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Abstract-

 

We aimed to assess different methods for evaluating 
performance accuracy in species distribution models based 
on the application of five types of bioclimatic models under 
three threshold selections to predict the distributions of eight 
different species in

 

Australia, treated as an independent area. 
Five discriminatory correlative species distribution models 
(SDMs), were used to predict the species distributions of eight 
different plants. A global training data set, excluding the 
Australian locations, was used for model fitting. Four accuracy 
measurement methods were compared under three threshold 
selections of i)

 

maximum sensitivity + specificity, ii)

 

sensitivity 
= specificity and iii)

 

predicted probability

 

of 0.5 (default). 
Results showed that the choice of

 

modeling methods had an 
impact on potential distribution predictions for an independent 
area. Examination of the four accuracy methods under-
examined

 

threshold selections demonstrated that TSS is a 
more realistic and practical method, in comparison with AUC, 
Sensitivity and Specificity. Accurate projection of the 
distribution of a species is extremely complex. As models 
provided slight variances in projections of the same group of 
species, it may be more expedient to use TSS as an intuitive 
method for measuring the performances of the SDMs, in 
comparison to AUC, Sensitivity, and Specificity.

 

Keywords:

 

AUC, sensitivity, specificity, TSS, bioclimatic 
model, correlative model.

 

I.

 

Introduction

 

here is evidence of more widespread application of 
species distribution models (SDMs) to a broader 
range of practical and hypothetical questions 

(Guisan and Thuiller, 2005; Jeschke and Strayer, 2008). 
Also termed habitat or ecological niche models, 
bioclimatic envelopes and resource selection functions, 
these are examples of correlative models employing 
environmental and/or geographical data in order to 
describe the observed distribution patterns of particular 
species. This more widespread usage implies that such 
models are now being used to process alternative data 
forms, particularly recently having focused on 
occurrence records of museums and herbaria (Graham 
et al., 2004). In research into climate change and 
invasive species, predictions of SDMs may extend 
beyond the environmental or geographic areas in which 

the training samples originated (e.g. Araújo et al. 
(2005)). In the field of epidemiology, for example, SDMs 
are being used to predict the distributions and 
occurrences of diseases Peterson et al. (2002). 
Technological advancement of geographic information 
systems (Foody, 2008) and progress in data analysis 
(Breiman, 2001b), has supported the implementation of 
new modeling methods and applications, which have 
grown from simple environmental matching techniques, 
such as in Bioclim(Busby, 1991) and DOMAIN 
Carpenter et al. (1993), to non-linear relationships of 
greater complexity between the presence of a species 
and its environment (e.g., Generalised Additive Models 
(GAM))Hastie and Tibshirani (1990) and Maximum 
Entropy Modeling (MaxEnt) (Phillips et al., 2006)). The 
recent concentration on Bayesian methods and 
machine learning support the development of further 
new methods (Latimer et al., 2006; Prasad et al., 2006). 

SDM uncertainty can generally be classified into 
two fundamental categories: model uncertainty and 
measurement uncertainty (Elith et al., 2002). The former 
arises from model simplifications, limitations or 
assumptions in describing processes of extreme 
complexity,such as future climate projections, or the 
algorithms of the relationships of species to 
environment. The latter arises from data imprecision and 
error, occurring through incorporation of incorrect 
geographic coordinates of species observations, or 
climatic datasets created inconsistently from a variety of 
weather stations, time periods, and interpolated into the 
mapping process. The origins of uncertainty in SDM 
predictions have been studied by comparison of the 
predictions of different types of modeling algorithms, 
based on a common species, or group thereof, or 
common environmental predictors (Anderson et al., 
2006) or by maintaining a common set of species and 
algorithms and altering predictor variables (Watling et 
al., 2012). A few studies have made comparisons 
combining these multiple factors into a single 
structure(Buisson et al., 2010; Hanspach et al., 2011). 
One such example, using four sources of model and 
measurements of uncertainty regarding the modeling of 
a single species, ascertained that the algorithm was the 
main cause of uncertainty, and subsequently 
occurrence data and co linearity of predictor variables 
(Dormann et al., 2008). 

