
© 2020. Laarfi, Ahmed & Dr. Kepuska, Veton. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distr ibution, and reproduction in any medium, provided the original work is properly cited. 

   
 

 
  

 

Implementation of a Verbal Compiler: The Need to Develop Audio 
Language to Keep Pace with Rapid Development becomes a 
Necessity 

 By Laarfi, Ahmed & Dr. Kepuska, Veton 
  

 
Abstract- This research paper aims to make essential developments in Speech Recognition(SR), 
the compiler gives the user a choice to choose the type of output, whether it is textual or 
conversational (audio). Many large companies have developed such Speech Recognition 
Systems (SRS), especially the companies producing Smartphones, Computers, and Laptops. If 
translation is taken as a model application, they have not yet developed the perfect systems. The 
purpose of this paper is to add facilities to the Speech Recognition (SR) software so that it

 
can 

deal with spoken languages. 

Index Terms: artificial intelligence, speech recognition, compiler construction, audio programming 
language.

 
GJHSS-G Classification: FOR Code: 200499

 

 

 

ImplementationofaVerbalCompilerTheNeedtoDevelopAudioLanguagetoKeepPacewithRapidDevelopmentbecomesaNecessity                    
                                                                                                         

 
                     

                                                                                              
 

 
 
       

        Strictly as per the compliance and regulations of: 

                                                                                                                                                                                     

  

  

Global Journal of HUMAN-SOCIAL SCIENCE: G 
Linguistics & Education  
Volume 20 Issue 4 Version 1.0 Year 2020 
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals 
Online ISSN: 2249-460x & Print ISSN: 0975-587X    



Implementation of a Verbal Compiler: The 
Need to Develop Audio Language to Keep 
Pace with Rapid Development becomes                    

a Necessity 
Laarfi, Ahmed α & Dr. Kepuska, Veton  σ 

  
  

   

 

 

Abstract-

 

This research paper  aims to  make essential 
developments in Speech Recognition(SR),  the compiler  gives 
the user

 

a choice to choose the type of output, whether it is

 

textual or conversational (audio). Many large companies have 
developed such

 

Speech Recognition Systems (SRS), 
especially the companies producing

 

Smartphones, 

Computers, and Laptops. If translation is taken as a model

 
application, they  have not yet developed the perfect systems. 
The purpose of this

 

paper  is to  add facilities to  the Speech 
Recognition (SR) software so that it can deal

 

with spoken 
languages.

 
Index Terms:

 

artificial intelligence, speech recognition, 
compiler construction, audio programming language.

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1:
 
From Electronic Numerical Integrator and Computer

 
(ENIAC), a building, to where? *

 

I. PREFACE
 

a)
 

“Two Chineese speak chinheese, but they need a 
chinheese

 
to chinheese

 
interpreter

 
process”

 

R is defined as speaking to computers in any 
language. The process is described through 
complex technical operations, which will be 

addressed later. The number of software packages that  
utilize SR has been massively increased. Accordingly, 
the software are

 
commonly used. Their importance is 

increasing because many devices use this new 
paradigm. The software have become essential 
applications of Laptops and Smartphones and other 
critical electronic devices. The Compiler is a virtual part  

like an interpreter between two people who speak 
entirely different languages. Most  of the traditional 
translators in programming languages are textual. Some 
changes have been made to enhance the translators by 
entering other types of files such as sounds, graphics, 
and videos in different  forms and extensions. Known 
computer languages that are numbered in the tens, if 
not hundreds, accurately represent the compiler. All 
compilers rely on the rules of a language, which are 
fixed but mostly similar to each other. The compilation of 
the artificial intelligence of SR is quite like a person who 
speaks Japanese in a local dialect that is not  known 
even to the other Japanese. Many translators who have 
studied Japanese grammar are often unable to translate 
it correctly. The intended use of such applications to 
advance the most important  modern technologies is 
advocated. 

 
 
 
 
 
 
 
 

S    

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

1

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Author α: A Ph.D. Candidate of Computer Engineering,  Artif ic ial 
Intell igence. e-mail: Alaarfi2015@my.fit.edu

“Great achievements begin with small dreams”

Author σ: A Professor of Artificial Intelligence, A speech Recognition, 
School of Electrical Engineering and Science, FIT, 150 W. University 
Blvd, Melbourne, FL, 3290. e-mail: vkepuska@fit.edu



 

Fig. 2:  Bridging The Di fferent  Language* 

II. Introduction 

a) “We live the future in our present” 
One of the most important features provided by 

the audio input of the computer is that it frees users 
from several activities. For example, there is no longer a 
need to use hands or any other type of input. Moreover, 
a quick insertion-input method of input frees the eyes 
from focusing on the input mode. 

