

1 Strictly as per the compliance and regulations of

2 Dr. Rasaki Stephen Dauda¹ and Dr. Rasaki Stephen Dauda²

3 ¹ Redeemers University

4 *Received: 13 June 2012 Accepted: 5 July 2012 Published: 15 July 2012*

5

6 **Abstract**

7 The early 1980s marked the beginning of a new devastating chapter in the global epidemic
8 history when the first case of HIV/AIDS was reported in the United States. In Nigeria, the
9 case of the disease was first reported in 1986, and since then the pandemic has continued to
10 spread, moving from a concentrated epidemic to a generalized one, with its concomitant effects
11 on the economic performance of the country. This study analyzed the impact of the scourge of
12 HIV/AIDS menace on the macroeconomic outcomes in Nigeria. Engle Granger Two-Stage
13 Estimation Procedure was used to determine the long-run relationship between real GDP and
14 the explanatory variables, which included HIV/AIDS. The time series data utilized covered the
15 period 1990 to 2010. Two models were estimated. The first model made use of HIV prevalence
16 while the second model adopted the log of number of persons living with HIV/AIDS in
17 Nigeria. Having found that the variables were cointegrated, OLS estimations were conducted
18 on both models. The result of model one showed that HIV prevalence has negative but
19 statistically insignificant impact on real GDP. Model two's result revealed that HIV/AIDS
20 has negative and statistically significant impact on the growth of the economy of Nigeria in
21 the long-run. A 100 percent increase in the number of persons living with the pandemic led to
22 a 19 percent reduction in the level of real GDP. The adjusted R² of 97 percent demonstrated a
23 good fit and a strong explanatory power of the model. The conclusion drawn from the study
24 based on the result of model two was that HIV/AIDS has significant and negative impact on
25 the economic growth of Nigeria. The implication of this is that the macroeconomic impact of
26 the disease in Nigeria will be noticeable and significant as the disease progresses. Therefore,
27 substantial and sincere efforts should be geared towards combating it to avert its negative
28 consequences on the growth of the nation's economy, mortality and morbidity rates, avera

29

30 **Index terms**— HIV/AIDS, Human Capital, Economic Growth, Infant Mortality, Life Expectancy.

31 **1 INTRODUCTION**

32 The early 1980s opened a new devastating chapter in the global epidemic history occasioned by the did nations of
33 the world realize that the pandemic would exact greater burden on their economies than it began disease with
34 East and Southern African countries such as Kenya, Uganda, Botswana and South Africa greatly overburdened
35 by menace of the pandemic.

36 Facts presented by UNAIDS (2010) indicate that the status of the disease with respect to the number of
37 persons living with it as well as the prevalence and orphans caused by the epidemic globally are still very much
38 high in spite of the declaration of UNAIDS in its 2010 report that the spread of the AIDS epidemic has been
39 halted and begun to reversed. According to the living with the disease globally was put at 33.4 million in 1998
40 with 5.8 million new infections same year. 36.1 million people were estimated to be living with it in 2000

41 The story of the Sub-Saharan Africa (which Nigeria belongs) as regards HIV/AIDS status is very pathetic.
42 Out of the global 33.3 million persons living with the disease in 2009, 22.5 million were living in the SSA with 5

43 percent prevalence, 1.8 million new infections and 1.3 million deaths due to the disease (UNAIDS, 2010). Nigeria
44 as the most populous African country is not unaffected by the deadly disease. In 2007, the nation ranked third
45 globally in terms of the number of persons living with HIV/AIDS after India and South Africa but as at 2009
46 up till this moment, the country has overtaken India and is currently the second after South Africa ??UNGASS,
47 2008 ??UNGASS, & 2010))

48 .

49 **2 STYLIZED FACTS**

50 It is pertinent to make bear facts on the system this work is studying to better comprehend the dynamics of
51 the variables employed as well as the nation Nigeria itself. Nigeria has been said to be the most populous Black
52 Country in the world with an estimated population of about 161.605 million people in 2010 according to the data
53 provided by US Global Health Policy. The country is richer in mineral deposits as well as fertile land. In the
54 60s and early 70s, the nation derived most of her foreign exchange earnings from agriculture and "was among
55 the richest 50 countries of the world and one of the promising economies in Africa" (Dauda, 2011). However,
56 the discovery of crude oil seems to have changed the focus of the economy and today the nation depends on
57 petroleum products for a large part of her foreign exchange earnings and the sector has continued to contribute
58 positively to the growth of the country's GDP the economy of Nigeria has continued to underperform going by
59 the enormous resource endowment available in the country. A summary of the performance of the nation, which
60 is still relevant today, is shown below in table 1.

61 Economic Growth The Nigerian economy is recovering from two decades of stagnation. Real GDP growth
62 averaged 5.4 percent during the period 2000-2004 and needs to improve further to help reduce the high poverty
63 levels. Poverty Fifty-five percent of the population lives on less than one dollar per day. This is one of the
64 highest poverty rates in sub-Saharan Africa Gender Gender disparities in Nigeria are great and show up in
65 both education and health Fiscal and Monetary Policy New macroeconomic policies have resulted in declining
66 expenditures-to-GDP ratios, a budget surplus in 2004, and an increase in foreign reserves. Inflation remains in
67 the double digits.

68 **3 Business Environment**

69 Corruption is rampant, though recent government efforts had made modest improvements. Rule of law and
70 regulatory quality are weak. The poor business environment is a severe constraint to doing business. Financial
71 Sector Domestic credit to the private sector is strong. The banking system seems to be efficient with interest
72 rate differentials of 6.5 percent.

73 **4 External Sector**

74 Primary indicators conceal important structural problems, including a heavy dependence on oil exports,
75 protectionism, and a distorted foreign exchange market. With the recent approval of debt relief by the Paris club,
76 debt sustainability does not appear to be a problem. Economic Infrastructure Very poor quality infrastructure
77 continues to hamper growth, though recent improvements are impressive. Electricity is the top concern. Health
78 Nigeria's health situation is extremely troubling. Reproductive health indicators and HIV/AIDS are of particular
79 concern. Domestic health spending is woefully inadequate and implementation is poor. Education

80 The education system needs great improvement in Nigeria as in much of sub-Saharan Africa. Female enrollment
81 is adequate by regional standards, but low in absolute terms. The system is characterized by unqualified teachers,
82 limited pupil-teacher contact, high pupil-teacher ratio, and a lack of materials.

83 Global Journal of Human Social Science Volume Xii Issue I Version I

84 **5 50**

85 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria and Koning, 2006, reiterated
86 that Nigeria is in the grip of a growing HIV/AIDS epidemic, with a national adult infection rate of 5.8 percent
87 in 2001 and 5.0 percent in 2003, which makes significant regional variations. The foregone called for an
88 empirical research into how the scourge of the pandemic has imparted the economic performance of Nigeria
89 taking cognizance of the prevalence and the number of persons living with the disease.

90 The choice of Nigeria for this work is predicated on the fact that the number of persons living with the disease
91 together with deaths occasioned by the pandemic and the prevalence are still on the high side and yet the nation
92 continues to experience growth in the level of her real GDP. In addition, majority of HIV/AIDS studies on Nigeria
93 are survey and micro level studies, which employ primary data (see Mahal, Canning, Odumosu, & Okonkwo, 2008
94 and Hilhorst et al, 2006). The only macro study by Abdulsalam, 2010 employed simulation and Computable
95 General Equilibrium (CGE) modeling approach. This study adds to the existing literature by focusing on a
96 time series analysis of how the HIV/AIDS scourge affects the performance of the economy of Nigeria using
97 prevalence and number of people living with the disease. The remaining sections of this work are arranged as
98 follows: Section two presents stylized facts, section three provides information on literature review, section four
99 focuses on theoretical and methodological issues, section five systematizes results while section six gives summary,
100 conclusion and policy recommendations.

