	0.427158	55th
Juti	0.585282	17th	Corguinho	0.426235	56th
Rio Brilhante	0.584991	18th	Taquarussu	0.423118	57th
Porto Murtinho	0.584737	19th	Glória de Dourados	0.417898	58th
Sidrolândia	0.579103	20th	Caracol	0.4122	59th
Bonito	0.574826	21st	Bela Vista	0.404383	60th
Camapuã	0.572985	22nd	Paranaíba	0.396612	61st
Amambai	0.557481	23rd	Aquidauana	0.396234	62nd
Iguatemi	0.556505	24th	Jardim	0.393169	63rd
Anastácio	0.555731	25th	Vicentina	0.365261	64th
Caarapó	0.555245	26th	Coronel Sapucaia	0.356066	65th
Nova Andradina	0.545147	27th	Laguna Carapã	0.346022	66th
Sonora	0.543096	28th	Naviraí	0.336932	67th
Corumbá	0.540953	29th	Rio Negro	0.334412	68th
Inocência	0.534446	30th	Novo Horizonte do Sul	0.317834	69th
Bodoquena	0.533529	31st	Brasilândia	0.30686	70th
Maracaju	0.532483	32nd	Fátima do Sul	0.305024	71st
Água Clara	0.527542	33rd	Ponta Porã	0.29	72nd
Deodápolis	0.527122	34th	Japorã	0.267474	73rd
Aparecida do Taboado	0.526832	35th	Paranhos	0.229639	74th
Anaurilândia	0.520804	36th	Sete Quedas	0.202064	75th
Itaporã	0.514233	37th	Douradina	0.186243	76th
Figueirão	0.510624	38th	Santa Rita do Pardo	0.14476	77th
Antônio João	0.508492	39th	Ladário	0.144015	78th

Figure 7: Table 4 :

235 [Hinrichs et al. ()] , R A Hinrichs , M Kleinbach , Energia E Meio Ambiente , São Paulo . 2003. Pioneira Thomson
236 Learning. 543.

237 [Zhang] *Are China's climate commitments in a post-Paris agreement sufficiently ambitious*, Z X Zhang .

238 [Austin: USA, -v. 30, n. 9 Management Science ()] 'Austin: USA, -v. 30, n. 9'. *Management Science* 1984. p. .

239 [Leal et al. ()] 'Ciclos econômicos e emissão de CO 2 no Brasil: uma análise dinâmica para políticas ambientais
240 ótimas'. R A Leal , R A Ely , J G Z Uhr , D A P Uhr . *Revista Brasileira de Economia* 2015. 69 p. .

241 [Andrade and Mattei ()] *Consumo energético e emissões de CO 2 : uma análise do setor de transportes brasileiro*,
242 A L C Andrade , L Mattei . 2011. Anais; Brasília. IX Encontro da Sociedade Brasileira de Economia Ecológica

243 [Convention concerning the protection of the world cultural and natural heritage. Cairns: Austrália UNESCO ()]
244 'Convention concerning the protection of the world cultural and natural heritage. Cairns: Austrália'. *UNESCO*
245 2000. p. 16.

246 [Charnes and Rhodes ()] *Data Envelopment Analysis: theory, methodology and applications*, A Charnes , Cooper
247 , W W Rhodes , E . 1994. USA: Kluwer Academic Publishers.

248 [Pimenta et al. ()] 'Decisão de realização de investimentos em tecnologia da informação com análise envoltória
249 de dados'. H L. N Pimenta , M A Macedo , Soares De , J C C Mello . *Produção Online* 2004. 4 (2) p. .

250 [Seker F ()] 'Determinants of CO2 emissions in the European Union: the role of renewable and non-renewable
251 energy'. Dogan E Seker F . *Ren. Energy* 2016. 94 p. .

252 [Documentos temáticos: Objetivos de Desenvolvimento Sustentável Brasília, julho de ()] *Documentos
253 temáticos: Objetivos de Desenvolvimento Sustentável Brasília, julho de*, 2018. 2018. p. 107. ONU

254 [Jebli M and Youssef S. B ()] 'Does renewable energy consumption and health expenditures decrease carbon
255 dioxide emissions? Evidence for sub-Saharan Africa countries'. Apergis N B Jebli M , Youssef S. B . *Ren.
256 Energy* 2018. 127 p. .

257 [Pinto Júnior and De Almeida ()] *Economia da Energia: fundamentos econômicos, evolução 20. PNUD. Índice
258 de Desenvolvimento Humano Municipal Brasileiro*, Q H Pinto Júnior , E F De Almeida . 2013. Brasília. p.
259 51.

260 [Monteiro D et al. ()] 'Emissões de co2 e consumo de energia no Paraná: uma abordagem insumoproduto'. C
261 Monteiro D , F C Rejani , R L Lopes , R L Rodrigues . *Revista Brasileira de Estudos Regionais e Urbanos*
262 2012. 06 (2) p. .

263 [EPE (Empresa de pesquisa energética) ()] *EPE (Empresa de pesquisa energética)*, 2017. 2017. p. 67. (Balanço
264 Energético Nacional. Rio de Janeiro)

265 [Ferreira and Gomes ()] *Introdução à análise envoltória de dados: teoria, modelos e aplicações*, C M C Ferreira
266 , A P Gomes . 2009. p. 389.

267 [Angulo-Meza et al. ()] 'ISYDS -Integrated System for Decision Support (SIAD Sistema Integrado de Apoio a
268 Decisão): A Software Package for Data Envelopment Analysis Model'. L Angulo-Meza , L ; Biondi N , J C C
269 B Soares M , E G Gomes . *Pesquisa Operacional* 2005. p. .

270 [Marcovitch and Redução De São Paulo Fea/Usp Em (ed.)] J Marcovitch . [https://www.usp.br/mudarfuturo/cms/Os%20Compromissos%20de%20Paris%20e%20os%20ODS%202030%3A%20Energia,%20Florestas%20e,%20Gee%20Redução%20De,%20São%20Paulo,%20Fea/Usp,%20Em%20\(ed.\)%20\(Org.\)](https://www.usp.br/mudarfuturo/cms/Os%20Compromissos%20de%20Paris%20e%20os%20ODS%202030%3A%20Energia,%20Florestas%20e,%20Gee%20Redução%20De,%20São%20Paulo,%20Fea/Usp,%20Em%20(ed.)%20(Org.))

271 [Guney ()] 'Renewable energy, non-renewable energy and sustainable development'. T Guney . *International
272 Journal of Sustainable Development & World Ecology* 2019. p. .

273 [Banker et al.] *Some models for estimating technical scale inefficiencies in data envelopment analysis*, R D Banker
274 , A Charnes , W W Cooper .

275 [Ali ()] 'Streamlined computation for Data Envelopment Analysis'. A I Ali . *European Journal of Operational
276 Research* 1993. 64 p. .

277 [Liu X et al. ()] 'The impact of renewable energy and agriculture on carbon dioxide emissions: investigating the
278 environmental Kuznets curve in four selected ASEAN countries'. Liu X , Zhang S , Bae J . *Journal of Clean
279 Produc* 2017. 164 p. .

280 [World Energy Outlook -executive summary ()] *World Energy Outlook -executive summary*, 2018. OECD/IEA.
281 p. 11. (IEA (International energy agency))

282 [Soares De et al. ()] *Índice de eficiência em fronteiras DEA nebulosas. Relatórios de Pesquisa em Engenharia de
283 Produção*, Soares De , J C C B Mello , E G Gomes , L Angulo-Meza , Biondi , L Neto . 2003. p. 47.