

1 Flood Effects on Agricultural Productivity: Implications for
2 Mangrove Forest Ecosystem in Akpabuyo, Cross River State,
3 Nigeria

4 Joy Eko Atu¹ and Edet Mary Okon²

5 ¹ University of Calabar, Nigeria

6 *Received: 7 December 2017 Accepted: 5 January 2018 Published: 15 January 2018*

7 **Abstract**

8 Flood is a natural disaster that affects lives, livelihoods, household food security and natural
9 ecosystems. Hence, the study sought to determine flood effects on agricultural productivity:
10 Implications for Mangrove Forest Ecosystem in Akpabuyo, Cross River State, Nigeria.
11 Specifically, the paper identified high and low-risks flood areas in Akpabuyo, determined the
12 frequency of flood events and extent of agricultural land inundation, identifying the crops
13 species affected by flooding, and assessed the income and food survival strategies of farmers
14 affected by annual flood events. Descriptive statistics (frequency counts, percentages, and
15 averages were employed to analyze the data derived from a structured questionnaire and field
16 measurement of elevation of high and low-risk flood areas. Results revealed that the
17 agricultural land at high risk of flooding is those with 1-44 metres elevation above sea level
18 Table 1. Findings on Table 4show that, the food staple most affected are the root or tuber
19 species with 77.52 percent annual destruction, vegetable species were also at high risk, and
20 some economic crops like *Musa* spp (plantain) were also at high risks of destruction. The
21 result further revealed that, income loss and food shortages occasioned from flooding of
22 agricultural land are mitigated by Mangrove Forest Ecosystem Resources Extraction Table 6.
23 Thus, conservation of the Mangrove Forest ecosystem in Akpabuyo and Cross River State is
24 tied to the efficient management and mitigation of flood events in agricultural land.

26 *Index terms*— mangrove ecosystem, forest flood effects, agricultural productivity, elevation.

27 **1 I. Introduction**

28 Flood is a global challenge in the face of a changing climatic pattern. Typically, floods are outcome of extreme
29 weather events such as precipitation (e.g. prolong rainfall and melting snow from snowfall), which are exacerbated
30 by the geographical location and human activities of a place. Abua, Ewara, Abua & Atu (2009) argued that these
31 factors are responsible for the flooding events in Nigeria, as one-third of the landmass of Nigeria is at an elevation
32 of less than eight meters above sea level. Areas liable to flooding are low-lying areas, but the southern parts
33 of Nigeria are more vulnerable due to the double maxima rainfall experienced for a prolonged period, usually
34 between March-October and as early as February-November in some southern states like Cross River and Rivers
35 states.

36 Flood over the years has caused severe damage to property, infrastructure, crops and deaths across the country,
37 and has been considered as a source of increased risks to disease and hunger (Baiye 1988; Edward-Adebiyi 1997),
38 damage to property, loss of life, contamination, and spoiling of agricultural land (Umoh, 2008). Akpabuyo
39 in Cross River State is an agrarian community dependant on optimal production of their farm enterprise for
40 food security and livelihood needs, but, the undulating, low-lying topography enmeshed within the Great Kwa

6 D) CROPS SPECIES AFFECTED BY FLOOD WATERS

42 and Calabar River makes Akpabuyo a candidate for frequent and prolonged inundation. The literature on flood
43 events and the impacts on different sectors of the Nigerian environment is robust (see ?? 2006). The population is
44 projected to be 307, 4117 as at 2017 using 3.0 growth rate of the region. A reconnaissance survey was undertaken
45 before the actual field work to identify the areas prone to flooding, identify farmers and seek their consent for
46 the sample. The study adopted the methodology of (Atu and Bisong, 2013) in selecting sample sites. Thus,
47 10 villages were purposively chosen out of the existing 28 villages to form the sample, based on their elevation
48 and dominance in agricultural activities and flood events. Five of the villages are in areas prone to flooding
49 and five in areas not too prone to flooding. The geographical coordinates and elevation were noted. Field
50 observation and measurement, interview and household (HH) questionnaire were utilized in collecting data. A
51 total of 400 questionnaire were administered by adopting the Yaro Yamane's formula given as: $n = 11 + Ne^2$
52 Where: n=Sample Size; N=Population Size; e=Level of Confidence (taken as 0.05) and 1=constant. Hence, 400
53 copies of questionnaire were distributed, and 13 copies of the questionnaire were found to be inconsistent with
54 the objectives of the study. Therefore, 387copies of the questionnaire were retained for the study. Two hundred
55 and two copies of the questionnaire were those of communities at high risk of flood and 185 are from communities
56 at low risks of flood. III. Results and Discussion

57 2 Source: (Atu & Iwuanyanwu 2017)

58 3 a) Identified High and Low Risks Flood Areas in Akpabuyo

59 The areas liable to annual flood event depicted on Table 1 lie within longitude 8 0 23 ' 39.6" and latitude 4 0 54'
60 11.6 " with an elevation of 18-44 meters above sea level. Therefore, Esuk Mba, Akans Oko, Ikot Ene Umo, Idebe
61 and Atim Asam are the areas at risk of flooding annually. But the community with the highest risk is Ikot Ene
62 Umo with only 18 meters elevation above sea level.