101 6 Employment and Workforce

102 Women's rate of workforce participation mirrors the gender disparities of other indicators. Growth in non-
103 oil sectors has been volatile, hampering job creation. Unemployment remains high. Labor laws, however, are
104 favorable for job creation.

105 7 Agriculture

106 The agriculture sector performs below potential. Growth is not expected to continue in the long term unless
107 productivity-boosting methods and technology are introduced. Poor infrastructure also plays a role in decreasing
108 export potential. The historical maintenance of an overvalued exchange rate related to high oil-export revenues
109 and Dutch Disease have substantially hampered agricultural exports.

110 Source : Garcia, Kohl, Ruengsorn, and Zislin (2006)

111 The average growth rates of the nation's real GDP since 1960 according to Sanusi (2010) increased from 5.9
112 percent between 1960 and 1970 to a record of 8.0 percent between 1971 and 1973; when Agriculture was the main
113 stay of the nation's economy. But from 1976 to 1980, the average growth of the real GDP stood at 3.2 percent
114 and further remained stagnant at 3.2 percent from 1982 to 1990, and then declined to 1.9 percent between 1991
115 and 1998. It however rose to 8.3 Although, the growth rates look promising, but these are nothing compared
116 with the enormous human and natural resources the country is endowed with. Furthermore, the prevalence of
117 communicable diseases such as HIV/AIDS, malaria and tuberculosis in the economy is an indication that the
118 economy seems not to have gotten its bearing. Table 2 Table 2 shows trade composition of Nigeria in terms of
119 exports and imports of both non-oil and oil commodities from 1960 to 2009. From the figure, it can be seen that
120 non-oil exports outweighed oil exports from 1960 to 1970 before oil exports began to rise higher than non-oil
121 exports. This trend has continued till date, which was due to the neglect of other sectors, and this has been
122 the bane of the country making it a mono-been a blessing to the country, it is now regarded as a curse, because
123 the country, which is the sixth major oil producer in the world and the largest in Africa currently depends on
124 import for her refined petroleum products. As rightly pointed out by Odularu (2008), the coexistence of vast
125 natural resources wealth and extreme poverty in Nigeria is a "resource curse". Furthermore, the growth rates of
126 oil and non-oil exports Source : Computed by the Author from Table 2 The growth rates were computed using
127 the formula Where:

128 $N_g = \text{Growth rate of earnings from exports}$, $N_t = \text{Earnings from exports in the current year}$ $N_{t-1} = \text{Earnings}$
129 from exports in the previous year

130 From the table, while the growth rate of earnings from oil exports remain positive since 1960 till date, growth
131 of non-oil export earnings have been fluctuating between positive and negative. Furthermore, the percentage of
132 oil exports to non-oil exports has been mind bothering as can be seen in table 4 below.

133 8 Global Journal of Human Social Science Volume XII Issue I 134 Version I 2 52

135 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria From the table, the
136 percentage of oil exports has remained high above 90 percent since 2004. In fact, it was 99 percent in 2008,
137 which is not good for an economy like Nigeria endowed with mammoth human and material resources. economy.
138 In fact, it has been said that rather than the oil are shown in the table below. It was in the year 1986 that the
139 reality of the presence of the disease dawn on Nigeria when the first cases were reported. Ever since this period
140 the pandemic has continued to spread moving from a concentrated epidemic to a generalized one. The World
141 Bank in 1998 had proposed that a 1 percent and above prevalence level of the disease in the general population
142 constitutes a generalized epidemic in any country, and in Nigeria, the prevalence rate is far above 1 percent.
143 Evidences provided by ??NGASS (2007 ??NGASS (& 2010) reveal an increased in the prevalence from 1.
144 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria epidemic. One awful thing
145 about the disease is its high rate among the economically active population, which is detrimental to the level of
146 productivity in the economy. For instance in 2008, the prevalence of the disease among age bracket 15 to 19 was
147 3.3 percent, that of age bracket 20 to 24 stood at 4.6 percent and for the age group 25 to 29, the rate was 5.6, the
148 highest among the age groups. Meanwhile, age bracket 30 to 34 had 4.9 percent, age group 34-39 recorded 4.1
149 percent while age bracket 40 to 44 had 2.9 percent prevalence. This figures speak volumes about the economy
150 in the future since no cure has yet been discovered for the pandemic, meaning that as the disease progresses,
151 the immune system of the affected people would get weakened thereby leading to less labour hour supply and a
152 complete withdrawal of such services at their demise. infections according to the agency stood at 281,180 in 2010
153 while the annual HIV positive births the same year was 56,681. In fact, in the UNGAS, (2010) report on the
154 country, it is stated that the nation accounts for about 9 percent of the global HIV burden, with more females
155 affected than males. Below is a table showing HIV/AIDS population in Nigeria from 2003 to 2010 and figure 2
156 showing a graphical representation of the prevalence of the disease from 1991 to 2008.

157 **9 Status**

158 **10 Mode Of Transmission**

159 As in most African countries where the prevalence of the pandemic is high, the channels of transmission are
160 similar. The various and major means through which the disease spreads in Nigeria include: i) heterosexual
161 intercourse, which is the primary mode of transmission in the country, accounting for about 80-95 percent;
162 ii) blood transfusions; iii) mother-to-child transmission; iv) Injecting Drug Users (IDU); and v) homosexuality
163 (UNGASS, 2010 and Avert, 2011). The 2010 UNGASS country report states that about 80 percent to 95 percent
164 of people infected with the virus in Nigeria got infected through heterosexual intercourse. This was underscored by
165 the nation's 2007 IBBSS 6 which indicated that HIV/AIDS prevalence was very high among sex workers and that
166 about 37.4 percent prevalence existed among sex workers based in brothels while non-brothel-based sex workers
167 had 30.2 percent. MSM 7 was 13.5 percent, armed forces, 3.1 percent, police, 3.5 percent, transport workers 3.7
168 percent and IDU 8 was 5.6 percent. The survey which covered three major cities in the country revealed that
169 Kano and Abuja had 49 percent prevalence while the lowest rate was recorded in Lagos among brothelbased and
170 non-brothel-based sex workers given as 23.5 percent and 12.9 percent, respectively (USAID-Nigeria, 2010). The
171 figure below shows prevalence of the disease among high risk population in Nigeria. 6 Integrated Bio-Behavioural
172 Surveillance Survey 7 Men who have sex with men 8 injecting drug users

173 **11 Global Journal of Human Social Science Volume XII Issue I
Version I 2 54**

174 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria The above figures
175 notwithstanding, governments at various levels in the country have been proactive together with international
176 agencies and civil society groups including religious bodies in putting in place policy measures and programmes
177 geared towards combating the scourge of the disease in the country. The Federal government established the
178 National AIDS/STD 9 Control Programme (which is currently the HIV/AIDS division of the Federal Ministry
179 of Health) to coordinate national response activities towards fighting the pandemic (NACA, 2008). According to
180 the 2007 IBBSS, one of the key strategies of the Federal government has to do with the continuous monitoring of
181 the HIV epidemic through repeated sentinel surveys, including biennial sentinel surveys among pregnant women
182 attending antenatal clinics in the country. The monitoring task always focuses on groups perceived to be at higher
183 risk, such as: female sex workers (FSW), both brothel-and non-brothel-women in the uniformed services (armed
184 forces and the police). In 2001, the federal government established the Presidential Council on AIDS (PCA) and
185 the National Action Committee on AIDS (NACA) to coordinate and oversee all HIV/AIDS related activities
186 at the federal level while the State Action Committee on AIDS (SACA) and the Local Government Action
187 Committee on AIDS (LACA) were also formed to coordinate and oversee such activities and programmes at the
188 state and local government levels respectively. NACA, which "emphasizes a multisectoral approach to national
189 HIV/AIDS response" (UNGASS, 2010) immediately swung into action and therefore developed the HIV/AIDS
190 Emergency Action Plan (HEAP) in 2001 and in 2009, "a second National Strategic Framework was developed for
191 the 2010-2015 time period and serves as a comprehensive strategic plan covering areas such as prevention, care,
192 and treatment" (USAID, Nigeria, 2010). Most HIV/AIDS response programmes focus on education, prevention,
193 HIV testing, care and support, advocacy, legal issues and human rights, media campaigns and public awareness,
194 monitoring and evaluation as well as research and knowledge management.