Of course, such applications have many 
problems since their launch four decades ago until 
today. The acceleration of technological  developments 
leads to improved quality of such applications.  Users 
rely more and more on usage of such applications that  
utilize SR. The spelling of commands and the commonly 
used input  units are utilized. A separate word may be 
stored in a variable of a specific type declared by the 
compiler designer. Symbols, erratic phrases, or related 
sentences can be stored as variables according to the 
types of the entered data. The storage is completed by 
interaction between the compiler and the human. 
Ultimately, the final confirmation should be affirmed by 
the yes or no question. Thus, we have variables stored 
in memory addresses. After storage, a kind of artificial 
intelligence is introduced that leads to continual 
updating whether correcting previous errors or keeping 
the data available while storing any new information. For 
example, if a date is requested, 8 digits expected to be 
entered (2 digits for the day, 2 digits for the month, and 
4 digits for the year). In the 1990s, the computer whose 
memory was 2 megabytes was considered a good 
machine, but 4 megabytes was excellent. At that time, 
video files were the most resource-intensive, followed by 
high-resolution image files. Audio files could not be 
ignored in terms of required allocated space. The text 
files are the smallest in terms of memory size. 
Nowadays, computers have vast space available 
without considering the additions of hard disks and 
external storage devices. Although abundant memory 
space is available, the concern is the files’ sizes being 
as small as possible. Therefore, the voice information is 
stored as text data; this feature provides users with the 
ability to handle input/output files as audio files at the 

same time, that is, as byte/text files. 
PART 1 What to Do. 

b) “Programming languages produce other 
programming languages.”  

A. Design and implementation of a compiler includes a 
language supported by speech recognition in 
general 

In the late 1970s, a significant development  
took place in speech recognition systems (SRS), a vast  
improvement but still not enough to build a complete 
system that deals with SR. The improvements in this 
field have been continuously occurring whereby the use 
of software instead of hardware programming is utilized. 
In the second decade of the 21st century, SR is used 
everywhere. The SRs are easily programmed in C++ 
language in the Visual Studio group by Click & Drag 
through a box that acts as a voice recorder to save the 
data in any audio file format . Converting the text file to a 
voice file in the type of format needed is simple. In some 
Windows versions, a facility of recording voices by using 
the speaker icon is found on the toolbar. Also, can easily 
read text files as audio. Generally, most applications, 
whether audio or otherwise, have characteristics of the 
conversion of files from a format to another format that 
can utilize applications like Excel, pdf, and Word. 
Furthermore, software packages that perform a specific 
task, such as Laser and Photonics, can convert  
simulated files to data files in the form of images and 
vice versa to be used later as input either in the same or 
another software. An example is converting file 
extensions between Optiwave and Optic Studio. 

As of today, the word processor accepts input 
in audio form in many languages. Numerous software 
packages prepare, write, pronounce, or convert what  
was read to a text file, making communication between 
people who cannot interact  linguistically together much 
more relaxed. We need to translate from one language 
to another. Such software is still largely incapable of 
translation even with languages of the same family. We 
are also faced with the problem of ambiguity. 

 

 

 

 

 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

2

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity

Fig. 3: Recursive means that the compiler is any high-
level language that  can program a set of programs. By 
the new compiler, another new compiler can be 
produced



B. Why and how do we design Compilers in the middle 
of the great congestion between programming 
language interpreters & compilers?  

c) “Using these systems, our breaths become 
counted” 

I have not  heard or used a programming 
language in which the commands are uttered. Software 
to search for something or somewhere receives orders 
by voice. Automated voice systems control many 
activities, including schedules or cancelations and voice 
payment systemsthat give access to the software that  
monitors the calls by recording them. Numerous other 
reasons include quality assurance. SR usage represent  
examples of systems programmed by a specific  
language. 