T
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Assessing predictive accuracy is critical in the 
development process of distribution models (Barry and 
Elith, 2006; Guisan and Thuiller, 2005). Quantitative 
performance assessment for the determination of model 
suitability to application can be used to uncover aspects 
requiring improvement (Anderson et al., 2006; Barry and 
Elith, 2006; Vaughan and Ormerod, 2005), as well as 
providing the basis for selection of the most appropriate 
modeling technique for the specific application (Loiselle 
et al., 2003; Segurado and Araujo, 2004) in that it 
enables a researcher to investigate the impact of 
different data and species’ properties on the degree of 
accuracy of the predictive maps generated (Kadmon et 
al., 2003). In practice, there are two facets in measuring 
SDM accuracy; discrimination capacity and reliability 
(i.e. classification accuracy)(Pearce and Ferrier, 2000), 
with the former generally considered more imposing on 
outcome than the latter (Ash and Shwartz, 1999). In 
modeling, discrimination capacity implies the ability to 
differentiate presence sites (those where the subject 
species is detected) and absence sites (i.e. pseudo-
absence or background sites where it is known or 
supposed to be absent). Alternatively, reliability implies 
concord of the predicted occurrence probabilities and 
proportions of sites observed to be occupied by the 
species (Pearce and Ferrier, 2000). Reliability is a core 
facetof quality in probabilistic predictive modeling. 

In modeling exercises, the selection of 
appropriate modeling techniques (e.g., DOMAIN, 
CLIMEX, MaxEnt, BRT, RF, Bioclim) and methods of 
measuring accuracy (e.g.,AUC, Sensitivity, Specificity, 
the True Skill Statistic) are crucial to the outcome. A 
variety of methods for accuracy measurers are available, 
each functioning in a slightly different manner. For the 
layman or novice, the basic decisions at the 
commencement of the process is which of these is most 
appropriate to the specific application. Thus, it is 
necessary to make a comparison of a variety of 
modeling techniques, associated accuracy measure 
methods and different species, since techniques 
perform differently with particular species and the 
distributions of each. 

This study assessed four different methods of 
measures of accuracy (the area under the ROC curve 
(AUC), Specificity, Sensitivity and the True Skill Statistic 
(TSS)) on each of five types of correlative model 
(General Linear Model (GLM), Max Ent, Bioclim, 
Random Forest (RF), Boosted Regression Tree (BRT)) 
under three threshold selections of i)maximum sensitivity 
+ specificity, ii)sensitivity =specificity and iii)probability 
value of 0.5 (hereafter default) on Asparagus 
asparagoides, Triticumaestivum L., Lantana camaraL., 
Opuntiarobusta,Triadicasebifera, Fusarium oxysporumf. 
spp., Phoenix dactylifera L. and Gossypium (cotton) 
species distribution records for Australia and the 
remainder of the world. For this research, we 
purposefully selected different types of species covering 

cultivated, fungus, and invasive species and three 
different thresholds as these give a better basis for 
validation of the model and thresholds compared to 
selecting one type of species and threshold. In the 
primary stage five models were constructed, and 
thereafter compared using the four measures of 
accuracy and three different thresholds for each of the 
five modeling techniques based on projections of 
suitable climate, derived from observed distribution 
records of these eight species. 

II. Materials and Methods 

a) Distribution Records 
Distribution data was collected from a variety of 

sources. Global distribution data was sourced from the 
Global Biodiversity Information Facility (2015), Atlas of 
Living Australia (2017), as well as published literature. 
ENM Tools (Warren et al., 2010) was used in the 
processing of each grid cell’s georeferenced 
occurrence data to equal 1. Thus, the fact that a single 
grid cell may display multiple records is of no 
consequence to the projections or performance 
evaluation. Distribution records for each of the eight 
species at Global (GLS) and Australian (AUS) scale 
numbered as follows: i) Asparagus asparagoides GLS: 
4924, AUS: 3836, ii) Phoenix dactylifera L. GLS: 529, 
AUS: 51, iii) Fusarium oxysporum f. spp GLS: 230, AUS: 
30, iv) Gossypium GLS: 17322, AUS: 2656, v) Lantana 
camara L. GLS: 17856, AUS: 8324, vi) Opuntiarobusta 
GLS: 299, AUS: 57, vii) Triadicasebifera GLS: 1724, 
AUS: 53 and viii) Triticumaestivum L. GLS 50337, AUS: 
142. Both native and exotic distribution records were 
included in the dataset, as it was beyond the 
parameters of the study scope to distinguish between 
the inclusion of only native, exotic, or both, in terms of 
the techniques to project climate suitability and the 
accuracy methods employed. 

b) Species distribution modeling 

• Generalized Linear Model (GLM) 

The technique of iterative weighted linear 
regression was employed in GLM to estimate maximum 
probability of parameters, with a linear expression of the 
distributions of observations by transformation of the 
exponential family and systematic effects. For GLM, 
parametric functions were employed to link the 
combined linear and quadratic explanatory variables. A 
standard polynomial approach in combination with an 
automatic stepwise model selection based on the 
Akaike Information Criterion (AIC) was used to fit the 
model. Modeling was done in R v. 3.3.2 (R Development 
Core Team, 2016). 