195 Response policies also include funding. As stated in the 2007 UNGASS country report; funds aimed at
196 financing HIV/AIDS activities are sourced from both within and outside the country. According to the report,
197 the federal, state and local governments provide funds

199 **12 Global Journal of Human Social Science Volume XII Issue I
Version I 55**

200 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria for HIV programmes. The
201 report affirms that although, the actual expenditure on HIV/AIDS in Nigeria could not be easily ascertained,
202 the application of the NASA tool for 2006-2007 revealed that a total of about 4.9 billion Naira was spent on
203 HIV/AIDS related activities while a total sum of 5.9 billion naira came from the Global Fund with an unspecified
204 sum from other donors such as: PEPFAR 10 , DFID 11 , CIDA 12 Canada, World Bank MAP and the UN System,
205 which could not be captured using the NASA 13 tool. Citing the Health Foundation of Nigeria (HERFON), 2007,
206 Avert maintained that the World Bank in 2002 awarded a loan of US\$90.3 million to Nigeria to support a 5-year
207 HIV/AIDS Programme Development Project while an additional fund totaling US\$50 million was also allocated
208 to the country for the same programme in 2007. In addition, it reported that in 2008, PEPFAR donated about
209 US\$448 million to the country for the purpose of "HIV/AIDS prevention, treatment and care" while as at the
210 "end of 2008, the Global Fund had disbursed US\$95 million in funds for Nigeria to expand treatment, prevention,
211 and prevention of mother-to-child transmission programmes."

212 The various response programmes have had some positive impact on the status of the disease in the country.
213 Evidence provided by the 2010 UNGASS report revealed that some marginal progress have been made in

215 combating the menace of HIV/AIDS in the country. According to the report, the percentage of people (both
216 adults and children) with advanced HIV infection receiving antiretroviral therapy increased from 16.7 percent in
217 2008 to about 34.4 percent in 2010. The percentage of pregnant women who have tested medicines in order to
218 reduce "the risk of mother-to-child transmission increased drastically from 5.

219 **13 III. REVIEW OF RELATED LITERATURE**

220 There are both micro and macro impacts of HIV/AIDS on any economy. Micro impact is always observed at
221 the household and sectoral levels while the macro impact is seen at the national or economy wide level. At the
222 micro level, when a household member gets infected with the virus, its immediate effect is seen in the rate of
223 absenteeism at work as well as diversion of household income to treating the disease. Also, increased absenteeism
224 at work by an infected worker as well as complete loss of labour hour at the advanced stage of the disease or
225 the death of an infected persons act to reduce the level of productivity of the firm. Citing reported that the
226 expenditure of households with a positive to the disease but received antiretroviral –

227 The menace of the dreaded HIV/AIDS has continued to be foci points of theorization as well as empirical works
228 since the disease was discovered. Although at the early stage of its discovery, most research works focused on the
229 epidemiological and demographic aspects of the disease with little works done on the economic implication of the
230 pandemic (see ??yers and Henn, 1988; ??ver and Piot, 1991; Becker, 1990; Chin and Lwanga, 1991; Kambou et al,
231 1992 and ??ell et al, 2003). Currently, attention has so far shifted to the micro and macro economic impacts of
232 the disease as it has progressed to the third decades since the 80s when it was first reported. the work of Bechu,
233 (1998), Stover and Bollinger (1999) member infected by the disease is twice as much on medical expenses than
234 households without an HIV/AIDS patient. The United Nations (2004) has maintained that the disease has the
235 tendency to reduce directly the number of workers and that firms could also lose their "institutional memory (the
236 know-how accumulated through many years of experience) if some high level skilled workers that are important
237 become ill or die from the pandemic. At the macro level, the direct burden of the pandemic is obvious on its effect
238 on the population of the country. The disease causes increased morbidity and mortality which indirectly results
239 to reduction in the amount of labour hours supplied by those infected and a complete loss of labour services
240 earlier supplied by a person who dies as a result of the pandemic. In addition, morbidity and mortality caused
241 by the disease tend to shrink a country's population which directly reduces labour force.

242 The economic burden of HIV/AIDS in this context is viewed from the perspective of decline in the level of
243 output that results from morbidity and mortality rates associated with the pandemic. This is based on the fact
244 that increased morbidity and mortality resulting from the disease would act to reduce the level of productivity
245 in the economy thereby impacting negatively on other sectors of the economy since

246 **14 Global Journal of Human Social Science Volume XII Issue I 247 Version I 2 56**

248 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria expenditure would be
249 diverted to handling HIV/AIDS related issues and lower income within the economy would continue to affect the
250 performances of other sectors. Kambou et al (1992) has argued that AIDS epidemic can affect the entire economy
251 by increasing public and private health expenditure as well as destroying human resources. This argument has
252 been

253 The scourge of HIV/AIDS has significant implications for the level of gross domestic product and per capita
254 income in any economy where the disease is found. Since its discovery in the eighties, its prevalence rate and
255 effect on the economy as a whole have continued to be a major source of apprehension. The reason for this is not
256 farfetched. HIV/AIDS affects majorly the population of those in their productive age through high morbidity and
257 mortality as discussed under the demographic impact above. The results of these are cumulated in overturning
258 and reducing significantly the which invariably have implication for economic growth. Jefferis (2007) maintained
259 that HIV/AIDS can affect output (GDP) relative to the level that would have prevailed without AIDS, by
260 affecting the size, skill structure, experience and productivity of the labour force, and by reducing the rate of
261 investment (gross fixed capital formation) and hence the available capital stock. According to him, because all of
262 the key inputs to production (labour, capital and productivity growth) are likely to be negatively affected, it is
263 highly likely that the rate of GDP growth will be reduced but the impact on average incomes is not clear, a priori,
264 because both GDP growth and population growth are reduced, and the net impact on GDP per capita depends
265 on which one falls further. This argument has been supported by McPherson (2003) who opined that HIV/AIDS
266 burden will lead to a significantly larger economic losses and countries may find it increasingly difficult (when
267 measured in terms of finance, skills, time, and effort) for their economies and societies to recover. Arndt (2003)
268 pointed out that since the AIDS pandemic would last for an extended period of time, "even small impacts on
269 rates of accumulation of key determinants of growth (such as technical progress, physical capital, and human
270 capital) will cumulate over time with potentially substantial implications for economic growth." The prevalence
271 of the disease would inadvertently reduce the levels of savings and investments as well as aggravate the poverty
272 level in Africa which invariably will act to slow down the growth of the gross domestic product. In addition,
273 the concentration of public and private expenditures on treating the disease will be detrimental to the growth
274 and development of other sectors in the economy. The implication of this for the economy as a whole is that

275 most sectors will perform poorly thereby resulting to decline in growth and the level of standard of living within
276 the economy. Furthermore, as a result of the pandemic, the household may suffer from shortages of fund for
277 children's education as well as consumption of commodities necessary for improvement of the standard of living.
278 The epidemic can also deepen the the developing countries that are already beset with a high level of poverty
279 and this can also lead to decrease in the growth rate of per capita income and by selectively impoverishing the
280 individuals and families that are directly affected (Annim and Dasmani, 2010).