63 4 b) Frequency of Flood

64 Table 2 shows the frequency of flood events as responded to by the sampled population. 71.28 percent of the
65 responses indicated that, the flood occur annually and the areas at high risks of flood have not experience any
66 year without flooding. The annual flooding has implications for the variety of crops cultivated as the arable
67 crops such as maize (*Zea mays*), cassava (*Manihot esculenta*), and cocoa yam (*Dioscoreaspp*) cannot withstand
68 prolonged submergence. These crop types are highly susceptible to stagnant water as the roots of the crops rot
69 easily.

70 5 c) Extent of Agricultural Land Affected by Flood Annually

71 The extent of agricultural land annually affected by flood on Table 3 between 51-100 hectares and above (The
72 extent of farmlands annually affected by flood was estimated from calculating the sizes of the farmland of farmers
73 that indicated that their farmlands are annually flooded (47.03 and 16.04% cumulatively to 63.07 %).

74 6 d) Crops Species Affected by Flood Waters

75 The major crop species affected by flood listed on Table 5 revealed that household food staples are at most risks.
76 These food staples include: vegetables, spices, legumes, tubers, grains, and fruits. Loss crops translate to loss
77 income Table 6 and household food security which must be met via alternate sources. The most viable option
78 for make-up source of livelihood and income for the farmers is harvesting from the Mangrove Forest Ecosystem
79 resulting in exacerbated degradation of the Mangrove ecosystem. The demand on Mangrove Forest Ecosystem
80 in the face of the challenging flood event is massive. Over 77.52 percent of the population sourced their energy
81 needs from the forest, 51.68 looked to the forest for their protein, and 90.34 percent augment their vegetable need
82 from the forest when crops are destroyed by flood. These findings have implications for the Mangrove ecosystem
83 management and conservation, because, unless the menace of flooding agricultural land is tackled by relevant
84 agencies the pressure to meet the food and economic needs of farmers will be met by the Mangrove forest. This
85 study is critical in the face of escalating extreme climatic events occasioned by changing global climate. The
86 study revealed that the agricultural land at high risk of flooding is those with an elevation of 1-44meters above
87 sea level and the community that is at the highest risk of flooding is Okot Ene Umo with an 18 meters elevation
88 above sea level Table 1. Also, flood is an annual event implying that there is no respite from economic loss and
89 household food shortages Table 2. From findings on Table 4, the crop types most affected are the root or tuber
90 species with 77.52 percent annual destruction, vegetable species were also at high risk and some economic crops
91 like plantain (*Musa spp*) were also at high risks of destruction from flood.

92 Furthermore, the finding demonstrated that the annual income loss of an individual farmer is as high as a
93 hundred thousand naira, that is, about three hundred United States Dollar at current exchange rate of thirtyfive
94 naira to a dollar. Income loss and food shortages occasioned from inundation of agricultural land are mitigated
95 from Mangrove Forest Ecosystem Resources Extraction Table 6. Thus, conservation of the Mangrove Forest
96 ecosystem in Akpabuyo and Cross River State is tied to the efficient management and mitigation of flood events
97 in agricultural land.

98 The results of this research are critical to the sustainability of family livelihood and the conservation of the
 99 Mangrove Ecosystem of Cross River State. The relevance lies in the fact that several conservation strategies have
 100 failed to yield the desired outcomes in the past years because the pressure, demand and harvest of the Mangrove
 101 Forest Ecosystem Resources has not been linked to the flooding and destruction of agricultural land and crops.
 102 These findings therefore have implication for the Mangrove ecosystem management and conservation, because,
 103 unless the menace of flooding of agricultural land is tackled, the protection of the remaining Mangrove ecosystem
 in Cross River State, Nigeria would remain a mirage. ¹

Figure 1: Fig. 1 :

6 D) CROPS SPECIES AFFECTED BY FLOOD WATERS

Therefore, the study:

1. Identified high and low-risks flood areas in Akpabuyo, Cross River State.
2. Determined the frequency of flood events and extent of agricultural land inundation.
3. Identify the crops species affected by flooding.
4. Examined the relationship between flood, cultivated crops and forest resource exploitation and degradation in Akpabuyo, Cross River State.