Compilers are similar to any other executive 
program that  ends with the extension .com or .exe gives 
programmers the environment to design and provide all 
programming needs based on the purpose of the 
program. Compilers orders and divides the files into 
packages (units) and performance-related tasks. Inside 
each are classes that contain procedures, functions 
(methods), and all  types of compiler stages (lexical, 
syntax, and semantic), and in order, may express 
implementation types like defining variables, records, 
files, arrays, libraries, and all kinds of saved files. In 
other words, the compiler is also a program that uses a 
high-level source language to transform into a low-level  
target language. While running on its environment , the 
source compiler should detect errors, report them, and 
inform the programmer to make required corrections. 

Second: The lack of SR applications in a language such 
as Arabic leads to the need to find solutions and 
alternatives, either by producing a spoken programming 
language or by developing the few available 
applications. In this paper, all emphasis is placed on the 
creation of a spoken language by designing a compiler 
that achieves this purpose. 

The main program, which stays resident in the 
memory, should have a minimum size, and be limited to 
few commands that apply the Dynamic Loading 
Technique, which calls the target program, bring it from 
its physical address to store temporarily in the main 
memory, performs its task, and returns to its location 
outside the memory. The commands that use this 
operating system technique should be available and 
implemented in the language used. Once the compiler 
runs, it shows, edit, save and modify commands on the 
main screen. A user-friendly screen with menus helps 
programmers to perform tasks. Visual languages are 
preferable. 

 

As discussed before, the SR files are used as 
input/output files or voice/text files, and the conversion 
between them. Most  languages serve the call of such 
files either 

 
way 

 
and even the text, i f it is not lengthy, can 

 
 

be edited in the command itself if programmers decide 
to write manuscripts to be read as voice files.  

 
Fig. 4:  The Amphibious language*  

PART II: A Frog, Amphibious, Language 

d) “All that we are seeking is to command the computer 
system acoustically to obey” 

A New Generation of Language Programming: 
a programming language that receives voice 
commands based on the mechanisms of SR. 

System Definition Without detailing the nature of 
sound production, technical details of the relationship 
between humans and computers in terms of SR are 
discussed. Mathematical calculations are vital to solving 
problems. The figure provided below demonstrates the 
process of how speech should be utilized. Designing a 
compiler to deal directly with the SRSs is vital, 
particularly due to the advancement  of the Modern 
Generation of Programming Languages (MGPL) that 
support voice commands as an alternative to writing. 
Besides, such a system develops and simplifies 
programming languages so that words can be used 
from the spoken language of programmers. Moreover, 
SR increases the speed of achievement , avoiding the 
incompatibility between the Speech Recognition 
Techniques (SRT), and the compilers. In many common 
components, exchanging procedures may be neededfor 
SR and Compiler Construction (CC). Instead of adapting 
the two systems to work in one environment , the 
common framework would be appropriate for work 
together from the scratching with complete compatibility.  
    

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

3

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity



 

 
 

 
  

 

Fig. 7:  Stages of an audio compiler  

The design phase of this verbal compiler has 
been broken down into six stages called processors to 
outline the subject in general  and the programming 
processes specifically, as seen in Fig. 8, shown above. 

Stage 0.0. Programming from scratch 

A programming language is a compiler or 
interpreter that contains many rules and procedures, 
libraries, and auxiliary operations to control the compiler. 
Yet, programmers can only identify problems and then 
program them. The innovation of our compiler in stage 0 
is unlike programming languages in the past that  

received commands through keyboards, mice, and 
input tools in general . The resulting programming 
language enables the programmer to design and 
implement systems by voice commands. Stage 0 
requires constructing a complete Compiler fully. Design 
a new compiler from scratch was one of the difficulties 
we faced. Implementing a compiler may take five years 
if only one programmer achieves it. We are not  
interested in developing a new programming language, 
but we need a modi fication to include sounds in the 
language for it to become more efficient.    

