

1 Female Labor Force Participation and Economic Growth in 2 Developing Countries

3 Elizabeth N. Appiah

4 *Received: 13 December 2017 Accepted: 31 December 2017 Published: 15 January 2018*

5

6 **Abstract**

7 This paper examines the relationship between female labor force participation and its impact
8 on economic growth. The paper further explores whether the impact of the female labor force
9 participation on economic growth is different for developing countries as a whole compared
10 with countries in sub-Saharan Africa (SSA). I hypothesize, that female labor force
11 participation will have a positive effect on economic progress in developing countries including
12 countries in SSA. I use a panel data from the World Development Indicators (WDI) from
13 1975-2015, and employ a neoclassical growth model to examine how the female labor force
14 participation, affect economic growth. Using the 'system' GMM estimator, my findings reveal
15 that the female labor participation has a positive impact on economic growth, in developing
16 countries, and that of SSA countries only. This paper contributes to the literature analyzing
17 the importance of female labor force participation on economic growth. By examining, the
18 impact on 139 countries that make up the developing world analysis from this further
19 strengthens the link between female labor force participation and economic growth.

20

21 **Index terms**— developing countries, female labor force participation; economic growth.

22 **1 I. Introduction**

23 The importance of the female labor force participation has been acknowledged for decades (Boserup, 1970(Boserup,
24 , 2013;; ??urand, 1975;Pampel and Tanaka, 1986; King and Hill, 1997; Mamnen and Pazason, 2000; Juhn
25 and Ureta, 2003 and Lincove, 2008; Lechman and Kauer, 2015). Drawing from empirical studies, economic
26 empowerment has also been recognized as a prerequisite for Sustainable Development Goals (SDGs). As female
27 labor force participation is an important aspect of economic empowerment, some have specifically addressed these
28 two variables. This paper thus contributes to this major field by extending studies that examine how female labor
29 force participation affect economic growth, in developing countries, in general. By utilizing analysis of countries
30 in SSA, this paper aims at providing a comparative perspective on the association between female labor force
31 participation and economic development.

32 Having noted the goals and objectives of the study, as well as some significant contributions, this paper provides
33 the theoretical framework to discuss the impact of female labor force participation on per capita GDP growth. I
34 employ the 'system' General Method of Moments (GMM) proposed by Blundell and Bond (1998) to estimate a
35 linear dynamic data of 139 countries over the period 1975 to 2015. The importance of using the system GMM
36 estimator is that it is a more efficient estimator. My findings indicate that female labor force participation has
37 positive and statistically significant effects on the economic growth in all developing countries, and in SSA as
38 a separate region, after controlling for other factors that affect economic growth. I find no difference between
39 the marginal effects in SSA and developing countries as a whole. The rest of the paper is as follows: Section
40 2 provides a brief background, and Section 3 describes the data. In Section 4, I discuss the method used in
41 analyzing the data, and Section 5 presents the results. Section 6 concludes.

42 **2 II. Background**

43 The existing literature examines how changes in the economies in specific countries result in changes in the
44 female labor force participation as well. As economies remain, primarily agricultural research reveals that female
45 labor force participation remains high as found in many developing countries. Since 1970s female labor force
46 participation in developing countries mostly, in SSA, Latin America (LAC), and the Middle East have been
47 rising (World Bank data, 2017). Contrary, female labor force participation in the other regions is characterized
48 by cyclical periods in which labor is either plenteous or scarce. Ça?atay and Özler (1995); Gaddis and Klasen,
49 (2014) note the decline of female labor force participation as an economy moves from mainly an agricultural sector
50 to an industrial one. Cavalcanti and Tavares (2011) show how female labor force participation, then increases
51 as economies move to a more service-centered one. It is, however, crucial to note that cultural factors, including
52 religious values and ethnic attitudes also affect the female labor force. Duflo (2012) reveals that women's labor
53 force presence on economic development can be bidirectional, in the sense that economic development can lead
54 to an increase in female labor force participation. Research by Berniell and Sánchez-Páramo (2011) reveal how
55 household labor can have a negative effect on the female labor force. As women spend more time and energy on
56 household labor, they have little time to participate in the formal labor force. Developing countries, on the other
57 hand, the informal labor force affords women the opportunity to combine both, but also limit the most productive
58 use of their time. In this case, as economies develop, women tend to spend less time on household chores and are
59 therefore free to participate in the labor force (Greenwood, Seshadri et. al., 2005;Dinkelman, 2010). At the same
60 time, women's high presence in the labor force can be seen as a prerequisite for economic development. In some
61 developing countries, where female labor force participation is low, society views girls' education as insignificant
62 because of the potential lack of economic contributions to households. An expansion in the female labor force
63 participation may also result in the empowerment of women decision-making processes in the family, regarding
64 decisions about fertility, education for daughters, etc. as women are empowered economically (Thomas, 1993).

