Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

Assessment of Stability of Social-Ecological-Economic System of the Region A.G. Osipov¹ ¹ Saint Petersburg State University, Russia *Received: 15 December 2016 Accepted: 1 January 2017 Published: 15 January 2017*

7 Abstract

The relevance of the research is conditioned by the need to develop the theory and practice of 8 integral assessment of the state and emergent properties of complicated natural and social 9 systems, with the use of modern methods of evaluation. The article deals with assessment of 10 stability of the social-ecological-economic system (SEES), being its integrative (complex, 11 emergent) property influencing the "quality of life" of the population. The authors, analyzing 12 a regional SEES, characterize it by the ability to retain its properties and mode parameters in 13 case of external influence on the system or its intra-system changes affecting the "quality of 14 life" of the population. Tver region of the Russian Federation was taken as a model object. To 15 assess the stability, the authors devised the following scenarios of impact on each of the 16 subsystems of a particular regional SEES: 1 - hypothetical aggravation of the ecological 17 situation in the region by 10, 20, 30 18

19

20 Index terms— social-ecological-economic system, integral assessment, stability, quality of life.

21 **1** Introduction

n the recent years the interest in the problem of formation of an objective system of indicators of public well-being
and sustainable development has been shown by governments of many European countries, the PRC, the USA,
Japan.

The relevance of the research is conditioned by the need to develop the theory and practice of integral assessment of the state and emergent properties of complicated natural and social systems, with the use of modern methods of evaluation.

The article deals with assessment of stability of the social-ecological-economic system (SEES), being its emergent property. The conditional formula of such system is presented by us thus: socio-system = biocenoses + physico-geographic environment (biotopes) + population + economy + culture + politics [1].

Let us dwell on the key point of our previous publications: a multi-criterion assessment of the state of the 31 system reveals incomparability of the obtained assessments or ambiguities in the assessment of the state of an 32 SEES. A measure of proximity to the "benchmark" by an aggregate of assessment criteria for a number of 33 34 years reflects the researcher's idea of the degree of the well-being of the SEES. These ideas depend on axiological 35 provisions incorporated into the methodology and the axiometric ideas on the assessment scales of the assessment 36 criteria. A stable system is a system that retains its properties and mode parameters in case of external or internal influence on it. One can also consider the well-being of an SEES and high or low quality of life of the population 37 in SEES's of different scales. But even here, stability, as an emergent property of the system as a whole, can 38 form the axiological bases of assessment of another complex property, in our case, of its well-being. In this 39 case a situation arises when "stability" and "well-being" in a number of publications are considered almost as 40 synonyms, or a term "health of a system" is introduced, for example. A stable system is considered in the first 41 turn a "healthy", or "good" one [2], and if the stability is impaired, such system loses its initial (healthy) status. 42

43 **2** II.

44 **3** Materials and Methods

The paper characterizes the state of a regional SEES through the system's ability to retain its properties I and mode parameters in case of external influence on the system or of internal, intra-systemic changes characterizing the quality of life of the region's population. Proceeding from the definitions of life quality, the basic objective of integral assessment may be the identification of an aggregate of natural, social, and economic conditions assuring to a greater or lesser degree human health, personal and public, and his/her needs, i.e. conformity of a healthy person's life environment to his/her needs [3].

Tver region of the Russian Federation was taken as a model object to an analysis of SEES stability. The common basis for constructing of integral indicators is described by us in a sufficiently large amount of publications, including the papers [2,3].

Let us consider the following scenarios of impact on each of the SEES subsystems: -hypothetical aggravation of 54 the ecological situation in the region by 30%; 2 -hypothetical aggravation of the economic situation in the region 55 56 by 30%; 3 -aggravation of social conditions in the region by 30%; 4 -hypothetical aggravation of the situation in all subsystems simultaneously by 30%. Further, in the scenarios 5 -8, multiple aggravation of the situation 57 takes place alternately in all of the above subsystems and in all subsystems simultaneously. Let us calculate the 58 59 integral indicators of quality of life of the population for all 8 scenarios -for the first (within the subsystems) and 60 second (between the subsystems) levels of convolution of the indicators. Let us present the results of assessment of the environmental quality and the quality of social life for the years 2003 and 2013. At this stage let us take 61 into account the linear character of changes with equal weighting of the parameters within the three subsystems 62 (environmental, economic, social) and between them, in the analysis let us consider only the results of the options 63 with 30% and twofold aggravation of the situation within the units and between the units against the background 64 of 2013. 65

Let us include into the ecological subsystem 8 estimation parameters: 1-emissions of pollutants into the atmospheric air from stationary sources (ths tons); 2-entrapment of atmospheric pollutants from stationary sources (ths tons); 3-use of fresh water (mln cubic meters); 4-volume of circulating and subsequently utilized water (mln cubic meters); 5-forest regeneration (ths hectares); 6-fertilizer application per one hectare of agricultural crops in agricultural entities (tons); 7discharge of contaminated drain waters into surface water bodies (mln cubic meters); 8-generation of production and consumption waste (ths tons).