281 The literature is fraught with plethora of empirical evidences relating how the menace of HIV/AIDS pandemic
282 has affected the economies of countries where the disease is prevalent. Since the productivity of workers determines
283 the economy wide level of output, it is not out of place to opine that the demographic impact of the pandemic has
284 implications not only for the labour force and the world of work but also for the output level, which determines
285 the performance of the economy. An ILO study in 2000 gave estimates based on population data analysis from
286 some countries that the pandemic would reduce the work force appreciably. For instance in Botswana, Cameroon,
287 Ethiopia, Cote D'Ivoire, Haiti, Kenya, Malawi, Mozambique, Namibia, Nigeria, South Africa, Tanzania, Thailand,
288 Uganda and Zimbabwe, the organization estimated that there would be about 24 million fewer workers in those
289 countries alone in the year 2020 as a result of the AIDS epidemic. substantiated by some research findings in the
290 literature, although some have proved otherwise. level of labour force and labour supply in the economy, poverty
291 of the most affected countries, most especially Although, it has been argued in the literature that the labour
292 lost to the HIV/AIDS pandemic could be replaced in countries where there are labour surplus due to strong
293 population growth (UNDP, 2003 and Cuesta, 2008); but the labour surplus hypothesis may not hold in most
294 African countries where both skilled and unskilled workers are affected in large proportion. For instance those
295 who have acquired some skills either through formal education or other means such as on-the-job training who
296 have acquired some critical experiences through the years of doing such jobs are lost to the disease in African
297 countries where the literacy rate is already low and the level of brain drain seems to be higher compare to most
298 advanced economies. In addition, labour replacement has some costs attached which could reduce productivity
299 level as well as the level of per capita income in the economy. As pointed out by Cohen (2002), the reasoning
300 that the 'unskilled' labour lost through epidemic diseases such as HIV can be easily replaced is based on fallacy
301 because even with agricultural skills as well as other economic activities where it may appear as if the skills can
302 be easily replicated and replaced, "family-based producers, who account for most farmers in Sub-Saharan Africa,
303 face critical constraints in replacing labour lost to HIV and

304 15 Global Journal of H Volume XIU I Issue I Version I 57

305 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria AIDS" because "most
306 producers do not have access to labour markets, and are thus generally limited in the degree to which they can
307 hire labour to meet their needs." Bonnel (2000) carried out a cross country study has increased or decreased
308 growth between 1990 and 97 and found that the disease reduced the rate of growth of Africa's per capita income
309 by 0.7 percentage points per year. The finding of the study which covered a relatively earlier stage of the disease
310 is an attestation to the fact that as the pandemic progresses its impact on the economies where it is prevalent
311 would be quite substantial. The above result was also substantiated by a country-level study undertaken by Zerfu
312 (2002) on the macroeconomic impact of the disease in Ethiopia, using a macroeconometric model which was set
313 up in aggregate demand and supply framework with the individual equations in the model estimated in an ECM
314 format using the Johansen approach in view of the time series properties of the macro-time series variables. The
315 outcome of the study shows that the prevalence of HIV/AIDS has a negative impact on the overall economy
316 through lowering the active labour force, which in turn resulted to a direct negative impact on both the output
317 of the agricultural and nonagricultural thereby leading to decline in private consumption, investment, exports
318 and government tax revenue.In the same vein, McPherson (2003) discovered from his study that HIV/AIDS
319 burden would lead to a significantly larger economic losses and countries may find it increasingly difficult (when
320 measured in terms of finance, skills, time, and effort) for their economies and societies to recover. Hilhorst et al
321 (2006) carried out an empirical study on the impact of AIDS on rural livelihoods in Benue State, Nigeria and
322 discovered that about 6 percent of the households covered had experienced illness and death classified as AIDS
323 and reported high costs in terms of expenditures and time spent on care, funerals and mourning. The demands
324 on time affected income and productivity while the diversion of resources had implications for investments and
325 savings.

326 Although, the discovery of antiretroviral drugs have contributed appreciably to the improvement of the immune
327 system of an HIV infected persons, yet the disease impact on growth and development of the economies of countries
328 where it is prevalent would still be grave since no cure has yet been discovered for the disease; implying that in the
329 nearest future virtually all the people suffering from it would eventually die and their labour supply completely
330 withdrawn, which also has negative implications for the level of productivity and economic growth as a whole.
331 This portends a grave danger not only for Nigeria but also for the economy of Africa being the continent with
332 the highest prevalence and incidence of the disease.

333 16 IV. METHODOLOGY AND CONCEPTUAL FRAME- 334 WORK

335 Since the reported cases of HIV/AIDS, different methodologies have been employed in the literature for
336 economic related studies on the disease. According to Jefferis (2007) some of the methodologies include:
337 econometric estimation where HIV/AIDS variable appears as one of the explanatory variables estimated,
338 aggregate macroeconomic equilibrium growth models, where a simple simulation model is constructed and
339 calibrated to a particular economy, and the growth path of the economy is simulated under different scenarios
340 such as "with AIDS" and "no-AIDS" situation, Computable General Equilibrium (CGE) models; these are
341 like aggregate growth models in that they simulate generally the equilibrium behaviour of an economy under
342 different scenarios, but are more disaggregated and can take into account labour, capital and commodity markets;
343 scale macroeconomic models, where an economy is represented by a number of large econometrically estimated
344 equations that can be used to forecast economic trends, and which can incorporate HIV/AIDS-related factors into
345 model-based forecasts; and the Overlapping Generations Model (OLG) used by Bell, Devarajan and Gersbach
346 (2003) to study the impact of HIV/AIDS on long-term human capital formation.

347 to it and it will be impossible to get them easily replaced, to ascertain whether the presence of HIV/AIDS
348 in Africa This study is based on the neoclassical growth theory (as employed in Barro, 1991;Mankiw, Romer
349 & Weil;, Kirigia, et al, 2002, Asante & Asenso-Okyere, 2003;McDonald & Roberts; ??andon, 2005) using the
350 production function approach where HIV/AIDS variables are included as one of the explanatory variables. In
351 addition, the econometric analysis follows Engle Granger Two-Stage Procedure since the data point used in the
352 study is less than 30. Given the function) ($i D f Y = (1)$)

353 $Y = \text{output or GDP; and } D_i = \text{All explanatory variables employed in the study with HIV/AIDS inclusive.}$
354 Equation (??) could be re-specified as $i D Y = (2)$
355 Linearizing equation (2) gives $i i D Y \ln \ln = (3)$
356 Equation (3) can be augmented by introducing more input variables and re-written as? = $i i D Y \ln \ln = (4)$

357 17 Global Journal of Human Social Science Volume XII Issue I 358 Version I 2 58

359 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria Where ? i is a vector of
360 coefficients of the equation/model, D_i are various inputs or right hand variables. Econometrically, equation ($??$)
361 can be specified as: $? ? + = ? i D Y \ln \ln = (5)$

362 Where: i is a vector coefficients of the model, D_i stands as a vector of various explanatory variables and \tilde{N} ?
363 is error term or stochastic disturbance term.

364 18 Model Specification

365 The study employed two models. Model one used HIV/AIDS Prevalence while model two employed number of
366 persons living with HIV/AIDS in Nigeria.

367 19 Model One

368 Based on the above, model one is specified thus: The slopes of the regression or behavioural parameters. A priori,
369 it is expected that $? 1 ? 4 > 0$ while $? 5 < 0$. $? ? ? ? ? ? + + + + + + = \text{HIV IMT HLTX}$
370 EDUX GFC LBF RGDP

371 20 Model

372 Where all variables except HIV remain as earlier defined. Infant mortality variable is specified in level and HIV
373 prevalence replaced with number of persons living with HIV/AIDS in Nigeria. The a priori expectations remain
374 the same.