65 **3 III. Data**

66 I use a panel data from the World Development Indicators (WDI) data from the World Bank covering 139
67 developing countries, from 1975 to 2015. My dependent variable is per capita GDP growth (in 2010 US\$), and
68 my explanatory variables are female labor force participation, which is the variable of interest, capital, and female
69 primary school enrollment. These variables have been proven to influence economic growth as found in studies
70 by Shashid (2014), Lechman and Kauer (2015) among others. I use the gross primary school enrollment, rather
71 than primary school educational attainment because of missing cells for most of the developing countries. Again,
72 I use the primary school because not all developing countries, have reached universal secondary school education,
73 but the majority of them has somewhat attained primary school education. I also include a dummy variable for
74 sub-Saharan Africa in my regression. The table below is the summary of my datasets. Column 3 shows the mean
75 and standard deviation for all developing nations. Columns 4 and 5 depict the mean and standard deviation for
76 developing states, excluding SSA, and for only SSA countries respectively. Capital is gross capital formation (%
77 of GDP). School enrollment, primary, female (% gross).

78 I present the summary statistics of the data are in Table 1. Column 3 shows the statistics for all developing
79 countries. Column 4 depicts data for developing countries excluding SSA, and column 5 exhibits the data
80 for only SSA countries. Though the mean for female labor force participation in SSA is higher than that of
81 developing countries as a whole, their per capita GDP growth is lower than the rest of developing countries.
82 The data buttress the existing literature that large stocks of physical capital and the accumulation of human
83 capital positively correlate with per capita GDP growth. This can partly explain the low levels of investment in
84 education in SSA; an element considered one of the key factors of human capital, which is a major, contributor
85 to economic growth.

86 **4 IV. Estimation Procedure**

87 I employ the neoclassical growth model to examine the impact of female labor force on per capita GDP growth.
88 I use the 'system' General Method of Moments (GMM) estimator proposed by Blundell and Bond (1998) to
89 analyze a panel data of 139 countries over the period 1975 to 2015. I find this approach, appropriate estimator for
90 estimating growth equation in my study. Earlier researchers attested that the most crucial factor in determining
91 economic growth is human capital (Barro, 1991;Romer, 1990). In developing countries, females constitute a
92 majority of the labor force, particularly, in the agriculture sector and the informal sector. However, my study
93 focuses on the impact of the female labor force (comprising formal & informal) on per capita GDP growth. The
94 basic production function is the following: $\dot{Y} = F(K, L)(1)$

95 where \dot{Y} represents per capita GDP, K is the capital stock, and L denotes labor. I expand the above production
96 function model to include the variables shown below: $\dot{Y} = f(\dot{K}, \dot{L}, \text{ger1f})(2)$

97 \dot{K} and \dot{L} are as defined above, and ger1f = female labor force. I hypothesize that female labor force (ger1f)
98 participation improves economic growth; thus, I expect a positive sign. I also hypothesize that human capital
99 improves the productivity of capital stock, so I include education ger1f (female gross primary school enrollment)
100 as an argument in the growth of per capita GDP; thus, the expected sign is positive. Finally, I expect no
101 difference between the impact of female labor force participation on economic growth in SSA and that of the

102 developing countries as a whole. The explanatory variables are control variables that previous researchers have
103 found to influence economic growth. I include γ_1 to test the convergence hypothesis. Also, I introduce female
104 labor force participation in a quadratic form to test the hypothesis proposed by Schultz (1999) that the marginal
105 impact of the growth of per capita GDP declines as the female labor force participation increases all other things
106 equal. Next, I include a dummy variable sub-Saharan Africa (ssa) to determine if the impact of female labor force
107 participation on per capita GDP growth in SSA countries differs from that of other developing countries. From
108 the above discussion, I estimate the following equation to examine the effects of female labor force participation
109 on per capita GDP growth:
110
$$LY_{it} = \gamma_0 + \gamma_1 LY_{it-1} + \gamma_2 Lf_{it-1} + \gamma_3 Lf_{it-2} + \gamma_4 Lf_{it-3} + \gamma_5 ger1f_{it} + \gamma_6 ssa_{it} + \epsilon_{it} \quad (3)$$