• MaxEnt 

MaxEnt desktop version 3.3.3k (Phillips et al., 
2006) was used with modified parameters (Phillips and 
Dudík, 2008). MaxEnt is dependent on user coordinated 
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geographical background data (Guillera‐Arroita et al., 
2014) in order to compare the climate factors of the 
sampled reference set of grid cells with those grid cells 
where the species is observed to be present. The 
definition of the background data set significantly affects 
output (Elith et al., 2011) and the complete range of the 
species across the searched areas should be included 
(Elith et al., 2010). Our MaxEnt algorithm compared 
presence locations and variable interactions to similar 
interactions of background locations, and established 
the maximum entropy probability distribution 
approximating uniformity, subject to the limitations 
imposed by observed spatial distributions and 
associated environmental factors. The minimizing of 
relative entropy between known locations and 
background point data in such a manner optimizes the 
maximum entropy probability distribution (Phillips et al., 
2006). 

• Bioclim 
Bioclim (similar to GLM, MaxEnt, BRT and RF) 

employs the principle that current distribution is the 
fundamental indicator of the climatic needs of a species, 
in order to correlate these climate variables with the 
observed distributions of the species. The model uses 
the realized niche to describe bioclimatic envelopes, in 
that non-climatic factors, inclusive of biotic interactions, 
impose limitations on observed distributions. In contrast, 
a mechanistic relationship with a more physiological 
basis is established between the climatic parameters 
and species response in other types of bioclimatic 
models (Pearson and Dawson, 2003; Woodward, 1987). 
Thus, in these models, the fundamental niche is 
established by modeling the physiological limiting 
mechanisms in terms of climatic factors. An area of 
criticism of bioclimatic modeling has been that biotic 
interactions, species dispersal and evolutionary 
changes are excluded from the modeling process. 
These limiting factors and human impacts show that 
realized niches, as utilized in methodologies of 
correlative bioclimatic envelopes, are not necessarily the 
absolute limits of a range and that a future distribution 
may well be based on alternative factors comprising the 
realized niche (Pearson and Dawson, 2003). Thus, 
Bioclim, and its associated environmental envelope 
models, produce a ‘climate profile’ of a species, 
sometimes termed a ‘boxcar’ descriptor or 
‘parallelepiped classifier’ (Busby, 1991). This basic 
hyper-box classificatory method thus describes the 
potential range of a species in terms of a multi-
dimensional environmental space whose parameters 
are the minimum and maximum values for all presences 
(or 95% of these, or similar variations). In order to 
extrapolate the prediction within an independent area, 
we parameterized the model on the outlier-corrected 
(Skov and Svenning, 2004) observed minimum and 
maximum values of presence of the species for each 

variable climatic factor, to provide more conservative 
results. Bioclimmodel was implemented using the 
‘Dismo’ package (Hijmans and Elith, 2015). 

• Random Forest (RF) 
The Random Forest is, in performance, one of 

the most accurate classificatory regression tree-based 
models. In RF, bootstrap aggregation is used to select 
many subsamples from the data, generated through a 
bagging algorithm, a large number of de-correlated 
regression trees (Breiman, 2001a). RF tree predictors 
are combined in a manner that each is dependent on 
the values of independently sampled random vectors, 
assuming similar distribution for each tree in the forest 
(Breiman, 2001a). An aggregating (averaging or majority 
vote) of the predictions of the ensemble forms the basis 
of the prediction (Svetnik et al., 2003). Out-of-bag 
observations from each tree are used in predicting 
model errors and the importance of variables. As in an 
ensemble approach, decision tree predictions are 
averaged. We used the ‘RandomForest’ package (Liaw 
and Wiener, 2002) to fit the RF models. 

• Boosted Regression Tree (BRT) 
In our BRT model we used a similar background 

area to the MaxEnt model, fitting sufficient combinations 
(decision trees) iteratively, and combining these to 
produce an optimal model with refined predictive 
performance. BRT incorporates two multiple regression 
tree algorithms. Using a binary division into rectangles 
of the predictor space, it relates the predictor responses 
to identify areas with the closest responses to predictors 
and incorporates boosting, an additional procedure, 
which merges the fitted trees for greater accuracy. For 
BRT model we employed the ‘Dismo’ package 
(Ridgeway, 2006)using an additional setting code 
recommended by Elith et al. (2008). 

c) Bioclim variables, Background data and the 
methods for providing weights for species records 

