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5

Abstract6

We aimed to assess different methods for evaluating performance accuracy in species7

distribution models based on the application of five types of bioclimatic models under three8

threshold selections to predict the distributions of eight different species in Australia, treated9

as an independent area. Five discriminatory correlative species distribution models (SDMs),10

were used to predict the species distributions of eight different plants. A global training data11

set, excluding the Australian locations, was used for model fitting. Four accuracy12

measurement methods were compared under three threshold selections of i) maximum13

sensitivity + specificity, ii) sensitivity = specificity and iii) predicted probability of 0.514

(default). Results showed that the choice of modeling methods had an impact on potential15

distribution predictions for an independent area. Examination of the four accuracy methods16

underexamined threshold selections demonstrated that TSS is a more realistic and practical17

method, in comparison with AUC, Sensitivity and Specificity. Accurate projection of the18

distribution of a species is extremely complex. As models provided slight variances in19

projections of the same group of species, it may be more expedient to use TSS as an intuitive20

method for measuring the performances of the SDMs, in comparison to AUC, Sensitivity, and21

Specificity.22

23

Index terms— AUC, sensitivity, specificity, TSS, bioclimatic model, correlative model.24

1 I. Introduction25

here is evidence of more widespread application of species distribution models (SDMs) to a broader range of26
practical and hypothetical questions (Guisan and Thuiller, 2005;Jeschke and Strayer, 2008). Also termed habitat27
or ecological niche models, bioclimatic envelopes and resource selection functions, these are examples of correlative28
models employing environmental and/or geographical data in order to describe the observed distribution patterns29
of particular species. This more widespread usage implies that such models are now being used to process30
alternative data forms, particularly recently having focused on occurrence records of museums and herbaria31
(Graham et al., 2004). In research into climate change and invasive species, predictions of SDMs may extend32
beyond the environmental or geographic areas in which the training samples originated (e.g. Araújo et al. (2005)).33
In the field of epidemiology, for example, SDMs are being used to predict the distributions and occurrences of34
diseases Peterson et al. (2002). Technological advancement of geographic information systems (Foody, 2008) and35
progress in data analysis (Breiman, 2001b), has supported the implementation of new modeling methods and36
applications, which have grown from simple environmental matching techniques, such as in Bioclim (Busby, 1991)37
and ??OMAIN Carpenter et al. (1993), to non-linear relationships of greater complexity between the presence38
of a species and its environment (e.g., Generalised Additive Models (GAM)) Hastie and Tibshirani (1990) and39
Maximum Entropy Modeling (MaxEnt) (Phillips et al., 2006)). The recent concentration on Bayesian methods40
and machine learning support the development of further new methods (Latimer et al., 2006;Prasad et al., 2006).41

SDM uncertainty can generally be classified into two fundamental categories: model uncertainty and42
measurement uncertainty (Elith et al., 2002). The former arises from model simplifications, limitations or43
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4 B) SPECIES DISTRIBUTION MODELING

assumptions in describing processes of extreme complexity,such as future climate projections, or the algorithms44
of the relationships of species to environment. The latter arises from data imprecision and error, occurring45
through incorporation of incorrect geographic coordinates of species observations, or climatic datasets created46
inconsistently from a variety of weather stations, time periods, and interpolated into the mapping process.47
The origins of uncertainty in SDM predictions have been studied by comparison of the predictions of different48
types of modeling algorithms, based on a common species, or group thereof, or common environmental predictors49
(Anderson et al., 2006) or by maintaining a common set of species and algorithms and altering predictor variables50
(Watling et al., 2012). A few studies have made comparisons combining these multiple factors into a single51
structure (Buisson et al., 2010;Hanspach et al., 2011). One such example, using four sources of model and52
measurements of uncertainty regarding the modeling of a single species, ascertained that the algorithm was the53
main cause of uncertainty, and subsequently occurrence data and co linearity of predictor variables (Dormann et54
al., 2008).55