111
$$it = \mu_{it} + v_{it}$$

112 where i refers to countries and t indexes time. LY_{it} is per capita GDP as a percent of GDP and ϵ_{it} is the error term. I define the rest of the variables as shown above. I assume
113 that female labor force (Lf_{it}) is endogenous with per capita GDP (LY_{it}) in the model because improved
114 female labor force participation causes per capita GDP growth to increase and vice versa. The explanatory
115 variables may be correlated with the disturbance term (ϵ_{it}). To measure the impact of the independent
116 variable of interest, on the dependent variable, I lagged the female labor force (Lf_{it}) in the estimation model by
117 one period. Now, with a panel data, there might be a problem of fixed impacts contained in the error term in
118 equation 3. To deal with this problem, I apply Arellano -Bond (1991) two-step difference GMM estimator, which
119 uses the first-step residuals to estimate the covariance matrix of moment conditions, making the endogenous
120 variables pre-determined; therefore, not correlated with the error in equation (3). Again, the presence of the
121 lagged dependent variable, LY_{it-1} step up autocorrelation. To correct this problem, Arellano -Bond applied
122 first differencing to transform the regressors in Equation (3) as shown below:
123
$$\hat{LY}_{it} = \hat{\mu}_{it} + \hat{Lf}_{it-1} + \hat{Lf}_{it-2} + \hat{Lf}_{it-3} + \hat{ger1f}_{it} + \hat{ssa}_{it} + \hat{\epsilon}_{it} \quad (4)$$

124 $\hat{\mu}_{it} = \hat{\mu}_{it-1} + \hat{\epsilon}_{it-1}$ According to Arellano -Bover (1995), Arellano -Bond difference GMM estimator
125 makes the variables to be predetermined; thereby, making the lagged levels of the explanatory variables, weak
126 instruments for the firstdifference. Blundell -Bond (1998) proposed the 'system' GMM estimator as a better
127 alternative. This approach presumes to alleviate the weak instruments problem by using additional moment
128 conditions and free it from serial correlation, thus considered more efficient. The disadvantage of the 'system'
129 GMM estimator approach, is that it uses 'too many' instruments Hayakawa (2007). The 'system' GMM estimator,
130 however, is suitable for dynamic panel-data, hence provides useful background for my study. Therefore, I use
131 the two-step 'system' GMM estimator to estimate a linear panel data to first calculate the effect of the female
132 labor force participation on per capita GDP growth in developing countries in Equation (4) without the dummy
133 variable (ssa). Next, I estimate Equation (4) with the dummy variable (ssa) to test if the marginal effect of
134 female labor force participation in SSA on per capita GDP growth is significantly different from the marginal
135 effect of female labor force participation in developing countries as a whole.

136 5 Empirical Results

137 I use the 'system' GMM estimator over the difference GMM estimator to estimate the impact to female labor
138 force on economic growth because it provides relatively better results. I analyze the parameters γ_1 , γ_2 in a
139 linear form followed by the marginal impact of female labor force participation on per capita GDP growth based
140 on the following questions: a) Does female labor force participation affect developing countries economic growth?

141 I estimate equation 4 without the dummy variable. The coefficients γ_1 , γ_2 , γ_3 , γ_4 and γ_5 are shown in
142 Table ???. The test statistics lead me to reject the null hypothesis, H_0 that variation in the dependent variable
143 cannot explain the variation in all the explanatory variables. The test also shows no serial correlation. I estimate
144 the marginal impact of the coefficients γ_1 , and γ_2 as shown below.