To remove models’ complexity and screening 
explanatory variables we used the jack-knife analysis 
method and calculated pairwise Pearson correlation 
matrix of the variables to select the more important 
variables with low correlation (R2< 0.5). For example, 
the following variables; bio1 (Annual mean temperature 
(°C)), bio3 (Isothermality), bio8 (Mean temperature of 
wettest quarter (°C)), bio12 (Annual precipitation (mm)), 
bio15 (Precipitation seasonality (C of V)), bio17 
(Precipitation of driest quarter (mm)), bio20 (Annual 
mean radiation (W m-2)), bio21 (Highest weekly radiation 
(W m-2), bio24 (Radiation of wettest quarter (W m-2)), 
bio31 (Moisture index seasonality (C of V)), bio34 (Mean 
moisture index of warmest quarter) and bio35 (Mean 
moisture index of coldest quarter) were selected for the 
species Asparagus asparagoides. To broaden the 
background data in terms of the likelihood of fewer 
record returns from more recent locations of invasion 
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and those poorly sampled, we gave greater importance 
to records with less geographic proximity. However, it 
was taken into account that without records on survey 
effort in terms of time, it is impossible to distinguish 
between unsuitable and under-sampled areas, and that 
the above-mentioned adjustments would unavoidably 
thus confuse these two categories of geographical area. 
For calculation of the weighting surface, we divided the 
number of weighted records (using Gaussian kernel 
method with standard deviations of default values in 
ArcGIS) in the selected geographical environment for 
each cell globally, but excluding Australia, by the 
weighted number of terrestrial cells of the specific area, 
to eliminate edge effects along coastal regions. 
Thereafter, the resulting grid was adjusted to maximum 
20 and minimum 1, which excluded extreme values. This 
weighting method, as advocated by Elith et al. (2010), 
minimizes bias favouring records from densely sampled 
areas in relation to those from less sampled areas. The 
kernel density layer of each species and Hawths Tools 
extension (Beyer, 2004) were used to generate 
background points for the world, excluding Australia, for 
training purposes. The same method was used to 
generate background points for Australia, for comparing 
model performances. Thus, all SDM performances were 
evaluated against the same background data for every 
species. 

d) Accuracy Methods 

• The area under the ROC curve (AUC) 
The receiver operating characteristic (ROC) 

curve provides an alternative technique for assessment 
of accuracy of ordinal score models (Fielding and Bell, 
1997b). The construction of ROC curves uses all 
possible thresholds for classifying the scores into 
confusion matrices, obtaining each matrix’ sensitivity 
and specificity; then comparing sensitivity against the 
corresponding proportion of false positives (equal to 1 
− specificity). Using all thresholds avoids the arbitrary 
choice of a single threshold (Liu et al., 2005; Manel et 
al., 2001), and takes into account the trade-off of 
sensitivity and specificity (Pearce and Ferrier, 2000). The 
area below the ROC curve (AUC) is also valid as a 
single threshold-independent measurement of model 
performance (Brotons et al., 2004; Thuiller et al., 2005). 
AUC has been demonstrated to be independent of 
prevalence (McPherson et al., 2004; Somodi et al., 
2017) and is seen to be an accurate measure of ordinal 
score model performance. However, in practice, SDMs 
used in conservation, such as for selection of 
representative sites and identification of biodiversity 
hotspots, frequently needs presence–absence maps of 
distributions of a species, and requires the selection of a 
threshold for the transformation of the ordinal scores 
into presence–absence predictions (Berg et al., 2004). 
In these circumstances, evaluation accuracy of 
prediction should be based on the specific threshold 

selected, as opposed to threshold-independent ROC 
curves. It is important to note that among the more 
frequently usedspecies distribution models (e.g. 
Bioclim, Nix (1986); GARP, Stockwell (1999)) 
dichotomous presence–absence distribution predictions 
are generated, to which it is not possible to apply ROC 
curves. 

• Sensitivity and Specificity 
Sensitivity represents the proportion of correctly 

predicted presence records and thus the quantification 
of omission errors. In calculation, Sensitivity equals  𝑎𝑎

𝑎𝑎+𝑐𝑐
 

where adenotes the number of correctly predicted 
presence cells and c the number of cells in which the 
species was found, but absence is predicted by the 
model. Specificity represents the proportion of correctly 
predicted absences and thus the quantification of 
commission errors. In calculation, Specificity equals 𝑑𝑑

𝑏𝑏+𝑑𝑑
  

where b denotes the number of cells in which the 
species was not found but presence is predicted by the 
model, and d is the number of cells correctly predicting 
absence. It is important to note that compared across 
models, sensitivity and specificity are independent of 
one another, as well as being independent of 
prevalence, which represents the proportion of sites 
where the species was recorded as present. 