Assessing predictive accuracy is critical in the development process of distribution models (Barry and Elith,56
2006;Guisan and Thuiller, 2005). Quantitative performance assessment for the determination of model suitability57
to application can be used to uncover aspects requiring improvement (Anderson et al., 2006; Barry and Elith,58
2006;Vaughan and Ormerod, 2005), as well as providing the basis for selection of the most appropriate modeling59
technique for the specific application (Loiselle et al., 2003;Segurado and Araujo, 2004) in that it enables a60
researcher to investigate the impact of different data and species’ properties on the degree of accuracy of the61
predictive maps generated . In practice, there are two facets in measuring SDM accuracy; discrimination capacity62
and reliability (i.e. classification accuracy) (Pearce and Ferrier, 2000), with the former generally considered more63
imposing on outcome than the latter (Ash and Shwartz, 1999). In modeling, discrimination capacity implies64
the ability to differentiate presence sites (those where the subject species is detected) and absence sites (i.e.65
pseudoabsence or background sites where it is known or supposed to be absent). Alternatively, reliability implies66
concord of the predicted occurrence probabilities and proportions of sites observed to be occupied by the species67
(Pearce and Ferrier, 2000). Reliability is a core facetof quality in probabilistic predictive modeling.68

In modeling exercises, the selection of appropriate modeling techniques (e.g., DOMAIN, CLIMEX, MaxEnt,69
BRT, RF, Bioclim) and methods of measuring accuracy (e.g.,AUC, Sensitivity, Specificity, the True Skill Statistic)70
are crucial to the outcome. A variety of methods for accuracy measurers are available, each functioning in a71
slightly different manner. For the layman or novice, the basic decisions at the commencement of the process is72
which of these is most appropriate to the specific application. Thus, it is necessary to make a comparison of73
a variety of modeling techniques, associated accuracy measure methods and different species, since techniques74
perform differently with particular species and the distributions of each.75

This study assessed four different methods of measures of accuracy (the area under the ROC curve76
(AUC), Specificity, Sensitivity and the True Skill Statistic (TSS)) on each of five types of correlative77
model (General Linear Model (GLM), Max Ent, Bioclim, Random Forest (RF), Boosted Regression Tree78
(BRT)) under three threshold selections of i)maximum sensitivity + specificity, ii)sensitivity =specificity79
and iii)probability value of 0.5 (hereafter default) on Asparagus asparagoides, Triticumaestivum L., Lantana80
camaraL., Opuntiarobusta,Triadicasebifera, Fusarium oxysporumf. spp., Phoenix dactylifera L. and Gossypium81
(cotton) species distribution records for Australia and the remainder of the world. For this research, we82
purposefully selected different types of species covering cultivated, fungus, and invasive species and three different83
thresholds as these give a better basis for validation of the model and thresholds compared to selecting one type84
of species and threshold. In the primary stage five models were constructed, and thereafter compared using85
the four measures of accuracy and three different thresholds for each of the five modeling techniques based on86
projections of suitable climate, derived from observed distribution records of these eight species.87

2 II. Materials and Methods88

3 a) Distribution Records89

Distribution data was collected from a variety of sources. Global distribution data was sourced from the Global90
Biodiversity Information Facility (2015), Atlas of Living Australia (2017), as well as published literature. ENM91
Tools (Warren et al., 2010) was used in the processing of each grid cell’s georeferenced occurrence data to equal92
1. Thus, the fact that a single grid cell may display multiple records is of no consequence to the projections or93
performance evaluation. Distribution records for each of the eight species at Global (GLS) and Australian (AUS)94
scale numbered as follows: i) Asparagus asparagoides GLS: 4924, AUS: 3836, ii) Phoenix dactylifera L. GLS:95
529, AUS: 51, iii) Fusarium oxysporum f. spp GLS: 230, AUS: 30, iv) Gossypium GLS: 17322, AUS: 2656, v)96
Lantana camara L. GLS: 17856, AUS: 8324, vi) Opuntiarobusta GLS: 299, AUS: 57, vii) Triadicasebifera GLS:97
1724, AUS: 53 and viii) Triticumaestivum L. GLS 50337, AUS: 142. Both native and exotic distribution records98
were included in the dataset, as it was beyond the parameters of the study scope to distinguish between the99
inclusion of only native, exotic, or both, in terms of the techniques to project climate suitability and the accuracy100
methods employed.101

4 b) Species distribution modeling102

? Generalized Linear Model (GLM)103
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The technique of iterative weighted linear regression was employed in GLM to estimate maximum probability104
of parameters, with a linear expression of the distributions of observations by transformation of the exponential105
family and systematic effects. For GLM, parametric functions were employed to link the combined linear and106
quadratic explanatory variables. A standard polynomial approach in combination with an automatic stepwise107
model selection based on the Akaike Information Criterion (AIC) was used to fit the model. Modeling was done108
in R v. 3.3.2 (R Development Core Team, 2016).109