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

4

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity

Fig. 5: Basic Operation of the Speech Recognition 
System

Fig. 6: Compiler Construction Operation



 

Fig. 9:

 

For example, the part (processor) of an audio 
compiler could be broken down within two processors

 

The dilemma is that sound-related 
programming mostly depends on capturing sounds to 
save it temporarily in the Buffers. Two major problems 
must be confronted: A severe shortage of books that  
explain such types of programs and the limitation of the 
material on the Internet. Luckily, some fragmented 
material is provided by YouTubers who are interested in 
some applications.Buffers are audio streams stored for 
a while. A variable type of flowing data in buffer cannot  
be specified. Programmers must find a way to convert  
the buffers’ contents into variables of the String type. 
This method only enables programmers to compare the 
variables that are defined in the programs with data in 
the Buffers. Programmers always have alternative 
solutions such as using text files. A Compiler acts as a 
calculator is designed: The desired process is verbally 
commanded be addition, which stored in the text file A 
as a variable of a string or an integer. The numbers that  
summed up through a regular program store in file B. 
Comparing the entered data in the text file “A” with the 
expected cases and matching with one of them is a 
required operation, and here is example of an “addition” 
of two numbers. Different  operations can be 
programmed, but in this case, the issue is the 
sophistication and need for more text files. The previous 
explanation is a solution but is stressful for programmers 
and takes time to process. 

 

 

 

 

Fig. 10:
 
More explanation about regular compiler’s steps

 

 

 

 

 

 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

5

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity



III. Internal and External Libraries 

One of the most  important  features and 
advantages offered by the programming languages is 
the various libraries, which are located within the 
language or programmed by the compiler, and they are 
called internal libraries. At the same time, there are 
additional libraries which serve specific  purposes that  
are not available in the programming language, such 
libraries do not benefit all programmers in general. 
These libraries are called external  libraries, and small 
software companies program them. External libraries are 
downloaded from professional sites. Several steps are 
followed to install them. Internal  libraries are not  
commonly available in languages but are added from 
within the language interface. The language mainly has 
the necessary libraries to run in general, but the 
performance of some additional operations, such as the 
use of sound commands, needs to be added. 

 

Fig. 11: The internal and external libraries. 

    
Fig.12:

 

An internal  library

 

 
Fig. 13. a:

 
External Library

 

 

 
 
 

Fig. 13. b:

 
Fig. 11

 
Fig. 9, 10, and 11 clarifies how to download external  
library. 

0.1.3. Error  handling

 
In every language, when errors occur in one of 

the stages of compiling, the number, type, and line of 
the errors are shown. In this modified language, errors 
are classified and given numbers and displayed in 
interactive screens with programmers.

 
 
 
 
 
 
 
 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

6

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity



 

  

In this case

 

study, we analyze seven inputs and 
outputs of the six stages of translation for regular 
compiler, that begin from the input and are translated by 
a compiler stage. As shown in fig. 14 a. the statement is 
placed on a symbol table. Once the voice is captured, it 
is dealt with exactly as in the compiler stage. So, the 
input will become an audio. In fig. 14. b ., the voice 
passes on the Syntax Analyzer that composes the tree if 
the capturing operation of the voice is correct; 
otherwise, an error occurs.

 
 
 

 

Fig. 15. a 

 

 
 Fig. 15. b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

7

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity

Fig. 14: Error handling Menus



 

Fig. 16. a 

 

Fig. 16. b 

 

 Fig. 16. c
 

Fig. 15, 16 clarifiy all the compiler construction 
stages. Fig 16 a, b, and c show the other four steps to 
reach to Machine Code (Assembly Code), ultimately. 
This code which deals with the contents of 
Microprocessors, Registers, and RAM and has access 
to other external resources such as memory. The 
example model of the compiler that works as a 
calculator receives audio commands and then works as 
a regular compiler, information that will be explained in 
detail later.  
 

 

Fig. 17: An example of how to capture a voice and use it 
as a command 

The compiler model that works as a calculator 
by receiving the instruction verbally.  

In order not  to confuse the users in a new 
language, all C ++ symbols have been used. For 
model programming, several options are taken into 
consideration. Despite the difficulty of C++ language 
and the lack of examples of all commands dealing with 
the sound, it is chosen. The most crucial advantage of C 
++ is that it creates a code representing assembly 
language and thus has the required speed in dealing 
with the CPU. The most vital operating systems are 
programmed in C ++. In Fig. 15, the graph is 
considered Stage Three, the third processor of the 
whole system, designed to implement its operation into 
two subdivision Stages (Processors). This Phase is the 
first Stage after applying all the stages of the regular 
compiler. Audio programming allows many ways to 
capture the voice — categories which placed under two 
columns: First save the captured sound into any audio 
file format to deal with later or reuse the audio saved for 
other purposes. Second, save the voice in a temporary 
Buffers for a while.  Both methods are interchangeably 
used as needed. 