• True Skill Statistic (TSS) 
The TSS is independent of prevalence and 

equals 𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏
(𝑎𝑎+𝑐𝑐)( 𝑏𝑏+𝑑𝑑)

 . Allouche et al. (2006) have shown that 

TSS is an intuitive method of performance measurement 
of SDMs in which predictions are expressed as 
presence–absence maps. It was further shown that TSS 
gives results showing significant correlation with those 
of the threshold-independent AUC statistic (Allouche et 
al., 2006). 

e) Thresholds 
There are many methods of thresholds 

selections including taking 0.5 as the threshold (default), 
which is widely used in ecology (Pearson et al., 2002) or 
a specific level of sensitivity or specificity (e.g. 95%) is 
desired or deemed acceptable (Cantor et al., 1999) or 
thresholds are chosen to maximize the agreement 
between observed and predicted distributions. A third 
category of threshold selection identifies a threshold 
value that maximizes the percent of points correctly 
classified; maximizes sensitivity plus specificity; or 
maximizes Kappa, a measure that utilizes both 
sensitivity and specificity (Guisan et al., 1998). In this 
study the most commonly used thresholds of 
i)maximum sensitivity + specificity, ii)sensitivity = 
specificity and iii)default were examined to evaluate four 
accuracy methods of the species distribution models. 

f) Evaluating accuracy methods 
Presence points in this study were divided into 

two sample categories; training and test points per 
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species. The training dataset comprised presence 
points of the complete global distribution of the species, 
excluding the Australian continent, while out-of-sample 
data (occurrences on the Australian continent) was used 
as a test of SDM performance. We concentrated on the 
area below the ROC curve (AUC), Sensitivity, Specificity 
and True Skill Statistic (TSS) of an independent area 
under three different thresholds, in order to evaluate 
accuracy for each species and model separately. Thus, 
eight species were evaluated using five correlative 
models. In that there was no data representing true 
absence of each species in Australia, the proportions of 
the extent of Australia identified as suitable were 
calculated, as an index of potential overestimations of 
the models.  

III. Results 

Differences in the four methods of accuracy 
evaluation (AUC, Specificity, Sensitivity and TSS) of 
Bioclim, BRT, GLM, MaxEnt and RF in the projections of 
suitable climate under the three different thresholds, 
based on independent records of all eight species, are 
shown in Figure 1. 

a) AUC 
AUC produced similar results in all models. For 

example, AUC values for all models for Asparagus 
asparagoides, is around 0.94 (Fig 1) even though the 
output shows a clear difference. Similar comparative 
results occurred for Fusarium oxysporumf. spp.(≈ 0.63), 
Gossypium (≈ 0.70), Lantana camara L. (≈ 0.95),  
Phoenix dactylifera L. (≈ 0.55), Triadicasebifera(≈ 0.98) 
and Triticumaestivum L. (≈ 0.77) (Fig 1). However, in the 
case of Opuntiarobusta, AUC values of different models 
had some variation (inconsistency), giving AUC values 
from Bioclim, BRT, GLM, MaxEnt and RF as 0.51, 0.88, 
0.85, 0.90 and 0.50 respectively. Results also show the 
mean AUC values, using five correlative modeling 
techniques on eight species, were above 0.77. 
Consistent with this moderate AUC value, the training 
dataset model did not predict occurrences of the 
studied species in certain places where these are known 
to occur (Fig 1). 

b) Specificity 
A comparison of specificity in all five models, 

based on the test data under three different thresholds, 
shows relatively comparable values for Asparagus 
asparagoides, Fusarium oxysporumf. spp., Gossypium, 
Lantana camara L.,Opuntiarobusta, Phoenix dactylifera 
L., Triadicasebifera and Triticumaestivum L. (Fig 1). For 
example, specificity values under default threshold for 
Triticumaestivum L. and Fusarium oxysporumf. sppfor 
Bioclim, BRT, GLM, MaxEnt and RF were 1, 0.79, 0.76, 
0.87, 0.91 and 1, 0.72, 0.07, 0.00 and 1respectively. 
Similar comparison on specificity values under 
“sensitivity = specificity” threshold for Triticumaestivum 

L. and Fusarium oxysporumf. sppfor Bioclim, BRT, GLM, 
MaxEnt and RF were 0.68, 0.68, 0.70, 0.68, 0.74 and 
0.67, 0.60, 0.51, 0.59 and 0.98 in turn. Finally, a 
comparison of specificity values under “maximum 
sensitivity + specificity” threshold for Triticumaestivum L. 
and Fusarium oxysporumf. sppfor Bioclim, BRT, GLM, 
MaxEnt and RF were 0.63, 0.47, 0.52, 0.73, 0.74 and 
0.74, 0.60, 0.88, 0.93 and 0.99 in that order. Results also 
show that the mean specificity values under different 
thresholds, using the five modeling techniques on the 
eight specieswere above 0.78 (Fig. 1). 