145 By partially differentiating equation (4), $\partial \hat{LY}_{it} / \partial Lf_{it-1}$ in the linear form for all emerging countries, the
146 parameter γ_1 is positive and statistically significant at $\alpha = 0.01$, suggesting that an increase in the female
147 labor force participation influences per capita GDP positively. However, the coefficient of γ_2 is negative and
148 significantly different from zero at $\alpha = 0.01$. Now, I calculate the marginal impact of an increase in female labor
149 force participation on per capita GDP as shown below. The estimated value is positive, but at a diminishing
150 rate. Therefore, I cannot use this result to predict what will happen to per capita GDP as female labor force
151 participation continues to grow.
152
$$\gamma_1 = 10.81 + 2(0.086) = 10.81 - 6.85 = 3.96 > 0$$

153 My results suggest that increased higher female labor force participation may encourage economic growth in
154 developing countries, while the low rate of female labor force participation may lower economic growth. My
155 findings are consistent with those found in similar studies (Tsani et al., 2013; Mujahid and Zafar, 2012). Other
156 studies found a U-shaped relationship between female labor force participation and economic growth. However,
157 for low-income countries, their U-shaped hypothesis of positive impact was not proven (Lechman and Kauer,
158 2015). b) Is the impact of an increase in female labor force participation on economic growth in developing
159 countries different for SSA countries?

160 I repeat equation (4), with the dummy variable (ssa) to examine the impact of female labor force participation
161 in SSA countries on economic growth. I also investigate if the impact on per capita GDP growth in SSA countries
162 is different from that of developing countries as a whole. The estimated coefficients are as reported in the last
163 column of Table 2. Again, as addressed above, I use the parameters γ_1 and γ_2 to examine the impact of
164 an increase in female labor force participation on per capita GDP growth. The parameter γ_1 is positive and

6 VI. CONCLUSION

164 significant, suggesting that h_0 be rejected on the grounds that the dependent variable cannot be explained by
165 the variation in the explanatory variables at $\alpha = 0.01$. Also, there was no indication of autocorrelation. Here
166 too, the parameter β_2 is negative and significant. The estimated marginal impact is positive, but at a decreasing
167 rate, suggesting a diminishing return to economic growth as female labor force participation continues to expand.
168 Concerning the marginal impacts of female labor force participation on economic growth, my results show no
169 significant differences between developing countries and SSA countries.

170 The estimated coefficient of the dummy variable (ssa) is negative and significant at $\alpha = 0.01$, suggesting that
171 SSA undermines the positive impact of female labor force participation on economic growth. Data not shown here
172 indicates that female labor force participation in SSA countries continues to grow, particularly, in the agricultural
173 sector. It could plausibly be the significant proportion of female labor force participation in the informal sector,
174 where most of the labor force is semiliterate or illiterate (data are not shown).

175 I now turn my attention to the other variables; capital and female primary school enrollment. As expected, an
176 increase in capital stock along with an improvement in female labor force participation affects per capita GDP
177 growth positively. As hypothesized, an improvement in female primary school enrollment has a positive impact on
178 economic growth; therefore, I reject h_0 . This suggests that educated labor force is more productive on the job as
179 found in Petrakis and Stamatakis (2002), Keller (2006), and Appiah and McMahon (2002) among others, whose
180 findings attribute the elevated level of per capita GDP growth in developed and developing countries to all levels
181 of education. Educated labor force can afford to purchase health services, thus improve their human capital,
182 suggests that government policies aimed towards the expansion of education for females have the potential to
183 improve total labor force needed to improve human capital, hence, affect economic growth positively. Therefore,
184 if developing countries want to increase their countries' economic growth, governments must embark on policies
185 intended to improve the female labor force participation, by increasing female educational attainment necessary
186 to boost their human capital that can help to enhance their economic growth.

187 6 VI. Conclusion

188 This paper examines the effect of female labor force participation on economic growth in emerging countries.
189 Furthermore, I investigated if the impact on per capita GDP growth in developing countries is different for SSA.
190 By using a panel data of 139 countries that make up the developing world, and by employing the two-step 'system'
191 GMM estimator, the study finds a positive marginal impact of an increase in female labor force participation
192 on per capita GDP growth. The estimated marginal impact is positive, but at a decreasing rate. Therefore, I
193 cannot use my results to predict what will happen to per capita GDP growth as female labor force participation
194 continues to expand. I did not find any difference in the impact of female labor force participation on economic
195 growth in SSA and developing countries, as a whole. The findings in this study further strengthen the link
196 between female labor force participation and economic growth in developing countries. Considering that this
197 study lumped countries with different social, cultural and institutional contexts together, the strength of the
findings may be called into question. ¹