II. Methodology

Study Area: Akpabuyo is a Local Government Area (LGA) in the Southern axis of Cross River State, Nigeria. The LGA was created in 1991 with an administrative headquarters located at Ikot Nakanda. Akpabuyo is made up of 28 villages of three major dialectical groups (the Efiks, Quas, and the Efuts), but, the English language is the official spoken language (Tip Top Globe, 2016). Akpabuyo is located between latitude 4 0 5' North and 5 0 4' South and longitude 8 0 25' West and 8 0 32' East Fig 1 and had a total population of 271,325 in 2006 (NPC

Figure 2:

1

High-Risks Flood Areas					
Esuk Mba	Akans Oko	Ikot Ene Umo	Idebe	Atim Asam	
Longitude 8 0 23 ' 39.6 "	8 0 27 ' 51 "	8 0 35 ' 30 ' 8	8 0 26 ' 49.8	8 0 24 ' 47.2 "	
		"	"		
Latitude 4 0 54 ' 11.6 "	5 0 2 ' 25.3 "	4 0 54 ' 24.9 "	4 0 51 ' 33	4 ' 57 ' 34.5 "	
			"		
Elevation 44	27	18	34	39	
(M)					
Low-Risks Flood Areas					
Akwa	Ikot	Ikot Edem Odo	Ikot	Ikot	Ikot
Effanga			Effiong	Ene	Offiong
			Essien		Amba
Longitude 8 0 29 ' 12.8 "	8 0 24 ' 31.9 "		8 0 24 ' 52 "	8 0 27 ' 41.9	8 0 26 ' 59.6 "
				"	
Latitude 4 0 57 ' 39.3 "	4 0 53 ' 15.7 "		4 0 52 ' 17.8 "	4 0 54 ' 54.6	4 0 55 ' 56.7 "
				"	
Elevation 75	52	59	45	62	
(M)					

Figure 3: Table 1 :

2

Frequency of Flooding	High-Risks Flood Areas						Total	%		
	Esuk Mba	Akans Oko	Ikot Ene Umo	Idebe Atim		Asam				
				Asam						
Annually	45	32	16	23	28		144	71.287		
Every 2 Years	13	8	3	10	6		40	19.802		
Once in Three Years	4	2	1	0	2		9	4.455		
Once in Four Years	1	2	0	0	0		3	1.485		
Once in Five Years	1	0	0	1	2		4	1.980		
Once in Six Years	1	1	0	0	0		2	0.990		
Never	0	0	0	0	0		0	0		
Tallied Responses and Percentage							202	1000		
Low-Risks Flood Areas										
Frequency of Flooding	Akwa	Ikot	Ikot	Effiong	Ikot	Ikot	Total	%		
	Ikot	Edem	Essien		Ikot	Of-				
	Ef-	Odo			Ene	fiong				
						Amba				
Annually	12	10	2		14	2	40	21.622		
Every 2 Years	9	13	6		9	6	43	23.243		
Once in Three Years	6	10	6		1	4	27	14.594		
Once in Four Years	14	8	5		4	1	32	17.297		
Once in Five Years	1	4	1		4	12	22	11.892		
Once in Six Years	0	4	0		0	3	7	3.784		
Never	2	6	1		1	4	14	7.568		
Tallied Responses and Percentage							185	100		

Figure 4: Table 2 :

3

Farms Flooded in Hectares	Esuk Mba	Akans Oko	Ikot Ene Umo	Idebe Atim		Total	%	
				Asam				
				Asam				
Less than 20	2	7	10		2	3	24	11.881
21-50	6	15	13		6	10	50	24.753
51-100	10	18	30		17	20	95	47.030
Above 100	2	5	12		5	9	33	16.337
Tallied Responses and Percentage							202	100
Farms Flooded in Hectares	Akwa	Ikot	Ikot	Effiong	Essien	Ikot	Total	%
	Ef-	Odo				Of-		
						fiong		
						Amba		
Less than 20	12	26	5		21	24	88	47.568
21-50	17	18	10		7	6	58	31.351
51-100	14	8	5		4	1	32	17.297
Above 100	1	3	1		1	1	22	3.784
Tallied Responses and Percentage							185	100

Figure 5: Table 3 :