c) Sensitivity 
Sensitivity presented variable results for most 

models under different examined thresholds. For 
example, sensitivity values for Phoenix dactylifera L. 
under default threshold were 0.00, 0.38, 0.85, 0.23, and 
0.00 for Bioclim, BRT, GLM, MaxEnt and RF, 
respectively. Sensitivity values for this species under 
threshold of “sensitivity = specificity” were close to each 
other   while values of sensitivity under threshold of 
“maximum sensitivity + specificity” were 0.91, 0.17, 
0.85, 0.21, and 0.21 for Bioclim, BRT, GLM, MaxEnt and 
RF, respectively. Similar variations on sensitivity values 
under default threshold for Opuntiarobusta on Bioclim, 
BRT, GLM, MaxEnt and RF were 0, 0.23, 0.64, 0.19, and 
0 respectively. Similar contrast on sensitivity values 
under “sensitivity = specificity” threshold for this 
speciesfor Bioclim, BRT, GLM, MaxEnt and RF were 
0.02, 0.66, 0.76, 0.80, and 0.00 in turn. Finally, an 
assessment of sensitivity values under “maximum 
sensitivity + specificity” threshold for Opuntiarobusta for 
Bioclim, BRT, GLM, MaxEnt and RF were 0.02, 0.66, 
0.76, 0.88, 0.00 in that order(Fig. 1). 

d) TSS 
More realistic value can be seen between the 

TSS index obtained under different thresholds and/or 
most of the SDMs output. For example, TSS values for 
Triticumaestivum L.under default threshold were 0.37, 
0.36, 0.27, and 0.23 for BRT, GLM, MaxEnt and 
RFrespectively, which indicates better consistency with 
areas projected as climatically suitable for the species. 
TSS values for this speciesunder threshold of “sensitivity 
= specificity” were 0.37, 0.36, 0.40, 0.25, and 0.28 for 
Bioclim, BRT, GLM, MaxEnt and RF respectively. Similar 
consistency for this species were also found under 
threshold of “maximum sensitivity + specificity” on BRT, 
GLM, MaxEnt and RF. It should be mentioned that some 
variation were also seen under different thresholds for 
this species on Bioclim. Similar consistency was shown 
for Fusarium oxysporumf. spp., Gossypium, Lantana 
camara L.,Opuntiarobusta, Phoenix dactylifera L., and 
Triadicasebifera (Fig. 1). 
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IV. Discussion 

In this study, the five correlative modeling 
techniques under three different thresholds were 
examined through extrapolation (Fig 1). The assessment 
of SDM correlative and envelope performance, based 
on AUC, Sensitivity, Specificity and TSS in modeling 
eight species under threshold selections of i) maximum 
sensitivity + specificity, ii) sensitivity = specificity and iii) 
default, indicates that TSS gives varying, but more 
realisticvalues (Fig 1), in comparison with specificity 
which represents the probability of correct classification 
of absence by the model. Caruana and Niculescu-Mizil 
(2006) note, however, that some researchers have 
attempted to explain the tests’ relative performances 
and their sensitivity to data characteristics, but 
movement toward the establishment of a 
comprehensive assessment toolbox has been hindered 
by disagreement on the valid applicability of some 
statistics. SDM evaluation measurements could benefit 
from the identification of techniques useful in other 
fields, and from more concentration of research on 
topics such as the analysis of spatial patterns in errors, 
dealing with uncertainties, and assessment performance 
in the context of specific applications, including decision 
making (Austin, 2007). 

We believe that the utilized method to generate 
absence or background points in the study was 
appropriate as this method is recommended by Elith et 
al. (2010) for species which have been presented in 
different portions of the range for different periods of 
time. In contrast, the recognized best practice when 
using museum data is to use what has been termed the 
'target group background' approach (Phillips et al., 
2009). It should be highlighted that although one of the 
examined threshold was the default one (0.5)it does not 
mean that we are suggesting this threshold as the best 
one. 

We believe that use of a combination of 
distribution modeling techniques such as Bioclim, 
MaxEnt, BRT, RF and GLM in a complementary method, 
together with species accuracy estimators, allows us to 
better represent the geographical distribution of species 
and the species composition at localities, including a 
measure of its accuracy. However, it is necessary to 
assess and evaluate accuracy of species distribution 
modeling with different techniques as there are biases 
and limitations in representation of the results purely 
based on one modeling technique or one accuracy 
method. Using a combination of methodological 
approaches as executed in this study facilitates 
identification of an overall pattern, provided by all of the 
individual model predictions, that represent the 
geographical patterns of richness and composition of 
species, regardless of the degree of accuracy of the 
predictions by each individual model for each species. 