1

Variable	Label	All developing Countries	Mean	Std. dev	Developing countries excluding	SSA
Per capita GDP growth	gdppcr17988	15785.2			22069	15320.3
Female labor force participation	Lft	39.89.6			37	9.8
Capital	?	23.010.4			25	9.0
Female primary school enrollment (gross)	ger1f	97.0	22.6		10215.0	

[Note: Source, WDI, The World Bank databank: No. of countries, all developing countries: 139; No. of obs., 406 Developing countries excluding SSA: 91; No. of obs., 301; Only SSA countries: 48; No. of obs. 105 Time: 1975-2015. Per capita GDP data are in constant 2010 U.S. dollars. Female labor force participation proportion of female population ages 15 and older that is economically active, who supply labor to produce goods and services during a given period (both formal & informal sectors).]

Figure 1: Table 1 :

198

¹(E)

2

	(1)	(2)
Variables	System GMM	System GMM
L.gdpper	0.9869*** (0.000)	0.9869*** (0.000)
Lft	-1,093.9539*** (0.000)	-1,068.6758*** (0.000)
L.lft	1,081.0443*** (0.000)	1,057.1240*** (0.000)
lft2	8.7293*** (0.000)	8.4375*** (0.000)
L.lft2	-8.5685*** (0.000)	-8.2788*** (0.000)
K	41.4281*** (0.000)	41.3770*** (0.000)
ger1f	4.9198*** (0.000)	4.3217*** (0.000)
Ssa		-731.6118*** (0.001)
Observations	2,211	2,211
Number of id	120	120

[Note: Note: p-values in parenthesis. * Significance at $\alpha=0.10$. ** Significance at $\alpha=0.05$. *** Significance at $\alpha=0.01$.]

Figure 2: Table 2 :