375 V. The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria

376 21 RESULTS AND DISCUSSIONS

377 22 Global

378 Journal of Human Social Science Volume XII Issue I Version I

379 23 59

380 The descriptive statistic results show that real GDP had an average value of 391,764.2 million naira, which
381 varied between a minimum of 265,379.1 million naira and a maximum of 672,202.6 million naira. Education
382 expenditure averaged 657, 88.42 million naira and varied from a minimum of 2,982.5 million to a maximum of
383 242,731.0 million naira on the average. During the period under consideration, Gross Fixed Capital Formation
384 stood at an average of 549,611.7 million naira varying between the lowest value of 30,626.80 million naira and
385 the highest average value of 1915349.0 million naira. This pattern is also observed in the average values of HIV

386 prevalence, Health expenditure, Infant Mortality and Labour force. On the average, 3.55 percent HIV prevalence
387 was observed from 1990 to 2010 in Nigeria, which ranged between a minimum prevalence of 1.30 percent and a
388 maximum prevalence of 4.0 percent. Health expenditure averaged 49,685.71 million naira with a minimum value
389 of 658.10 million naira and a maximum of 348042.9 million naira. Infant mortality within the observed period
390 revealed an average value of 98.89 per 1000 live births with a minimum of 80.0 and a maximum of 113.0 averages
391 per 1000 births. Labour force was 64,850,122 people on the average with a minimum of 49,853,380 and maximum
392 of 81,789,142 people.

393 24 Engle Granger Two-Stage Cointegration Test

394 This test involves two procedures of running a static regression of the model and conducting a unit root test on
395 the residual from the regression result. If the unit root is $I(0)$, then cointegration exists among the variables,
396 which also implies the existence of a long-run relationship, which also warrants the conduction of an Ordinary
397 Least Square (OLS) regression on the model.

398 25 Estimation of Model One

399 Here, the Phillips-Perron (PP) Unit Root test was carried out on the Residual of the static regression of model
400 one.

401 26 Hypothesis

402 Null Hypothesis(H 0): RESID01 has a unit root Alternative Hypothesis(H 1): RESID01 does not have a unit
403 root
Source : Author's computation

404 The result shows that the residual series is stationary at level going by the probability value and the t statistic
405 at both 5 percent and 10 percent levels. Based on this, the alternative hypothesis is accepted. The stationarity of
406 the residual series at level implies that the variables are cointegrated based on Engle Granger two way procedure.
407 The import of this is that there is a long run relationship among the variables this therefore, warranted the
408 estimation of the model using the Ordinary Least Square. The result is shown in table 8 below. From the OLS
409 regression result above, the coefficient of HIV prevalence (the variable of interest) has negative but statistically
410 insignificant impact on the level of gdp in Nigeria in the long run. The negative sign is consistent with the
411 a priori expectation. Gross Fixed Capital Formation, Health Expenditure and Labour force also conform to
412 theoretical expectation of positive sign. Likewise infant mortality has negative sign and conforms to a priori
413 expectation. Infant mortality has negative and significant impact on the level of the real gross domestic product
414 in the country. A 100 percent increase in infant mortality will bring about 162 percent reduction in the level
415 of real gross domestic product. This result, which is consistent with the findings of Akram (2008) and Dauda
416 (2011) is very worrisome but not unexpected because of the poor state of health facilities in Nigeria coupled with
417 prevalence of communicable diseases such as malaria, tuberculosis and HIV/AIDS as well as poor high rate of
418 illiteracy and poor health habit of majority of Nigerians. Education expenditure has a negative and statistically
419 significant effect on the output level, which may not be unconnected with the problem of corruption involving
420 the diversion of the money earmarked for the sector for personal use. The adjusted R 2 value of 98 percent shows
421 that the model has a good fit and its explanatory power is strong explaining 98 percent of variation in gross
422 domestic product with the remaining 2 percent explained by factors included in the stochastic disturbance term.

423 27 Model Two

424 For this model, the number of people living with HIV/AIDS in Nigeria as against HIV prevalence was used.
425 Source : Author's computation

426 From the result, it is obvious that the residual series is stationary at level implying the acceptance of the
427 alternative hypothesis of stationarity. This result shows that the variables are cointegrated and so, a long
428 run relationship exists among the variables, which necessitated the estimation of the model using Ordinary Least
429 Square (OLS) regression. The OLS regression result is interesting. All the variables except education expenditure
430 comply with the a priori expectation. The variable of interest, which is the log of number of people living with
431 HIV/AIDS in Nigeria has a negative coefficient and is statistically significant at 5 percent level. A 100 percent
432 increase in the number of the persons living with the disease in Nigeria will bring about 19 percent fall in the level
433 of real gross domestic product. This implies that in the long run, the disease has the inclination to reduce the
434 level of economic growth in Nigeria. Education expenditure, infant mortality and labour force are statistically
435 significant, which agree with the findings of Dauda (2011). Specifically, the result could be explained by the
436 fact that the Nigerian economy is labour-intensive in nature. The adjusted coefficient of determination showed
437 that 97 percent of the total variations in real gdp was explained by the explanatory variables, implying that the
438 regression line gives a good fit to the observed data while the remaining 3 percent of the total variation in level
439 of real gdp in the country was not accounted for by the regression line and this could be attributed to the factors
440 captured by the stochastic disturbance term or due to chance.

441 **28 VI. SUMMARY, CONCLUSION AND POLICY RECOM-**
442 **MENDATIONS**

443 This work attempts to determine the impact of the scourge of HIV/AIDS on the economic performance Global
444 Journal of Human Social Science Volume XII Issue I Version I

445 **29 62**

446 The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria 1990 to 2010. Since the data
447 size was less than 30, the study then employed the Engle Granger two-stage procedure, and having discovered
448 that a long run relationship exists between the real gdp and the explanatory variables employed in the model,
449 the OLS was performed on the two models used in the study. The result of the first model used, which used HIV
450 prevalence was insignificant statistically, although the negative sign conformed to the theoretical expectation.
451 The second model employed number of persons living

452 The conclusion drawn from this study is that with the increase in both prevalence and number of persons living
453 with the disease in Nigeria, HIV/AIDS would have negative and significant impact on the growth of the Nigerian
454 economy in the long-run, the oilrich nature of the country notwithstanding. This then implies that as the disease
455 progresses in the country as more reliable data are readily available the impact on the economy would begin to be
456 felt. Therefore, the Nigerian government must be sincere in putting in place better policies aimed at reducing and
457 preventing the spread of the disease in the country. Specifically, more funds should be allocated to fighting the
458 menace of the disease through intensive counseling and education on preventive measure, particularly abstinence,
459 provision of antiviral drugs, strict monitoring to ensure the use of funds from donor partners on HIV/AIDS
460 related activities, involving local and community people to reach out to those infected and also to educate the
461 citizens on the dangers of unprotected sex as well as engaging religious groups and traditional rulers in educating
462 their subjects.

463 **30 10.**

464 Long-Run Economic Costs of AIDS: Theory and Application to South Africa. World Bank Working Paper 3152.
465 World Bank: Washington DC.

466 of Nigeria using time series data that cover the period with the disease in the country. The result of this model
467 revealed that, HIV/AIDS has significant and negative impact on the growth of the economy of Nigeria in the
468 long-run, with a 19 percent reduction in the level of gdp due to a 100 percent increase in the number of persons
469 living with the disease. The adjusted coefficient of determination of the model was 97 percent, which showed a
470 good fit.