Accurate projection of a dynamic phenomenon 
such as the richness of the distribution of a species is 
extremely complex. It has been shown that the results of 
SDMs are unreliable projections of the range of a 
species. Rather, they produce a provisional description 
of ranges, which require continuous updating as new 
data becomes available or environmental factors alter. 
Species distributions predicted by the relating of 
biological data to environmental variables showed a 
tendency toward overestimation of the actual range 
extents, due in part to the limitations of using only the 
environmental conditions as model predictors for the 
sites where the species has a known presence. Where 
absences due to historical, dispersal or biotic factors 
(Pulliam, 2000) are not accounted for, model predictions 
willinevitably tend toward the potential distribution of 
species (i.e. sites of environmental suitability in which a 
species could occur, based on a group of 
environmental variables; see (Jiménez‐Valverde et al., 
2008)). Under such circumstance, a set of errors and 
biases will result when predictive distribution maps are 
overlaid to create a representation of the richness of a 
species, producing an unrealistic representation (Hortal 
et al., 2007). Thus, the creation of a valid representation 
of species richness demands a deeper analysis of 
results, in order to detect areas with notable levels of 
omission, as well as account for presences located in 
areas where no representation was predicted. 

Why not AUC? SDMs are invaluable for 
addressing questions and issues in biogeography, as 
well as evolutionary and conservation biology. 
Understanding performance, assessment of correlative 
and mechanistic models is essential to their valid 
application (Guisan and Thuiller, 2005). AUC is a 
frequently used technique for measurement of model 
performance (Lobo et al., 2008; Manel et al., 2001; 
Thuiller et al., 2005), proven to be independent of 
prevalence, in theoretical (Hanley and McNeil, 1982; 
Zweig and Campbell, 1993) and empirical applications 
(McPherson et al., 2004). In performance measurement, 
AUC is threshold independent and thus suitable for 
evaluating performance in ordinal score models, like 
logistic regression with true presence-absence data. 
However, in practice, absence data is often unavailable 
and only the presence data is accessible. Under such 
circumstances, envelope (eg. Bioclim) or distance-
based models (e.g. Domain or Mahalanobis) are the 
SDMs of choice (Farber and Kadmon, 2003). However, 
in practice, a comparative prediction of presence-
absence is often necessary, thus necessitating a 
threshold application for transforming the probability/ 
suitability scores into presence–absence data. For most 
reverse selection algorithms, presence–absence data of 
composition of species in specific locations is 
necessary (Tsuji and Tsubaki, 2004). As available data is 
frequently not complete, SDMs are often used to predict 
presence or absence in a potential locality for a 
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particular species (Sánchez-Cordero et al., 2005). 
Biodiversity hotspot estimations are also frequently 
based on presence–absence predictions (Schmidt et 
al., 2005). Assessing impacts at community level of 
global change could be achieved by stacked binary 
SDM species assemblage prediction (D'Amen et al., 
2015; Guisan and Rahbek, 2011). Presence–absence 
predictions exclude ROC plotting and, thus, AUC is not 
a technique for evaluating accuracy of the predictive 
maps used in such applications. The results in Figure 1 
indicate that the high values of AUC for each species 
and model is no guarantee of output accuracy. Further, 
MESS (Multivariate Environmental Similarity Surface) 
maps do not specify changes in correlations between 
variables, and tests for these are also essential because 
parameters are estimated on the structure of 
correlations between training data predictors. Generally 
in SDMs, predictions will be unreliable for areas with 
substantial variance in correlations of important 
variables (Harrell, 2001). When available predictors have 
only indirect relationships to distributions of species, this 
is particularly problematic (Austin, 2002). While the 
selected set of variables might reasonably well 
represent the unmeasured directly influential variable, if 
inherent correlations change in new areas, there will be 
compromises in predictions. 

Regarding the necessity of producing presence/ 
absence predictions from SDMs, evaluating this binary 
prediction using confusion matrix and classification 
accuracy criteria should be taken into account. 
However, the selection of an optimal threshold is a 
critical issue, raisinga literary criticism(Liu et al., 2005). 
How well a binary prediction can classify presence and 
absence observations, which is called as sensitivity and 
specificity, respectively, is the cornerstone of the 
classification accuracy evaluation. Although,these 
metrics have been solely used for evaluating binary 
predictions(Ahmadi et al., 2013), they show an inherent 
inconsistency. For examples models with ahigh value of 
sensitivity donot necessarily show high specificity. It 
seems that models capability for extrapolation and/or 
interpolation compromise the resulting values of 
sensitivity and specificity(Franklin, 2010; Merow et al., 
2014). This can be seen in our case where for almost all 
species RF results in the lowermost probability of 
occurrence in the independent area, and accordingly, 
high values of specificity but low values of sensitivity. 
Furthermore, the niche shift, the tendency of the species 
to establish in areas beyond the native niche in out-of-
sample areas (e.g. independent area), also affects the 
prediction performance of the SDMs 34.In this 
situationTSS (i.e. sensitivity + specificity – 1) through 
combining the capability of correctly predicting both 
presence and absence (e.g. background points) 
observations, and therefore, taking into account both 
omission and commission errors, provides a reasonable 
viewpoint of the models performance. 