-
- 199 [Arellano and Bover ()] 'Another look at the instrumental variable estimation of errorcomponents models'. M
200 Arellano , O Bover . *Journal of Econometrics* 1995. 68 p. .
- 201 [Lechman and Okonowicz ()] *Are women important for economic development? Corporate social responsibility*
202 *and women's entrepreneurship around the Mare Balticum*, E Lechman , A Okonowicz . 2013. p. 310.
- 203 [Pampel and Tanaka ()] 'Economic development and female labor force participation: A reconsideration'. F C
204 Pampel , K Tanaka . *Social forces* 1986. 64 (3) p. .
- 205 [Gaddis and Klasen ()] 'Economic development, structural change, and women's labor force participation'. I
206 Gaddis , S Klasen . *Journal of Population Economics* 2014. 27 (3) p. .
- 207 [Lechman and Kauer ()] 'Economic growth and female labor force participation -verifying the U-feminization
208 hypothesis. New evidence for 162 countries over the period'. E Lechman , H Kauer . *Economics of Sociology*
209 2015. 1990-2012. 8 (1) p. .
- 210 [Barro ()] 'Economic growth in a cross section of countries'. R J Barro . *The Quarterly Journal of Economics*
211 1991. 106 (2) p. .
- 212 [Mujahid and Zafar ()] 'Economic growthfemale labor force participation nexus: An empirical evidence for
213 Pakistan'. N Mujahid , N Zafar . *The Pakistan Development Review* 2012. 51 (4) p. .
- 214 [Juhn and Ureta (2003)] 'Employment of married women and economic development: evidence from Latin
215 American countries'. C Juhn , M Ureta . *Society of Labor Economists Meeting*, (Toronto) 2003. September,
216 2013.
- 217 [Greenwood et al. ()] 'Engines of liberation'. J Greenwood , Seshadri , M Yorukoglu . *Review of Economic Studies*
218 2005. 72 (1) p. .
- 219 [Tsani et al. ()] 'Female labor force participation and economic growth in the South Mediterranean countries'. S
220 Tsani , L Paroussos , C Fragiadakis , I Charalambidis , P Capros . *Economics Letters* 2013. 120 (2) p. .
- 221 [Ça?atay and Özler ()] 'Feminization of the labor force: the impacts of long-term development and structural
222 adjustment'. N Ça?atay , ? Özler . *World development* 1995. 23 (11) p. ..
- 223 [Petrakis and Stamatakis ()] 'Growth and educational levels: A comparative Analysis'. P E Petrakis , D
224 Stamatakis . *Economics of Education Review* 2002. 2002. 21 p. .
- 225 [Lincove ()] 'Growth, girls' education, and female labor: A longitudinal analysis'. J A Lincove . *The Journal of*
226 *Developing Areas* 2008. 41 (2) p. .
- 227 [Schultz ()] 'Health and schooling investment in Africa'. T P Schultz . *The Journal of Economics Perspectives*
228 1999. 13 (3) p. .
- 229 [Romer ()] 'Human capital and growth: theory and evidence'. P R Romer . *Carnegie Rochester Conference Series*
230 *on Public Policy* 1990. 32 p. .
- 231 [Kaur and Tao ()] *ICTs and the Millennium Development Goals: A United Nations Perspective*, H Kaur , X Tao
232 . 2014. Springer.
- 233 [Shashid ()] 'Impact of labor force participation on economic growth in Pakistan'. M Shashid . *Journal of*
234 *Economics and Sustainable Development* 2014. 8 (11) p. .
- 235 [Blundell and Bond ()] 'Initial conditions and moment restrictions in dynamic panel data models'. R Blundell ,
236 S Bond . *Journal of Econometrics* 1998. 87 p. .
- 237 [Keller ()] 'Investment in primary, secondary, and higher education and the impacts on economic growth'. K R
238 I Keller . *Contemporary Economic Policy* 2006. 24 (1) p. .
- 239 [Bernal and Sánchez-Páramo ()] *Overview of Time Use Data Used for the Analysis of Gender Differences*
240 *in Time Use Patterns*, M I Bernal , C Sánchez-Páramo . 2011. 2012. (Background Paper for the World
241 Development Report)
- 242 [Dinkelman ()] *Princeton University Woodrow Wilson School of Public and International Affairs Research*
243 *Program in Development Studies Working Paper* 272, T Dinkelman . 2010. (The impacts of rural electrification
244 on employment: New evidence from South Africa)
- 245 [Hayakawa ()] 'Small sample bias properties of the system GMM estimator in dynamic panel data models'. K
246 Hayakawa . *Economic Letters* 2007. 95 (1) p. .
- 247 [Arellano and Bond ()] 'Some tests of specification for panel data: Monte Carlo evidence and an application to
248 employment equations'. M Arellano , S Bond . *The Review of Economic Studies* 1991. 58 p. .
- 249 [Thomas ()] 'The distribution of income and expenditure within the household'. D Thomas . *Annales d'Economie*
250 *et de Statistique* 1993. 29 p. .
- 251 [Appiah and McMahan ()] 'The social outcomes of education and feedbacks on growth in Africa'. E N Appiah ,
252 W W McMahan . *Journal of Development Studies* 2002. 38 (4) p. .
- 253 [Boserup et al. ()] *Woman's role in economic development*, E Boserup , S F Tan , C Toulmin . 2013. Routledge.

6 VI. CONCLUSION

- 254 [Duflo ()] 'Women Empowerment and Economic Development'. E Duflo . *Journal of Economic Literature* 2012.
255 50 (4) p. .
- 256 [Cavalcanti and Tavares ()] 'Women prefer larger governments: Growth, structural transformation, and govern-
257 ment size'. T V Cavalcanti , J Tavares . *Economic Inquiry* 2011. 49 (1) p. .
- 258 [King, E. M., Hill, M. A. (ed.) ()] *Women's education in developing countries: Barriers, benefits, and policies*,
259 King, E. M., Hill, M. A. (ed.) 1997. World Bank Publications.
- 260 [Mammen and Paxson ()] 'Women's work and economic development'. K Mammen , C Paxson . *The Journal of
261 Economic Perspectives* 2000. p. .
- 262 [Boserup ()] *Women's role in economic development*, E Boserup . 1970. St. Martin, New York.
- 263 [World Development Indicators and Global Development Finance for various years ()] *World Development Indi-
264 cators and Global Development Finance for various years*, [http://ddpext.worldbank.org/ext/DDPQQ/
265 member.do?method=getMembers&userid=1&quer](http://ddpext.worldbank.org/ext/DDPQQ/member.do?method=getMembers&userid=1&quer) 2017. (World Data Bank, the World Bank Group)