471 **31 Bell, C., Devarajan, S & Gersbach, H (2003). The**

Figure 1:

1

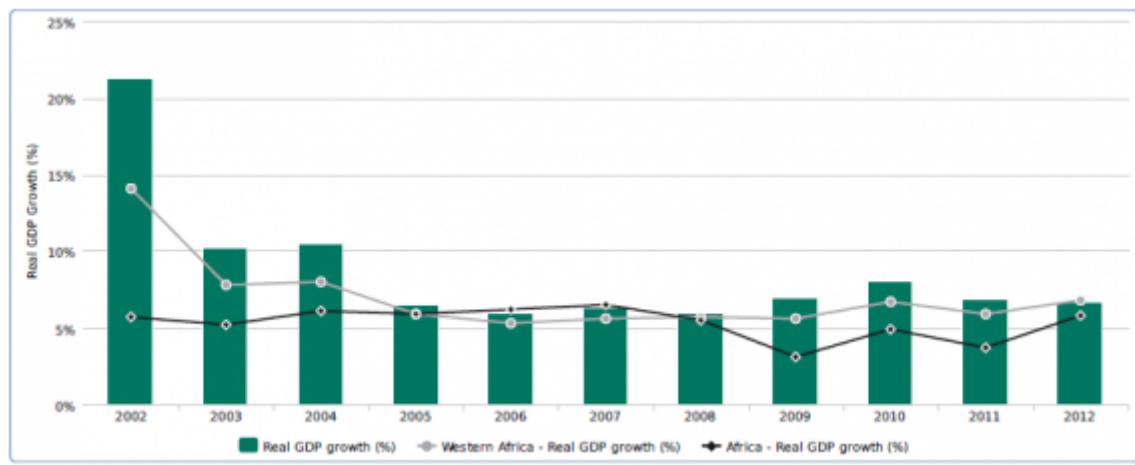


Figure 2: Figure 1 :

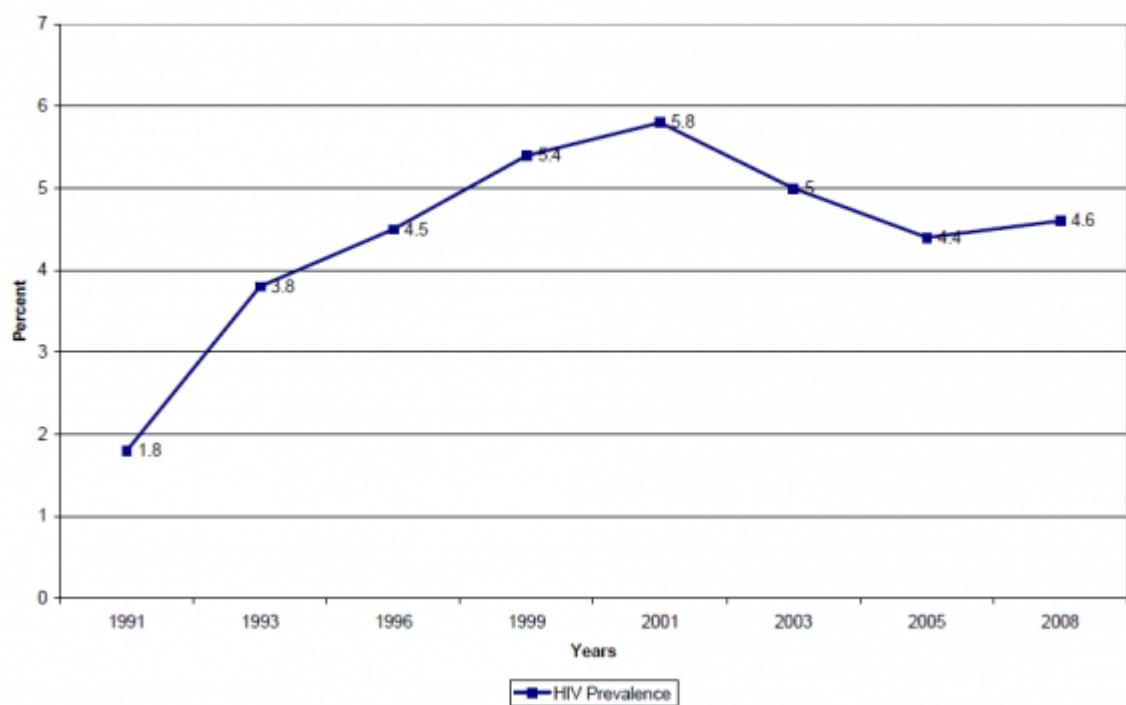


Figure 3:

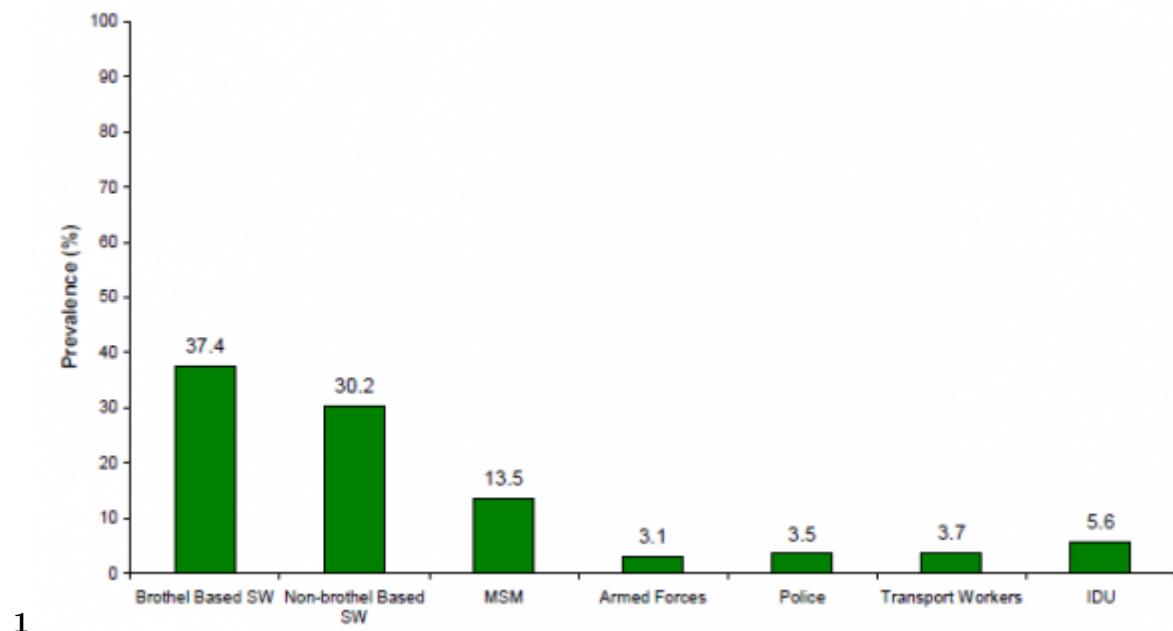


Figure 4: Figure 1

1

Figure 5: Table 1 :

2

Year	Imports			Exports		
	Oil	Non-Oil	Total	Oil	Non-Oil	Total
1960	27.0	404.8	431.8	8.8	330.6	339.4
1965	47.9	502.2	550.1	136.2	400.6	536.8
1970						

Figure 6: Table 2 :

3

Year	Oil (N' Million)	Growth Rate (%) Oil	Non-Oil (N' Million)	Growth Rate (%) Non-Oil
1960	8.8		330.6	
1965	136.2	1447.727	400.6	21.17362
1970	509.6	274.1557	376.0	-6.14079
1975	4,563.1	795.4278	362.4	-3.61702
1980	13,632.3	198.7508	554.4	52.98013
1985	11,223.7	-17.6683	497.1	-10.3355
1990	106,626.5	850.012	3,259.6	555.7232
1995	927,565.3	769.92	23,096.1	608.5563
2000	1,920,900.4	107.0906	24,822.9	7.476587
2005	7,140,578.9	271.7308	105,955.9	326.8474
2009	8,543,261.2	19.64382	289,152.6	172.899

Figure 7: Table 3 :

4

Year/Component	Oil Exports (%)	Non oil Export (%)
2004	97.5	2.5
2005	98.3	1.7
2006	97.8	2.2
2007	97.9	2.1
2008	99.0	1.0
2009	95.8	4.2

Source : Sanusi (2010)

Figure 8: Table 4 :

6

Model One

Figure 9: Table 6 :

7

Variables	PP	Statistic	Critical at Level	Critical Value (1%)	Critical Value (5%)	Critical Value (10%)	Probability	Order of Integration
RESID01	-3.337300	-3.857386		-3.040391		-2.660551	0.0283	I(0)

Figure 10: Table 7 :

Dependent Variable: LOG(RGDP)