5 ? MaxEnt110

MaxEnt desktop version 3.3.3k (Phillips et al., 2006) was used with modified parameters (Phillips and Dudík,111
2008). MaxEnt is dependent on user coordinated geographical background data (Guillera-Arroita et al., 2014)112
in order to compare the climate factors of the sampled reference set of grid cells with those grid cells where the113
species is observed to be present. The definition of the background data set significantly affects output (Elith114
et al., 2011) and the complete range of the species across the searched areas should be included (Elith et al.,115
2010). Our MaxEnt algorithm compared presence locations and variable interactions to similar interactions of116
background locations, and established the maximum entropy probability distribution approximating uniformity,117
subject to the limitations imposed by observed spatial distributions and associated environmental factors. The118
minimizing of relative entropy between known locations and background point data in such a manner optimizes119
the maximum entropy probability distribution (Phillips et al., 2006).120

6 ? Bioclim121

Bioclim (similar to GLM, MaxEnt, BRT and RF) employs the principle that current distribution is the122
fundamental indicator of the climatic needs of a species, in order to correlate these climate variables with the123
observed distributions of the species. The model uses the realized niche to describe bioclimatic envelopes, in that124
non-climatic factors, inclusive of biotic interactions, impose limitations on observed distributions. In contrast,125
a mechanistic relationship with a more physiological basis is established between the climatic parameters and126
species response in other types of bioclimatic models (Pearson and Dawson, 2003;Woodward, 1987). Thus, in127
these models, the fundamental niche is established by modeling the physiological limiting mechanisms in terms of128
climatic factors. An area of criticism of bioclimatic modeling has been that biotic interactions, species dispersal129
and evolutionary changes are excluded from the modeling process. These limiting factors and human impacts130
show that realized niches, as utilized in methodologies of correlative bioclimatic envelopes, are not necessarily the131
absolute limits of a range and that a future distribution may well be based on alternative factors comprising the132
realized niche (Pearson and Dawson, 2003). Thus, Bioclim, and its associated environmental envelope models,133
produce a ’climate profile’ of a species, sometimes termed a ’boxcar’ descriptor or ’parallelepiped classifier’134
(Busby, 1991). This basic hyper-box classificatory method thus describes the potential range of a species in135
terms of a multidimensional environmental space whose parameters are the minimum and maximum values for136
all presences (or 95% of these, or similar variations). In order to extrapolate the prediction within an independent137
area, we parameterized the model on the outlier-corrected (Skov and Svenning, 2004) observed minimum and138
maximum values of presence of the species for each variable climatic factor, to provide more conservative results.139
Bioclimmodel was implemented using the ’Dismo’ package (Hijmans and Elith, 2015).? Random Forest (RF)140

The Random Forest is, in performance, one of the most accurate classificatory regression tree-based models.141
In RF, bootstrap aggregation is used to select many subsamples from the data, generated through a bagging142
algorithm, a large number of de-correlated regression trees (Breiman, 2001a). RF tree predictors are combined143
in a manner that each is dependent on the values of independently sampled random vectors, assuming similar144
distribution for each tree in the forest (Breiman, 2001a). An aggregating (averaging or majority vote) of the145
predictions of the ensemble forms the basis of the prediction (Svetnik et al., 2003). Out-of-bag observations from146
each tree are used in predicting model errors and the importance of variables. As in an ensemble approach,147
decision tree predictions are averaged. We used the ’RandomForest’ package (Liaw and Wiener, 2002) to fit the148
RF models.149

7 ? Boosted Regression Tree (BRT)150

In our BRT model we used a similar background area to the MaxEnt model, fitting sufficient combinations151
(decision trees) iteratively, and combining these to produce an optimal model with refined predictive performance.152
BRT incorporates two multiple regression tree algorithms. Using a binary division into rectangles of the predictor153
space, it relates the predictor responses to identify areas with the closest responses to predictors and incorporates154
boosting, an additional procedure, which merges the fitted trees for greater accuracy. For BRT model we employed155
the ’Dismo’ package (Ridgeway, 2006)using an additional setting code recommended by Elith et al. (2008).156