Into the economic subsystem let us include 5 estimation parameters: 1-population numbers (assessment by end of year; ths persons); 2-number of unemployed (ths persons); 3-per capita monetary income of population per month (rubles); 4-population numbers with monetary incomes below living wage (in % of total population); 5-number of enterprises and organizations (pcs.).

Into the social subsystem let us include 5 estimation parameters: 1-life expectancy at birth (number of years,
all population); 2-number of registered crimes per 100,000 people; 3-number of visits of museums per 1000 people;
4-number of hospital beds total, ths; 5-number of preschool educational institutions.

Let us take all indicators from Rosstat website ("Regions of Russia" compilations) for 2003 and 2013. The basis objective of the research will be convolution of the indicators at the first and second levels and identification of situations in which SEES fails to retain its properties and mode parameters at the prescribed hypothetical influence on it in individual subsystems and the system as a whole. The state of the system and quality of life of population in the region was estimated for 5 classes (I -high; II -above average; III -average; IV -below average; V -low) in which it was in 2013. The proximity of the integral indicator to 0.0 evidences high quality of life of population, the proximity to 1.0 evidences low quality.

The analysis of the obtained results has allowed the following basic conclusions to be drawn:

1. In 2003 quality of people's life in the region at the second level of convolution was characterized by the 87 value 0.64 of the consolidated indicator (IV class middle); in 2013 -0.57 (border of classes III-IV). The change 88 in quality of people's life, as follows from the estimates, was mostly influenced by the economy (the integral 89 indicator for the subsystem was reduced by 18%). The contribution of the social subsystem amounted to 6.7%, 90 of the ecological one 8.9%. In general, from 2003 to 2013 the improvement of the social and ecological conditions 91 was identified. At the second level of convolution, by the value of the consolidated indicator, the state of SEES 92 and life of population transferred from a borderline situation between classes III-IV in 2013 to class IV (0.58). 93 The change is generally insignificant (1.8%), but it characterizes the transition of the system into a more senior 94 class and therefore should be mentioned, the system in general at 30% of hypothetical influence expressed in a 95 96 change of the parameters of the ecological subsystem was unable fully its properties and mode parameters and 97 thus was susceptible to the ecological situation. These calculations have confirmed the conclusion obtained by us 98 earlier, in the North West of the Russian Federation, that an improvement of the environmental quality by less 99 than 30% does not result in changing the class of people's life quality by a consolidated indicator [3,4].

The twofold aggravation of the ecological situation only by all 8 parameters (table 1) changes the value of the integral indicator of the ecological subsystem by 17% (0.48, class III; it was 0.41, class III) and brings life quality in this subsystem closer to class IV, class interval being 0.56-0.77). By the value of the consolidated indicator of life quality the absolute value is noted to have increased by 3.5%. The value of the consolidated indicator is characterized by class IV (0.59 left border of class IV, it was 0.57, the middle of the class). The ¹⁰⁵ borders of class IV for the consolidated indicator: 0.56-0.79. 3. When planning the scenarios of aggravation of ¹⁰⁶ the economic situation only, the multidirectionality of parameters upon the prescribing of the characteristics was ¹⁰⁷ also taken into account (2 characteristics have a direct relation to the assessment of life quality and 3 have a

108 reverse relation).

The aggravation of the economic situation only by 30% in all 5 parameters has changed the value of the integral indicator of the economic subsystem by 6.8% (it was 0.59-the border of class III-IV, it has become 0.63class IV, closer to the left border, table 2), however, by the value of the consolidated indicator the class of life quality has changed insignificantly, by 1.8% (0.57 in 2013 and 0.58 at 30% aggravation).

The twofold aggravation of the economic situation only in all 5 parameters of the economic subsystem has brought about an increase in the integral indicator of the unit by 20% (0.71, class IV; it was 0.59) with the width of the class interval 0.59-0.81. This has not changed the class of the integral indicator, but has brought the life quality estimated by the economic subsystem closer to class V. By the value of the consolidated indicator, in this case, life quality has aggravated by 7% and was characterized by the value of the consolidated indicator 0.61

(class IV), it was 0.57 (the border of classes III-IV) with the width of the interval of the consolidated indicator

119 of class IV 0.56-0.79.

¹²⁰ 4 When planning scenarios of aggravation of the

situation in the social sphere only, the multidirectionality of the parameters upon the prescribing of the characteristics was also taken into account (1 characteristic has a direct relation to the assessment of life quality and 4 have a reverse relation).

The aggravation of the situation in the social sphere only by 30% in all 5 parameters (table 3) has changed the value of the integral indicator of the subsystem by 18.6% (it was 0.70 -class IV, it has become 0.83 -class V, closer to the left border with the width of the interval of class V 0.80-1.00), however, at the value of the consolidated indicator, life quality has changed insignificantly, by 7% (0.57 in 2013 and 0.61 at 30% aggravation of the social

128 conditions).

The twofold aggravation of the situation in the social sphere only in all 5 parameters (table 3) changes the class of the integral indicator of the social subsystem by 34.3% (0.94, class V, it was 0.70). By the value of the consolidated indicator the quality of people's life has gone down by 21% (0.69, class IV, it was 0.57 -the border of classes III-IV) with the width of the interval of the consolidated indicator of class IV 0.56-0.79.