Method: Least Squares

Date: 09/15/11 Time: 11:55

Sample (adjusted): 1990 2008

Included observations: 19 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.087512	15.27162	-	0.9955
LOG(EDUX)	-0.122192	0.059087	0.005730	0.0609
LOG(GFC)	0.064302	0.054624	2.068019	0.2619
HIV	-0.058717	0.039186	-	0.1599
LOG(HLTX)	0.026617	0.021845	1.498441	0.2465
LOG(IMT)	-1.619687	0.659863	-	0.0303
LOG(LBF)	1.154319	0.791985	2.454582	0.1706
R-squared	0.985705	Mean dependent var		12.82309
Adjusted R-squared	0.978557	S.D. dependent var		0.332916
S.E. of regression	0.048750	Akaike info criterion		-2.926909
Sum squared resid	0.028519	Schwarz criterion		-2.578958

Figure 11: Table 8 :

	RGDP	EDUX	GFC	HIV	HLTX	IMT	LBF
Mean	391764.2	65788.42	549611.7	2357368.	49685.71	98.89474	64850122
Median	312183.5	31563.80	205553.0	2600000.	18181.80	103.0000	64304516
Maximum	672202.6	242731.0	1915349.	3200000.	348042.9	113.0000	81789142
Minimum	265379.1	2982.500	30626.80	590000.0	658.1000	80.00000	49853380
Std. Dev.	140732.1	70709.56	605676.3	704807.6	80990.52	12.23335	10067379
Skewness	0.814276	1.131685	0.995414	-1.170637	2.831210	-0.336064	0.134011
Kurtosis	2.106529	3.328774	2.528690	3.546063	10.91865	1.451588	1.788870
Jarque-Bera	2.731626	4.141160	3.313541	4.575637	75.02471	2.255724	1.218115
Probability	0.255173	0.126113	0.190754	0.101488	0.000000	0.323725	0.543863
Sum	7443520.	1249980.	10442622	44790000	944028.5	1879.000	1.23E+09
Sum Sq.	3.56E+11	9.00E+10	6.60E+12	8.94E+12	1.18E+11	2693.789	1.82E+15
Dev.							
Observations	19	19	19	19	19	19	19

Source : Author's computation

Figure 12: Table 9 :

10

Variables	PP Statistic at Level	Critical Value (1%)	Critical Value (5%)	Critical Value (10%)	Probability Value	Order of Integration I(0)
RESID01	-	-3.857386	-3.040391	-2.660551	0.0196	

3.521984

Figure 13: Table 10 :

11

Dependent Variable: LOG(RGDP)

Method: Least Squares

Date: 09/15/11 Time: 11:11

Sample (adjusted): 1990 2008

Included observations: 19 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-14.27890	14.77254	-0.966584	0.3528
LOG(EDUX)	-0.154022	0.062527	-2.463272	0.0299
LOG(GFC)	0.073274	0.056483	1.297275	0.2189
LOG(HIV)	-0.187486	0.087279	-2.148121	0.0528
LOG(HTX)	0.034849	0.023080	1.509889	0.1569
IMT	-0.014354	0.006528	-2.198898	0.0482
LOG(LBF)	1.757888	0.860707	2.042377	0.0637
R-squared	0.983284	Mean dependent var		12.82309
Adjusted R-squared	0.974926	S.D. dependent var		0.332916
S.E. of regression	0.052716	Akaike info criterion		-2.770485
Sum squared resid	0.033348	Schwarz criterion		-2.422534
Log likelihood	33.31961	Hannan-Quinn criter.		-2.711598
F-statistic	117.6478	Durbin-Watson stat		1.710698
Prob(F-statistic)	0.000000			

Source : Author's computation

Figure 14: Table 11 :

473 .1 Data Sources

474 The data used for the study were obtained from the following sources: Central Bank of Nigeria's
475 [Africa Region Working Paper Series] , <http://www.worldbank.org/afr/wps/wp48.pdf> *Africa Region*
476 *Working Paper Series* (48) .

477 [Avert and Nigeria] , Avert , Nigeria . (Retrieved from)

478 [Quarterly Journal of Economics] , *Quarterly Journal of Economics* 107 (2) p. .

479 [African Journal of Health Sciences] , *African Journal of Health Sciences* 9 (1-2) p. .

480 [Chin et al. ()] , Chin , S Lwanga , G Kambou , Devarajan , M Over . 1991. 1992.

481 [Asante and Asenso-Okyere ()] , F A Asante , K Asenso-Okyere . 2003.

482 [Source : Compiled by the Author from Central Bank of Nigeria Statistical Bulletins ()] , *Source : Compiled by*
483 *the Author from Central Bank of Nigeria Statistical Bulletins* 2010. p. REFERENCES.

484 [Mankiw et al. ()] *A contribution to the empirics of economic growth*, N G Mankiw , D Romer , D Weil . 1992.

485 [A World of Development Experience UNDP ()] 'A World of Development Experience'. <http://www.undp.org/annualreports/2003/english/IAR03completeE.pdf> UNDP 2003.

486 [Afdb et al. ()] *African Economic Outlook*, Oecd Afdb , Undp , Uneca . http://www.africaneconomicoutlook.org/fileadmin/uploads/aeo/Country_Notes/2011/Full/Nigeria.pdf 2011. Nigeria.

487 [McDonald and Roberts ()] *AIDS and Economic Growth: A Human Capital Approach*, S McDonald , J Roberts
488 . 2004.

489 [Unaiids ()] *AIDS epidemic update*, Who Unaids . http://data.unaids.org/pub/report/2009/jc1700_epi_update_2009_en.pdf 2007. 2009. (AIDS epidemic update)

490 [Abegunde and Stanciole ()] *An Estimation of the Economic Impact of Chronic Non-Communicable Diseases in Selected Countries*, D Abegunde , A Stanciole . 2006.

491 [and The Centre for Development and Population Activities (CEDPA)] *and The Centre for Development and Population Activities (CEDPA)*, Washington, DC. (Retrieved from)

492 [Annim and Dasmani ()] S Annim , I Dasmani . *The Joint Effect of Human Capital and Income Inequalities on HIV/AIDS Prevalence: An Exploratory Investigation*, 2010.

493 [Annual Performance of the Nigerian Economy] *Annual Performance of the Nigerian Economy*, <http://www.npc.gov.ng/vault/2009%20Annual%20Report%20on%20Performance%20of%20the%20Nigerian%20Economy.pdf>

494 [Mahal et al. ()] *Assessing the Economic Impact of HIV/AIDS on Nigerian Households: A Propensity Score Matching Approach*, A Mahal , D Canning , K Odumosu , P Okonkwo . 10.1097/01.AIDS.0000327629.62350.59. 2008. Lippincott Williams & Wilkins. 22 p. .

495 [Jefferis ()] 'Assessing the Macroeconomic Impact of HIV/AIDS in Uganda. Ministry of Finance Planning and Economic Development United Nations Development Programme, Kampala 23. Economic Impact of AIDS in an African Country: Simulations with a Computable General Equilibrium Model of Cameroon'. K Jefferis . *Journal of African Economies* 2007. 1 (1) p. .

496 [Cbn Chakraborty et al. ()] S Cbn Chakraborty , C Papageorgiou , F Perez-Sebastian . *Statistical Bulletins*,
497 2010. 2005. Diseases and Development. Central Bank of Nigeria

498 [Cuesta ()] *Does a Mature AIDS Epidemic Threaten Growth? Inter-American Development Bank, Research*
499 *Department Working paper series 630' 1300*, J A Cuesta . 2008. New York Avenue, N.W. Washington, DC.
500 p. 20577.

501 [Domestic Product (GDP) in the WHO Africa Region] *Domestic Product (GDP) in the WHO Africa Region*,
502 Economic Burden of Malaria in Ghana. A Technical Report Submitted to the World Health Organisation (WHO)
503 *Economic Burden of Malaria in Ghana. A Technical Report Submitted to the World Health Organisation*
504 (WHO), http://www.who.int/countries/gha/publications/Economic_Burden_of_Malaria_in_Ghana_Final_Report_Nov03.pdf (African Regional Office (AFRO))

505 [Barro ()] 'Economic Growth in a Cross Section of Countries'. R J Barro . *The Quarterly Journal of Economics*
506 1991. 106 (2) p. .