8 c) Bioclim variables, Background data and the methods for157

providing weights for species records158

To remove models’ complexity and screening explanatory variables we used the jack-knife analysis method and159
calculated pairwise Pearson correlation matrix of the variables to select the more important variables with low160

3



13 E) THRESHOLDS

correlation (R 2 < 0.5). For example, the following variables; bio1 (Annual mean temperature (°C)), bio3161
(Isothermality), bio8 (Mean temperature of wettest quarter (°C)), bio12 (Annual precipitation (mm)), bio15162
(Precipitation seasonality (C of V)), bio17 (Precipitation of driest quarter (mm)), bio20 (Annual mean radiation163
(W m -2 )), bio21 (Highest weekly radiation (W m -2 ), bio24 (Radiation of wettest quarter (W m -2 )), bio31164
(Moisture index seasonality (C of V)), bio34 (Mean moisture index of warmest quarter) and bio35 (Mean moisture165
index of coldest quarter) were selected for the species Asparagus asparagoides. To broaden the background data166
in terms of the likelihood of fewer record returns from more recent locations of invasion9 ( B )167

and those poorly sampled, we gave greater importance to records with less geographic proximity. However,168
it was taken into account that without records on survey effort in terms of time, it is impossible to distinguish169
between unsuitable and under-sampled areas, and that the above-mentioned adjustments would unavoidably170
thus confuse these two categories of geographical area. For calculation of the weighting surface, we divided the171
number of weighted records (using Gaussian kernel method with standard deviations of default values in ArcGIS)172
in the selected geographical environment for each cell globally, but excluding Australia, by the weighted number173
of terrestrial cells of the specific area, to eliminate edge effects along coastal regions. Thereafter, the resulting174
grid was adjusted to maximum 20 and minimum 1, which excluded extreme values. This weighting method,175
as advocated by Elith et al. (2010), minimizes bias favouring records from densely sampled areas in relation176
to those from less sampled areas. The kernel density layer of each species and Hawths Tools extension (Beyer,177
2004) were used to generate background points for the world, excluding Australia, for training purposes. The178
same method was used to generate background points for Australia, for comparing model performances. Thus,179
all SDM performances were evaluated against the same background data for every species.180

9 d) Accuracy Methods181

10 ? The area under the ROC curve (AUC)182

The receiver operating characteristic (ROC) curve provides an alternative technique for assessment of accuracy of183
ordinal score models (Fielding and Bell, 1997b). The construction of ROC curves uses all possible thresholds for184
classifying the scores into confusion matrices, obtaining each matrix’ sensitivity and specificity; then comparing185
sensitivity against the corresponding proportion of false positives (equal to 1 ? specificity). Using all thresholds186
avoids the arbitrary choice of a single threshold (Liu et al., 2005;Manel et al., 2001), and takes into account the187
trade-off of sensitivity and specificity (Pearce and Ferrier, 2000). The area below the ROC curve (AUC) is also188
valid as a single threshold-independent measurement of model performance (Brotons et al., 2004;Thuiller et al.,189
2005). AUC has been demonstrated to be independent of prevalence (McPherson et al., 2004;Somodi et al., 2017)190
and is seen to be an accurate measure of ordinal score model performance. However, in practice, SDMs used in191
conservation, such as for selection of representative sites and identification of biodiversity hotspots, frequently192
needs presence-absence maps of distributions of a species, and requires the selection of a threshold for the193
transformation of the ordinal scores into presence-absence predictions (Berg et al., 2004). In these circumstances,194
evaluation accuracy of prediction should be based on the specific threshold selected, as opposed to threshold-195
independent ROC curves. It is important to note that among the more frequently usedspecies distribution models196
(e.g. Bioclim, Nix (1986); GARP, Stockwell (1999)) dichotomous presence-absence distribution predictions are197
generated, to which it is not possible to apply ROC curves.198

11 ? Sensitivity and Specificity199

Sensitivity represents the proportion of correctly predicted presence records and thus the quantification of200
omission errors. In calculation, Sensitivity equals?? ??+??201

where adenotes the number of correctly predicted presence cells and c the number of cells in which the species202
was found, but absence is predicted by the model. Specificity represents the proportion of correctly predicted203
absences and thus the quantification of commission errors. In calculation, Specificity equals ?? ??+?? where b204
denotes the number of cells in which the species was not found but presence is predicted by the model, and d is205
the number of cells correctly predicting absence. It is important to note that compared across models, sensitivity206
and specificity are independent of one another, as well as being independent of prevalence, which represents the207
proportion of sites where the species was recorded as present.208