Comparison of the initial distributions of species 
richness from model predictions with the observed ones 
and the analysis of errors are the successive phases for 
adjustment of predicted distributions of a species 
subset, thereby refining the picture of species richness. 
Reductions in the errors of omission or commission can 
be executedby prioritizing either sensitivity or specificity 
(Fielding and Bell, 1997a). The accuracy of a model 
must be always interpreted in terms of its intended 
purpose (Araujo and Guisan, 2006) by differential 
weighting of false-positives and false-negatives. In our 
study, the impact of omitting observed species was 
assumed to be greater, and we thereforeminimized 
errors of omission. Both commission and omission 
errors need consideration, however, from the 
perspective of conservation, ignoring a species where it 
is present may lead to the underestimation or 
minimization of the conservation needs of an area, while 
erroneously including a species in a particular locality 
might result in unnecessary or wasted conservation 
efforts and resources(Rondinini et al., 2006). A specific 
strategy is demanded, based on the need to reduce 
commission or omission errors. 

Choosing a threshold is required when 
assessing model performance using the indices derived 
from the confusion matrix, which also facilitates the 
interpretation of modeling outputs, and in line with this 
matter we refer to Liu et al.(Liu et al., 2005) who 
reviewed different threshold determination approaches. 
Furthermore, refer to Bean et al.(Bean et al., 2012) who 
investigated the effects of small sample size and sample 
bias on threshold selection and accuracy assessment of 
species distribution models. In line with their finding, and 
based on the results of this study, selecting an arbitrary 
default threshold (for example predicted probability of 
0.5) may underestimate the performance of the model to 
classify presence/absence areas. In such situations, 
taking into account the behaviour of the model to 
characterize presence and absence points, for example 
where sensitivity of the model equals to specificity or 
their summation reaches maximum, is more reasonable 
for selecting thresholds and producing binary presence/ 
absence maps. 

In this study attempts were made to answer the 
question “in the use of species distribution models, 
should we rely on the result of a single accuracy method 
or a single species distribution method?” through 
evaluating AUC, Sensitivity, Specificity and TSS 
performance accuracy methods based on the 
application of five types of bioclimatic models under 
three different thresholds to predict the distributions of 
eight different species in an independent area. As 
discussed earlier, SDMs are based on different 
algorithms and thus they perform differently; and for the 
users, the decisions at the commencement of the 
process is which of these is most appropriate is 
complicated; and the situation would become more 

         
  

  
 

  

13

  
 

( B
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
18

© 2018    Global Journals 

Assessing Accuracy Methods of Species Distribution Models: AUC, Specificity, Sensitivity and the True Skill 
Statistic

  
  

  
 V

ol
um

e 
X
V
III

 I
ss
ue

 I
 V

er
sio

n 
I 



challenging if the users rely on in appropriate accuracy 
measure methods. Our findings show that evaluating 
performance of accuracy gives different results among 
different techniques and the TSS method is better 
compared to the other three examined methods. We 
note that this study adds to one undertaken by Allouche 
et al. (2006) who assessed the accuracy of species 
distribution models through prevalence, kappa and TSS. 

V. Conclusion 

The extensive array of methods, data types and 
novel research questions imply the need for many 
modeling decisions. Different modeling techniques (e.g., 
DOMAIN, CLIMEX, MaxEnt, BRT, RF, Bioclim) and 
different methods of measuring accuracy (e.g., AUC, 
Sensitivity, Specificity, the True Skill Statistic)have 
different requirements. In selecting the most appropriate 
method of measuring accuracy, knowledge is required 
in terms of which method is most appropriate for the 
data available and its intended application. However, 
the information facilitating an informed choice of method 
is currently scattered throughout the modeling literature 
and incomplete, making it problematic for most users to 
make decisions on the adoption of newer methods, and 
for newcomers to know where to begin. Knowledge of a 
particular algorithm gives insight into the features and 
limitations of its predictions, and why particular patterns 
occur. As Bioclim, GLM, MaxEnt, BRT and RF provided 
slight variances in projections of the same group of 
species, it may be more expedient to use TSS as an 
intuitive method for measuring the performances of 
species distribution models, in comparison with the area 
under the ROC curve (AUC), Sensitivity and Specificity. 
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Figure 1: Projections of an independent area for the potential distribution of eight species using five different 
correlative niche models and the area under the ROC curve (AUC), Sensitivity, Specificity and the True Skill Statistic 
(TSS) values. Warmer colors show areas with better-predicted conditions. The top row of maps, shows the 
distribution of species. This map was generated by ArcMap 10.2. Available at http://www.esri.com/arcgis/about-
arcgis. The dot graphs show the performance of the different accuracy methods tested by different threshold 
selection.
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