 
 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

8

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity



IV. Saving the Voice in an Audio File 

An external library called SFML can be 
downloaded, and several procedures become 
executed. For instance, we downloaded some libraries 
from SMFL and stored them in the same folder where 
the language libraries are stored. The program will not  
work on another machine unless the same folders

 
are 

stored in the same places and the same libraries have 
been transferred to these folders. Compile the file as an 
executed file to ensure that  the program works correctly. 
Then the executed program is run in the objected file. 
Programmers are in the process of programming and 
moving between different  computers encounter 
complications that occur because of the non-presence 
of external libraries in their folders. When we finish the 
previous procedure, using voice commands can record 
any audio file at any length. Audio files are useful in that 
they can record clarifications and introductions to show 
results and help menus. Furthermore, they declare 
system errors. One or two words can be recorded, 
transcribed, and stored in a text file to be used in the 
system. These text files can act as a database of the 
system while the column represents the “field” and the 
line represent the “record”. The programmer can 
package classes to read data, and when the program 
runs, it deals with the DBs or text files. For example, if 
the “Addition” process is used, users command verbally 
to choose the “Add” procedure; the order is interpreted 
to be a variable such as an integer, a bit, or a string, and 
stored in an appropriate file. Based on the previous 
procedure, other functions is programmed that  can 
claim variables to be saved in other text files, and 
recording audio files and playing them later in the 
proper program or typing the audio text inside the 
program to read can also be achieved. Adding two 
numbers, users give the command that reflects the 
summation and declare how many numbers to be 
added. Two files, in this case, are used, and if the 
operation is complicated, which means using more than 
a process like “Add” and “Square root”, more than two 
files are used.  These operations are expressed within 
the codes that classify them and direct each process to 
their procedure. The verbal interaction between users 
and machines continues until the calculation is finished, 
and the result s given in the form of reading the text 
stored or written, and then the number shown is read. 
The machine alerts users that  the process is completed. 
Users must obtain the results in style written especially 
in major systems such as employee salary calculations. 
The input is done in the verbal form and under the 
control of the user. If the input  is ambiguous, the use 
repeats to write what  the command wants clearly. 
Ultimately, the input  stored in the database or text files. 
However, when calculating the results, they should be 
shown in reports and the pay checks.

 
 

V. Using the Buffers’ Technique 

Inside such libraries, whether internal  or 
external, there are instructions for buffering. The sound 
can be captured to the buffer as a stream and then 
stored as any variable. Using buffers is much easier, 
faster, and vital. One issue that requires attention is that  
the sound stored in the buffer does not  become defined 
as a variable. Other commands address this problem by 
converting the sound into a String type variable. The 
sound in this format  is very easily handled. The 
technique, identical to the steps discussed in the 
previous stage, has greater flexibility, faster speed, and 
no exit from the CPU to connect to files stored in other 
locations.

 

VI. Ambiguity 

Whatever the language spoken, recognizing the 
speech does

 
not  only depend on listening to individual 

words that are taken from the context, but also involves 
watching the movement of the lips and body language. 
The speaker uses his knowledge and logical repository 
to associate sentences and distinguish words 
individually or in a related context. Moreover, even if 
unable to understand a vocabulary used in a sentence 
can expect it and know the meaning. The understanding 
is when the full context of the sentence is taken. 
Furthermore, the use of compound words, dialects, and 
idioms should be taken into consideration. When a 
computer or mobile phone is used to Recognize the 
Speech (RS), none of those as mentioned earlier, 
knowledge can help the devices. because the 
intelligence of computers is zero but many people think 
that a computer is a smart  machine. Programmers must  
define everything each step in a logical form acceptable 
to the computer as a whole and programming 
languages as a part  can be followed. As illustrated in 
our model, which is a verbal  calculator, steps

 
through 

which an integrated work can be created to deal with 
such an acoustic signal. Besides, noise and many 
different  factors affect the quality of speech recognition 
techniques. Some of them are related to the computer 
itself, like the sounds it makes.

 
External factors in the 

room where we work are included, such as the presence 
of backgrounds sounds or noise.