12 ? True Skill Statistic (TSS)209

The TSS is independent of prevalence and equals???? ????? (??+??)( ??+??)210
. Allouche et al. (2006) have shown that TSS is an intuitive method of performance measurement of SDMs in211

which predictions are expressed as presence-absence maps. It was further shown that TSS gives results showing212
significant correlation with those of the threshold-independent AUC statistic (Allouche et al., 2006).213

13 e) Thresholds214

There are many methods of thresholds selections including taking 0.5 as the threshold (default), which is widely215
used in ecology (Pearson et al., 2002) or a specific level of sensitivity or specificity (e.g. 95%) is desired or216
deemed acceptable (Cantor et al., 1999) or thresholds are chosen to maximize the agreement between observed217
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and predicted distributions. A third category of threshold selection identifies a threshold value that maximizes the218
percent of points correctly classified; maximizes sensitivity plus specificity; or maximizes Kappa, a measure that219
utilizes both sensitivity and specificity (Guisan et al., 1998). In this study the most commonly used thresholds220
of i)maximum sensitivity + specificity, ii)sensitivity = specificity and iii)default were examined to evaluate four221
accuracy methods of the species distribution models.222

14 f) Evaluating accuracy methods223

Presence points in this study were divided into two sample categories; training and test points per species.224
The training dataset comprised presence points of the complete global distribution of the species, excluding the225
Australian continent, while out-of-sample data (occurrences on the Australian continent) was used as a test of226
SDM performance. We concentrated on the area below the ROC curve (AUC), Sensitivity, Specificity and True227
Skill Statistic (TSS) of an independent area under three different thresholds, in order to evaluate accuracy for228
each species and model separately. Thus, eight species were evaluated using five correlative models. In that there229
was no data representing true absence of each species in Australia, the proportions of the extent of Australia230
identified as suitable were calculated, as an index of potential overestimations of the models.231

15 III. Results232

Differences in the four methods of accuracy evaluation (AUC, Specificity, Sensitivity and TSS) of Bioclim, BRT,233
GLM, MaxEnt and RF in the projections of suitable climate under the three different thresholds, based on234
independent records of all eight species, are shown in Figure 1.235

16 a) AUC236

AUC produced similar results in all models. For example, AUC values for all models for Asparagus asparagoides,237
is around 0.94 (238

17 b) Specificity239

A comparison of specificity in all five models, based on the test data under three different thresholds, shows240
relatively comparable values for Asparagus asparagoides, Fusarium oxysporumf. spp., Gossypium, Lantana241
camara L.,Opuntiarobusta, Phoenix dactylifera L., Triadicasebifera and Triticumaestivum L. (Fig 1 ??. For242
example, specificity values under default threshold for Triticumaestivum L. and Fusarium oxysporumf. sppfor243
Bioclim, BRT, GLM, MaxEnt and RF were 1, 0.79, 0.76, 0.87, 0.91 and 1, 0.72, 0.07, 0.00 and 1respectively.244
Similar comparison on specificity values under ”sensitivity = specificity” threshold for Triticumaestivum L. and245
Fusarium oxysporumf. sppfor Bioclim, BRT, GLM, MaxEnt and RF were 0.68, 0.68, 0.70, 0.68, 0.74 and 0.67,246
0.60, 0.51, 0.59 and 0.98 in turn. Finally, a comparison of specificity values under ”maximum sensitivity +247
specificity” threshold for Triticumaestivum L. and Fusarium oxysporumf. sppfor Bioclim, BRT, GLM, MaxEnt248
and RF were 0.63, 0.47, 0.52, 0.73, 0.74 and 0.74, 0.60, 0.88, 0.93 and 0.99 in that order. Results also show that249
the mean specificity values under different thresholds, using the five modeling techniques on the eight specieswere250
above 0.78 (Fig. 1).251