6 D) CROPS SPECIES AFFECTED BY FLOOD WATERS

4

Crop Types	Local Name	Botanical Name	Frequency of Cultivation	Percentage Cultivation
			Name	Cultivation
Vegetables	Fluted Pumpkin		202	52.20
	Waterleaf		187	48.32
	Okro		160	41.34
	Green		66	17.05
	Bitterleaf		59	15.25
	Pepper		100	25.84
Spices	Tomatoes Curry		40 30	10.34 7.75
	Scentleaf		37	9.56
Legumes	Melon		69	17.83
	Cassava		300	77.52
Tubers	Yam Sweet Yam		101 200	26.09 51.68
	Water Yam		150	38.76
Grains	Maize		167	43.15
	Oranges		77	19.90
Fruits	Mango		86	22.22
	Banana		100	25.84
Economic	Plantain		200	51.68
	Oil Palm		47	12.45

Figure 6: Table 4 :

5

Income Loss (N)	High-Risks Flood Areas					Total	%
	Esukmba	Akansoko	Ikot Eneumo	Idebe	Atimasam		
? 20,000	5	4	4	3	4	144	71.287
20,000-40,000	5	4	3	3	4	40	19.802
41,000-60,000	7	5	2	5	8	9	4.455
61,000-80,000	13	11	5	10	8	3	1.485
81,000-100,000	15	14	5	8	6	4	1.980
? 100,000	20	7	1	5	10	2	0.990
				Tallied Responses and Percentage		202	1000
Low-Risks Flood Areas							
Income Loss (N)	Akwa	Ikot Ede-mOdo	Ikot Essien	Effiong	Ikot Ene	Ikot Of-fiong	Total
	Ikot Ef-fanga					Amba	%
? 20,000	3	4	2	4	3	40	21.622
20,000-40,000	10	13	7	10	7	43	23.243
41,000-60,000	18	22	6	10	6	27	14.594
61,000-80,000	5	8	5	5	5	32	17.297
81,000-100,000	3	4	0	2	5	22	11.892
? 100,000	5	4	1	1	6	7	3.784
				Tallied Responses and Percentage		185	100

Figure 7: Table 5 :

6

Cross River State, Nigeria		F	%
S/n	Mangrove Forest Ecosystem Resources Harvested		
1.	Fuelwood (Use & Sale)	300	77.52
2	Fishing / Game Hunting (Use & Sale)	200	51.68
3	Palmwine Tapping	100	25.84
4	Periwinkle (<i>Litorimalittorea</i>) & Snail (<i>Cornuaspersum</i>)	260	67.18
5	NTFP (e.g. Afang,-Gnetum Africana; Mushroom- <i>Agariscusbisporus</i>)	350	90.44
6	Timber	40	10.34
7	Oil Palm Fruit	137	35.40
8	Raffia Palm (<i>Raphia Farinifera</i>) & Indian Bamboo (<i>Bambusat- ulda</i>)	200	51.67
9	None of the Above	10	2.59
10	All the Above	257	66.41

Figure 8: Table 6 :

6 D) CROPS SPECIES AFFECTED BY FLOOD WATERS

105 [Calabar: Map, Population, Location ()] *Calabar: Map, Population, Location*, www.tiptopglobe.com/city
106 2016. Tip Top Globe

107 [Federal Government of Nigeria Federal Republic of Nigeria Official Gazette ()] 'Federal Government of Nige-
108 ria'. *Federal Republic of Nigeria Official Gazette* 2007. 24 (96) . (National Population Commission)

109 [Areola and Akintola ()] 'Managing the Urban Environment in a Developing Country: The Ogunpa River
110 Channelization Scheme in Ibadan City'. O O Areola , F O Akintola . *Nigeria. Environmental International*
111 1980. 3 p. .

112 [Baiye (1988)] 'Numan in the Throes of Floods'. E Baiye . *The guardian, Thursday*, 1988. October 8. p. 9.

113 [Umoh ()] 'Programming Risks in Wetland Farming: Evidence from Nigerian Floodplains'. G S Umoh . *Journal*
114 *of Human ecology* 2008. 24 (2) p. .

115 [Atu and Bisong ()] 'Sprawl and Biodiversity in Cross River State'. J E Atu , F E Bisong . *Nigeria. Research on*
116 *Humanities and Social Sciences* 2013. 2013. 3 (21) p. .

117 [The 2006 Census for Akpabuyo National Population Commission ()] 'The 2006 Census for Akpabuyo'. *National*
118 *Population Commission* 2007. Cross River State. Federal Government of Nigeria

119 [Abua et al. (2009)] 'The Effects of Flooding on Agricultural Production in Yenegoa LGA, Bayelsa State'. M A
120 Abua , T Ewan , T U Abua , J Atu . *Journal of Policy and Development Studies* 2009. Nov. 2009. 3 (2) p. .

121 [Edward -Adebiyi (1997)] 'The story of Ogunpa'. R Edward -Adebiyi . *The Guardian, Saturday*, 1997. May 17.
122 (PP 5)