    

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

9

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity



 

Fig. 18: The Ambiguity problem 

VII. How to Solve Ambiguity 

Many solutions can help users to specify a 
desired word. Programmers design a window in the 
program that  gives matching options to the word. For 
example, i f the word two is wanted, sometimes words 2, 
too, and tool appears but users can correct the 
ambiguity manually by choosing the word that is 
needed. The same thing with the word four, which can 
be written as 4, for , ford, forth, or four  but this operation 
leads to little issues arise delay. Another solution that  
gives more accurate results but  is difficult  to be applied. 
Always the English language dictionary depends on two 
pronunciations for each word or at most four. A lady’s 
and a man’s voice with slow and fast  speech can be 
heard. Even though speakers record di fferent  
pronunciations for the same word and composing a 
whole new dictionary, is too hard. Instead, symbols that  
we use in the language in addition to the accompanying 
dictionary to the language ca e employed. Also, it can 
be facilitated by some kinds of dialogue like when the 
dictionary asks the user if a word is correct. If not, the 
wrong word is excluded while the user repeats 
pronouncing the word.   

VIII. Conclusion 

 
 

Ambiguity, which means that  our pronunciation of the 
word does not seem sure to give the same spelling: The 
example of two or four that is mentioned before. In such 
case words like to, too, 2, or any other similar spelling 
could be obtained. We find some solutions to the 
Ambiguity problem were found in many dictionaries with 
different speakers will help solve such a problem, and 
the dictionaries should be existing on software that  
handles audio-to-text SR.   

 

 
 

 
 

 
 

 

   
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
  

 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

10

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity

The previous steps indicate the importance of 
moving to programming languages that receive voice 
commands, and this leads to the design of a particular 
compiler to perform such tasks. Once a compiler is 
designed that performs limited functionality, then we can 
develop it to perform more comprehensive tasks. 
Artificial intelligence (AI) is beneficial in such systems. 
AR robotics programming is similar to programming like 
the calculator model . Another addition is hardware 
control should be improved. Our biggest problem is 

Appreciation

Thanks to Miss Elyaa Issa for her drawing of Fig 
1, 2, and 4.

References Références Referencias

1. Kepuska. Veton Z. “Speech and Language 
Processing Notes,” Retrieved by 02/27/19 at  6:17 
am from [http://my.fit.edu/~vkepuska/web/courses.
php#ece5527- files] 

2. Kepuska, Vetron website, retrieved on 02/28/19 @ 
17:37 my.fit.edu/~vkepuska/web/

3. VK Kepuska, H.K. Ready. “Dynamic Time Wrapping 
Using Frequency Distributed Distances 
Measurements, ”US Patent 6, 983, 246, 2006.

4. Kepuska, Veton Z., and Pattarapong Rojanasthien. 
“Speech corpus generation from DVDs of movies 
and TV serious.” Journal of International Technology 
and Information Management , Vol. 20, no. 1, 2011. 

5. Junqua, Jean-Claude, and Haton, Jean-Paul. 
“Robustness in Automatic Speech Recognition:” 
Fundamentals and Applications, Springer, Boston, 
MA, 1996 retrieved 03/28/2019 @ 9.11 am from 
[https://linkspringercom.portal.lib.fit.edu/content/pdf
/10.1007%2F978-1- 4613-1297-0.pdf].

6. Reinhard Wilhelm, and Helmut Seidl. “Sebastian 
Hack Compiler Design Syntactic and Semantic 
Analysis,” Springer-Verlag Berlin Heidelberg 2013. 
Retrieved 03/28/2019 @ 12:12 pm from [https://link-
springercom.portal.lib.fit.edu/content/pdf/10.1007%
2F978-3- 642-17540-4.pdf ]. 

7. Rodriguez-Cartagena, Jean, Claudio-Palacios, 
Andrea K., Pacheco-Tallaj, Natalia, Santiago 
González, Valerie, Ordonez-Franco, Patricia. “The 
Implementation of a Vocabulary and Grammar for 
an Open-Source Speech Recognition Programming 
Platform,” ASSETS '15 Proceedings of the 17th 
International ACM SIGACCESS Conference on 
Computers & Accessibility, PP 447-448.

8. Richard Boulanger, Victor Lazzarini, et al . “The 
Audio Programming Book (The MIT Press),” 
Massachusetts Institute of Technology, 2011. 