18 c) Sensitivity252

Sensitivity presented variable results for most models under different examined thresholds. For example,253
sensitivity values for Phoenix dactylifera L. under default threshold were 0.00, 0.38, 0.85, 0.23, and 0.00 for254
Bioclim, BRT, GLM, MaxEnt and RF, respectively. Sensitivity values for this species under threshold of255
”sensitivity = specificity” were close to each other while values of sensitivity under threshold of ”maximum256
sensitivity + specificity” were 0.91, 0.17, 0.85, 0.21, and 0.21 for Bioclim, BRT, GLM, MaxEnt and RF,257
respectively. Similar variations on sensitivity values under default threshold for Opuntiarobusta on Bioclim,258
BRT, GLM, MaxEnt and RF were 0, 0.23, 0.64, 0.19, and 0 respectively. Similar contrast on sensitivity values259
under ”sensitivity = specificity” threshold for this speciesfor Bioclim, BRT, GLM, MaxEnt and RF were 0.02,260
0.66, 0.76, 0.80, and 0.00 in turn. Finally, an assessment of sensitivity values under ”maximum sensitivity +261
specificity” threshold for Opuntiarobusta for Bioclim, BRT, GLM, MaxEnt and RF were 0.02, 0.66, 0.76, 0.88,262
0.00 in that order(Fig. 1).263

19 d) TSS264

More realistic value can be seen between the TSS index obtained under different thresholds and/or most of the265
SDMs output. For example, TSS values for Triticumaestivum L.under default threshold were 0.37, 0.36, 0.27,266
and 0.23 for BRT, GLM, MaxEnt and RFrespectively, which indicates better consistency with areas projected as267
climatically suitable for the species. TSS values for this speciesunder threshold of ”sensitivity = specificity” were268
0.37, 0.36, 0.40, 0.25, and 0.28 for Bioclim, BRT, GLM, MaxEnt and RF respectively. Similar consistency for this269
species were also found under threshold of ”maximum sensitivity + specificity” on BRT, GLM, MaxEnt and RF.270
It should be mentioned that some variation were also seen under different thresholds for this species on Bioclim.271
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20 IV. DISCUSSION

Similar consistency was shown for Fusarium oxysporumf. spp., Gossypium, Lantana camara L.,Opuntiarobusta,272
Phoenix dactylifera L., and Triadicasebifera (Fig. 1).273

20 IV. Discussion274

In this study, the five correlative modeling techniques under three different thresholds were examined through275
extrapolation (Fig 1). The assessment of SDM correlative and envelope performance, based on AUC, Sensitivity,276
Specificity and TSS in modeling eight species under threshold selections of i) maximum sensitivity + specificity,277
ii) sensitivity = specificity and iii) default, indicates that TSS gives varying, but more realisticvalues (Fig 1),278
in comparison with specificity which represents the probability of correct classification of absence by the model.279
Caruana and Niculescu-Mizil (2006) note, however, that some researchers have attempted to explain the tests’280
relative performances and their sensitivity to data characteristics, but movement toward the establishment of a281
comprehensive assessment toolbox has been hindered by disagreement on the valid applicability of some statistics.282
SDM evaluation measurements could benefit from the identification of techniques useful in other fields, and283
from more concentration of research on topics such as the analysis of spatial patterns in errors, dealing with284
uncertainties, and assessment performance in the context of specific applications, including decision making285
(Austin, 2007).286

We believe that the utilized method to generate absence or background points in the study was appropriate287
as this method is recommended by Elith et al. (2010) for species which have been presented in different portions288
of the range for different periods of time. In contrast, the recognized best practice when using museum data is to289
use what has been termed the ’target group background’ approach (Phillips et al., 2009). It should be highlighted290
that although one of the examined threshold was the default one (0.5)it does not mean that we are suggesting291
this threshold as the best one.292

We believe that use of a combination of distribution modeling techniques such as Bioclim, MaxEnt, BRT, RF293
and GLM in a complementary method, together with species accuracy estimators, allows us to better represent294
the geographical distribution of species and the species composition at localities, including a measure of its295
accuracy. However, it is necessary to assess and evaluate accuracy of species distribution modeling with different296
techniques as there are biases and limitations in representation of the results purely based on one modeling297
technique or one accuracy method. Using a combination of methodological approaches as executed in this study298
facilitates identification of an overall pattern, provided by all of the individual model predictions, that represent299
the geographical patterns of richness and composition of species, regardless of the degree of accuracy of the300
predictions by each individual model for each species.301