507 [Fact Sheet 2011: Prevention of New Infections in Nigeria National Planning Commission ()] 'Fact Sheet 2011:
508 Prevention of New Infections in Nigeria'. http://naca.gov.ng/content/view/416/lang,en/32_National_Planning_Commission 2011. 2009. NACA

509 [Federal Republic of Nigeria Official Gazette Federal Government Printer ()] 'Federal Republic of Nigeria Official Gazette'. *Federal Government Printer*, (Lagos) 2007. 94.

527 [Global Journal of Human Social Science Volume XII Issue I Version I] *Global Journal of Human Social Science*
528 *Volume XII Issue I Version I*,

529 [Sanusi ()] *Growth Prospects for the Nigerian Economy. A Convocation Lecture delivered at the Igbinedion*
530 *University Eighth Convocation Ceremony*, L S Sanusi . 2010. Edo State: Okada.

531 [Over ()] 'Guidelines for Rapid Estimation of the Direct and Indirect Costs of HIV Infection in a Developing
532 Country'. M Over . *Health Policy* 1989. 11.

533 [Dauda ()] 'Health as a Component of Human Capital Formation: Does it Matter for the Growth of the Nigerian
534 Economy?'. R S Dauda . 10.3968/j.css.1923669. *Canadian Social Science* 2011. 7 (4) p. .

535 [Health Statistics and Health Information Systems ()] *Health Statistics and Health Information Systems*,
536 Retrieved from www.who.int/healthinfo/global_burden_disease/en/index.html 2011.

537 [Usaid-Nigeria ()] *HIV/AIDS Health Profile*, Usaid-Nigeria . [Countries/africa/nigeria.pdf](http://www.who.int/healthinfo/global_burden_disease/en/index.html) 2010.

538 [Arndt ()] *HIV/AIDS, Human Capital, and Economic Growth Prospects for Mozambique*, C Arndt . 2003.

539 [Bonnel ()] *HIV/AIDS: Does It Increase or Decrease Growth in Africa?*, R Bonnel . 2000. ACT Africa World
540 Bank.

541 [HIV/STI Integrated Biological and Behavioural Surveillance Survey (IBBSS) ()] *HIV/STI Integrated Biological*
542 *and Behavioural Surveillance Survey (IBBSS)*, 2007. 2007. Nigeria. Federal Ministry of Health (Federal
543 Ministry of Health Publication)

544 [Cohen ()] *Human Capital and the HIV Epidemic in Sub-Saharan Africa. ILO/AIDS Working Paper No.*
545 *2. Geneva. Retrieved from www, D Cohen . .ilo.org/wcms5/groups/public/- -ed_protect/-*
546 *-protrav/- -ilo_aids/documents/publication/wcms_117152.pdf* 2002.

547 [Hilhorst et al. ()] 'Impact of AIDS on rural livelihoods in Benue State'. T Hilhorst , Liere , K Koning . *Nigeria.*
548 *Journal of Social Aspects of HIV/AIDS* 2006. 3 (1) p. .

549 [Abdulsalam ()] 'Macroeconomic Effects of HIV/AIDS Prevalence and Policy in Nigeria: A Simulation Analysis.
550 Forum for Health Economics &'. S Abdulsalam . *Policy* 2010. 13 (2) .

551 [Mcpherson ()] *Macroeconomic Models of the Impact of HIV/AIDS. Center for Business and Government*, M F
552 Mcpherson . 2003. Harvard University: John F. Kennedy School of Government. p. 29.

553 [Ilo ()] *New ILO study warns of HIV/AIDS 'catastrophe' for workers and employers. Retrieved From www, Ilo .*
554 [.ilo.org/global/about-the-ilo/press-and-](http://www.ilo.org/global/about-the-ilo/press-and-) 2000.

555 [Garcia et al. ()] *Nigeria Economic Performance Assessment*, R M Garcia , R Kohl , Ruengsorn , J Zislin . 2006.
556 USAID and Nathan Associates Inc.

557 [Projection of Adult AIDS Cases: A Simple Epidemiological Model Bulletin of WHO] 'Projection of Adult
558 AIDS Cases: A Simple Epidemiological Model'. *Bulletin of WHO* 63 p. .

559 [Scope of Work for the: Impact of the National Response on the HIV/AIDS Epidemic ()] *Scope of Work for*
560 *the: Impact of the National Response on the HIV/AIDS Epidemic*, 2008. NACA

561 [SERP Number (2004008)] *SERP Number*, (United Kingdom) 2004008. Sheffield Health Economics Group ;
562 University of Sheffield

563 [Study, the Socioeconomic Impact Studies of the AIDS Epidemic on Households, and Selected Sectors in ()]
564 http://www.bus.lsu.edu/economics/papers/pap05_12.pdf *Study, the Socioeconomic Impact*
565 *Studies of the AIDS Epidemic on Households, and Selected Sectors in*, (Nigeria) 2005. 12. Louisiana State
566 University, Department of Economics Working Paper

567 [Becker ()] 'The Demo-Economic Impact of the AIDS Pandemic in Sub-Saharan'. C Becker . *Africa. World*
568 *Development* 1990. 18 (12) p. .

569 [Stover and Bollinger ()] *The Economic Impact of AIDS. The Futures Group International in collaboration with*
570 *Research Triangle Institute*, J Stover , L Bollinger . 1999. (RTI)

571 [The Global Burden of Disease WHO ()] 'The Global Burden of Disease'. http://whqlibdoc.who.int/publications/2009/9789241563901_eng.pdf WHO 2008. 2004.

572 [The Impact of AIDS. Department of Economic and Social Affairs, Population Division ()] *The Impact of*
573 *AIDS. Department of Economic and Social Affairs, Population Division*, 0progressreportssubmittedby-
574 countries/Nigeria_UN GASS_2010_Final_Country_Report_20110604.pdf 47. 2004. New York. (United
575 Nations)

576 [Zerfu ()] *The Macroeconomic Impact of HIV/AIDS*, D Zerfu . 2002.

577 [The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria] *The Scourge of Hiv/Aids*
578 *Pandemic and Economic Performance: The Case of Nigeria*, 720110704.185.

579 [The Scourge of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria org ()] *The Scourge*
580 *of Hiv/Aids Pandemic and Economic Performance: The Case of Nigeria org*, 2008/nige-
581 *ria_2008_country_progres*.

583 [Over ()] *The Social Economic Impact of Adult Death from AIDS in Sub-Saharan Africa: A Research Proposal.*
584 *Population, Health and Nutrition Division*, M Over . 1989. World Bank.

585 [Kirigia et al. ()] 'The World Peace Foundation Over, M &Piot, P (1991). HIV Infection and Sexually Trans-
586 mitted Diseases. Health Sector Priorities Review'. J M Kirigia , L G Sambol , T Okorosobol , G Mwabul
587 . *Africa in the 1990s and Beyond: U.S Policy Opportunities and Choices*, / Seimpact, / Seimpact_Africa,
588 A Tandon (ed.) (Washington, D.C www; Philippines) 2002. 1988. 2005. The World Bank. (ERD Working
589 Paper) (Macroeconomic Impact of HIV/AIDS in the Asian and Pacific Region. Asian Development Bank)

590 [UNAIDS Report on The Global AIDS Epidemic UNAIDS ()] 'UNAIDS Report on The Global AIDS Epidemic'.
591 <http://www.unaids.org/en/media/unaids/contentass> UNAIDS 2010. UNAIDS. Press Release.

592 [UNGASS Country Progress Report UNGASS ()] 'UNGASS Country Progress Report': <http://data.unaids.org/en/UNGASS> 2008.

593 [UNGASS Country Progress Report UNGASS ()] 'UNGASS Country Progress Report': <http://www.unaids.org/en/dataanalysis/monitoringcountryprogress/201> UNGASS 2010.

594

595