9. Allen I Holub. Compiler design in C.
10. Claudio Becchetti, Klucio Ricotti. “Speech 

Recognition: Theory and C++ Implementation”
11. Alfred Aho, Ravi Seth, and Jeffery D. Ullman. 

Compilers: Principles, Techniques, and tools”



 
 

 
 

  

 
  

 
 

 
 

 
   

        
     

      
    

   
 

      
   

 
 

 
  

 
 

 

 
 
 

   

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
V
 V

er
sio

n 
I 

  
  
 

  

11

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
20

© 2020 Global Journals 

Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid 
Development becomes a Necessity

Java, JavaCC, and YaCC”, Welly.
13. Charles N. Fischer, Richard J. LeBlank, Jr. “Creating 

A compiler WITH C”
14. Ronald Mac. “Writing Compilers and Intepreters:            

A Softeware Engineering Approach.”
15. Mark Allen Wells. “Algorithms, Data structures, and 

Problem Solving with C++.”
16. Will Pirkle. “Designing Audio Effect Plug-Ins in C++:

With Digital  Audio Signal Processing Theory” pdf 
version, Focal Press, Taylor & Francis Groups, 2013.

17. Richard Boulanger, Victor Lazzarini “The Audio 
Programming Book (The MIT Press)”, 
Massachutess Institute of Technology, 2011.

18. Will Pirkle. “Designing Audio Effect Plugins in 
C++2nd Edition”, Routledge Taylor and Friends 
Group, 2019.

19. Veton Z. Kepuska and Hussein A. Elharrati, “Robust  
Speech recognition System Using Conventional  and 
Hybrid Features of MFCC, LPCC, PLP, RASTA-PLP 
and Hidden Markove Model Classifier in Noisy 
Conditions.”

20. R.T. Salaja, R. Flynn, M. Russell. “Automatic speech
recognition using artificial life,” 25th IET Irish Signals
& Systems Conference 2014 and 2014 China-
Ireland International Conference on Information and
Communities Technologies (ISSC 2014/CIICT 2014), 
2014, p . 91 – 95

21. M.J. Russell, K.M. Ponting, M.J. Tomlinson. 
“Measure of local speaking-rate for automatic
speech recognition ,” IET, 1999.

22. D.S. Malik. “C++ Programming from Problem 
Analysis to Program Design”, Eighth Edition 

23. Kenneth C. Louden. “Compiler Construction: 
Principles and Practice 1st Edition.”

24. Iyad Rahwan. “Argumentation in Artificial 
Intelligence. Springer, 2009.

25. Stuart Russell. “Human Compatible, ARTIFICIAL 
INTELLEGENCE AND THE PROBLEM OF 
CONTROL,” KINDLE EDITION, VIKING, 2019.

12. Antony J. Dos Reis. “Compiler Construction: Using 

https://www.amazon.com/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=Richard%20Boulanger�
https://www.amazon.com/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=Victor%20Lazzarini�
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Will+Pirkle&text=Will+Pirkle&sort=relevancerank&search-alias=books�
https://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0665�
https://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0665�
https://digital-library.theiet.org/content/conferences/cp639�
https://digital-library.theiet.org/content/conferences/cp639�
https://digital-library.theiet.org/content/conferences/cp639�
https://digital-library.theiet.org/content/conferences/cp639�
https://www.amazon.com/Kenneth-C-Louden/e/B000AQ4TU6/ref=dp_byline_cont_book_1�
https://www.amazon.com/s/ref=rdr_kindle_ext_aut?_encoding=UTF8&index=books&field-author=Stuart%20Russell&search-alias=digital-text�

	Implementation of a Verbal Compiler: The Need to Develop Audio Language to Keep Pace with Rapid Development becomes a Necessity
	Author
	Index Terms
	I. Preface
	a) “Two Chineese speak chinheese, but they need a chinheese to chinheese interpreter process”

	II. Introduction
	a) “We live the future in our present”
	b) “Programming languages produce other programming languages.”
	c) “Using these systems, our breaths become counted”
	d) “All that we are seeking is to command the computer system acoustically to obey”

	III. Internal and External Libraries
	IV. Saving the Voice in an Audio File
	V. Using the Buffers’ Technique
	VI. Ambiguity
	VII. How to Solve Ambiguity
	VIII. Conclusion
	Appreciation
	References Références Referencias