Accurate projection of a dynamic phenomenon such as the richness of the distribution of a species is extremely302
complex. It has been shown that the results of SDMs are unreliable projections of the range of a species. Rather,303
they produce a provisional description of ranges, which require continuous updating as new data becomes available304
or environmental factors alter. Species distributions predicted by the relating of biological data to environmental305
variables showed a tendency toward overestimation of the actual range extents, due in part to the limitations306
of using only the environmental conditions as model predictors for the sites where the species has a known307
presence. Where absences due to historical, dispersal or biotic factors (Pulliam, 2000) are not accounted for,308
model predictions willinevitably tend toward the potential distribution of species (i.e. sites of environmental309
suitability in which a species could occur, based on a group of environmental variables; see (Jiménez-Valverde et310
al., 2008)). Under such circumstance, a set of errors and biases will result when predictive distribution maps are311
overlaid to create a representation of the richness of a species, producing an unrealistic representation (Hortal et312
al., 2007). Thus, the creation of a valid representation of species richness demands a deeper analysis of results,313
in order to detect areas with notable levels of omission, as well as account for presences located in areas where314
no representation was predicted.315

Why not AUC? SDMs are invaluable for addressing questions and issues in biogeography, as well as evolutionary316
and conservation biology. Understanding performance, assessment of correlative and mechanistic models is317
essential to their valid application (Guisan and Thuiller, 2005). AUC is a frequently used technique for318
measurement of model performance (Lobo et al., 2008;Manel et al., 2001;Thuiller et al., 2005), proven to be319
independent of prevalence, in theoretical (Hanley and McNeil, 1982;Zweig and Campbell, 1993) and empirical320
applications (McPherson et al., 2004). In performance measurement, AUC is threshold independent and thus321
suitable for evaluating performance in ordinal score models, like logistic regression with true presence-absence322
data. However, in practice, absence data is often unavailable and only the presence data is accessible. Under323
such circumstances, envelope (eg. Bioclim) or distancebased models (e.g. Domain or Mahalanobis) are the SDMs324
of choice (Farber and Kadmon, 2003). However, in practice, a comparative prediction of presenceabsence is often325
necessary, thus necessitating a threshold application for transforming the probability/ suitability scores into326
presence-absence data. For most reverse selection algorithms, presence-absence data of composition of species in327
specific locations is necessary (Tsuji and Tsubaki, 2004). As available data is frequently not complete, SDMs are328
often used to predict presence or absence in a potential locality for a Biodiversity hotspot estimations are also329
frequently based on presence-absence predictions (Schmidt et al., 2005). Assessing impacts at community level330
of global change could be achieved by stacked binary SDM species assemblage prediction (D’Amen et al., 2015;331
Guisan and Rahbek, 2011). Presence-absence predictions exclude ROC plotting and, thus, AUC is not a technique332
for evaluating accuracy of the predictive maps used in such applications. The results in Figure 1 indicate that the333
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high values of AUC for each species and model is no guarantee of output accuracy. Further, MESS (Multivariate334
Environmental Similarity Surface) maps do not specify changes in correlations between variables, and tests for335
these are also essential because parameters are estimated on the structure of correlations between training data336
predictors. Generally in SDMs, predictions will be unreliable for areas with substantial variance in correlations337
of important variables (Harrell, 2001). When available predictors have only indirect relationships to distributions338
of species, this is particularly problematic (Austin, 2002). While the selected set of variables might reasonably339
well represent the unmeasured directly influential variable, if inherent correlations change in new areas, there will340
be compromises in predictions.341

Regarding the necessity of producing presence/ absence predictions from SDMs, evaluating this binary342
prediction using confusion matrix and classification accuracy criteria should be taken into account. However,343
the selection of an optimal threshold is a critical issue, raisinga literary criticism (Liu et al., 2005). How well344
a binary prediction can classify presence and absence observations, which is called as sensitivity and specificity,345
respectively, is the cornerstone of the classification accuracy evaluation. Although,these metrics have been solely346
used for evaluating binary predictions (Ahmadi et al., 2013), they show an inherent inconsistency. For examples347
models with ahigh value of sensitivity donot necessarily show high specificity. It seems that models capability348
for extrapolation and/or interpolation compromise the resulting values of sensitivity and specificity (Franklin,349
2010;Merow et al., 2014). This can be seen in our case where for almost all species RF results in the lowermost350
probability of occurrence in the independent area, and accordingly, high values of specificity but low values of351
sensitivity. Furthermore, the niche shift, the tendency of the species to establish in areas beyond the native352
niche in out-ofsample areas (e.g. independent area), also affects the prediction performance of the SDMs 34 .In353
this situationTSS (i.e. sensitivity + specificity -1) through combining the capability of correctly predicting both354
presence and absence (e.g. background points) observations, and therefore, taking into account both omission355
and commission errors, provides a reasonable viewpoint of the models performance.356

Comparison of the initial distributions of species richness from model predictions with the observed ones and357
the analysis of errors are the successive phases for adjustment of predicted distributions of a species subset,358
thereby refining the picture of species richness. Reductions in the errors of omission or commission can be359
executedby prioritizing either sensitivity or specificity (Fielding and Bell, 1997a). The accuracy of a model must360
be always interpreted in terms of its intended purpose (Araujo and Guisan, 2006) by differential weighting of false-361
positives and false-negatives. In our study, the impact of omitting observed species was assumed to be greater,362
and we thereforeminimized errors of omission. Both commission and omission errors need consideration, however,363
from the perspective of conservation, ignoring a species where it is present may lead to the underestimation or364
minimization of the conservation needs of an area, while erroneously including a species in a particular locality365
might result in unnecessary or wasted conservation efforts and resources (Rondinini et al., 2006). A specific366
strategy is demanded, based on the need to reduce commission or omission errors.367

Choosing a threshold is required when assessing model performance using the indices derived from the confusion368
matrix, which also facilitates the interpretation of modeling outputs, and in line with this matter we refer to369
Liu et al. (Liu et al., 2005) who reviewed different threshold determination approaches. Furthermore, refer to370
Bean et al. (Bean et al., 2012) who investigated the effects of small sample size and sample bias on threshold371
selection and accuracy assessment of species distribution models. In line with their finding, and based on the372
results of this study, selecting an arbitrary default threshold (for example predicted probability of 0.5) may373
underestimate the performance of the model to classify presence/absence areas. In such situations, taking into374
account the behaviour of the model to characterize presence and absence points, for example where sensitivity of375
the model equals to specificity or their summation reaches maximum, is more reasonable for selecting thresholds376
and producing binary presence/ absence maps.377

In this study attempts were made to answer the question ”in the use of species distribution models, should we378
rely on the result of a single accuracy method or a single species distribution method?” through evaluating AUC,379
Sensitivity, Specificity and TSS performance accuracy methods based on the application of five types of bioclimatic380
models under three different thresholds to predict the distributions of eight different species in an independent381
area. As discussed earlier, SDMs are based on different algorithms and thus they perform differently; and for the382
users, the decisions at the commencement of the process is which of these is most appropriate is complicated;383
and the situation would become more challenging if the users rely on in appropriate accuracy measure methods.384
Our findings show that evaluating performance of accuracy gives different results among different techniques385
and the TSS method is better compared to the other three examined methods. We note that this study adds386
to one undertaken by Allouche et al. (2006) who assessed the accuracy of species distribution models through387
prevalence, kappa and TSS.388

21 V. Conclusion389

The extensive array of methods, data types and novel research questions imply the need for many modeling390
decisions. Different modeling techniques (e.g., DOMAIN, CLIMEX, MaxEnt, BRT, RF, Bioclim) and different391
methods of measuring accuracy (e.g., AUC, Sensitivity, Specificity, the True Skill Statistic)have different392
requirements. In selecting the most appropriate method of measuring accuracy, knowledge is required in393
terms of which method is most appropriate for the data available and its intended application. However, the394
information facilitating an informed choice of method is currently scattered throughout the modeling literature395
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and incomplete, making it problematic for most users to make decisions on the adoption of newer methods, and396
for newcomers to know where to begin. Knowledge of a particular algorithm gives insight into the features and397
limitations of its predictions, and why particular patterns occur. As Bioclim, GLM, MaxEnt, BRT and RF398
provided slight variances in projections of the same group of species, it may be more expedient to use TSS as399
an intuitive method for measuring the performances of species distribution models, in comparison with the area400
under the ROC curve (AUC), Sensitivity and Specificity.401
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