In general, one can observe that the most sensitive subsystem was the system of social conditions. For it the highest increase of the influence effect has been noted, both on separate subsystems and in general on the socio-ecological-economic system (a consolidated assessment). With small negative changes the ecological and economic parameters have almost the same changes, both on the first level of convolution and on the second. It is noticeable that after the 30% aggravation the consolidated assessment is influenced more by the economic

138 factors.

¹³⁹ 5 Of interest also is the simultaneous taking into

account of possible reduction in life quality in all subsystems simultaneously. For this, the consolidated indicator of life quality was calculated with 30% aggravation of the conditions in all subsystems simultaneously compared to 2013. In this case the consolidated indicator is equal to 0.63 (IVm). Prior to the changes it was 0.57 (the border of classes III-IV). In percentage terms the changes amount to 10.5%. In virtue of the prescribed linear nature of the changes in the characteristics at first approximation this value corresponds to the total of the percentages of the changes by separate subsystems: 1.8+1.8+7.0.

With the twofold reduction in life quality in all subsystems simultaneously we obtain the value of the 146 consolidated indicator 0.71 (IVr). It was 0.57 (the border of classes III-IV). In percentage terms the changes 147 have amounted to 24%. Thus, with the twofold reduction in the parameters we obtain an almost linear increase 148 in the consolidated indicator and transition of life quality from the borderline value between classes III and IV 149 into class IV (closer to the border with class V). 6. It follows from conclusions 1-5 that the hypothetical 30% 150 change of the situation in one of the subsystems toward aggravation of life quality compared to 2013 (table 151 4) brings about an increase in the consolidated indicator for the ecological subsystem by 7.3%, for the social 152 subsystem by 18.6%, for the economic subsystem by 6.8%. By the value of the consolidated indicator with 30%153 154 change of the situation in all subsystems simultaneously there is 10.5% increase in the consolidated indicator. 155 This increase causes reduction in life quality by about half of the class.

The twofold change of the situation in one of the subsystems toward aggravation of life quality compared to 2013 (table 4) results in an increase in the consolidated indicator in the ecological subsystem by 17%, in the social subsystem by 34%, in the economic subsystem by 20%. By the value of the consolidated indicator with the twofold change of the situation in all subsystems simultaneously there is 24% increase in the consolidated indicator. This increase causes reduction in life quality by about one class.

¹⁶¹ 6 III.

162 7 CONCLUSION

The results of the integral assessment have been analyzed. The quantitative characteristics of the state of the region in 2003 and 2013 have been obtained. In a series of experiments the influences have been identified under which a system transitions into another state class and therewith loses stability. The authors are aware that the taking into account of the non-linear nature of changes and of the uneven weightage of the estimation parameters within subsystems (ecological, economic, social) and between them can change the obtained results. As our experience has shown, however, these changes will not result in any strong differences or fundamental changes.

In the same with one can calculate a change in the integral indicator by time for different years or by space in the basis of natural data or the Rosstat data. In more complex examples taking into account disparate weightiness of parameters within subsystems and between them, the non-linear nature of relations; incomplete, inaccurate, and non-numerical information on the assessment priorities, also multilevel convolutions of information are introduced. The weighting factors are specified on the basis on information deficiency models. The comparison of the state

174 of the systems on the integral basis enables also quantitative assessment of spatio-temporal particulars of their

dynamics and the degree of their transformation. As the "admissible limit" value of the consolidated indicator a
 value can be recommended obtained on the basis of the "convolution" of admissible limit (critical) values of the
 initial parameters on the borders of the classes, if they are known.

$\mathbf{2}$

Year 2017

Figure 1: Table 2 :

1

Unit Estimation parameters

Aggravatio

Relation 2003 2013

Economic 1. Population	numbers					
(assessment by end of year;		Reverse	1444	1325	1019	0,92
ths persons)						
2. Number (the persons)	of unemployed	Direct	50,9	38	49.4	0,29
3. Per capita monetary income of pop	pulation (per month; rubles;)	Reverse	3021 1	19106	14697	0,80
4. Population	numbers with					
monetary incomes below living wage	(in $\%$ of total population	Direct	39,0	$11,\!8$	$15,\!34$	$0,\!17$
of the constituent entity)						
5. Number of enterprises and organiz	zations	Reverse	42708	35614	27395	0.97
Integral indicator for economic			0,72	$0,\!59$		$0,\!63$
	unit		(IV)	(III-		(IV)
			m)	IV)		1)

Figure 2: Table 1 :

177

 $^{^{1}}$ © 2017 Global Journals Inc. (US)

 $\mathbf{4}$

Year 2017 6 (B) Global Journal of Human Social Science -

[Note: \bigcirc 2017 Global Journals Inc. (US)]

riguido, rabida,	Figure	3:	Table	4	:
------------------	--------	----	-------	---	---

3

					Aggravatio		
Unit	Estimation parameters		Relation 200	03 2013	3	of situ- ation of 2013 by	va of gr va tio
						30%	by 30
Social 1. Life ex	xpectancy at birth						
	(number	of years, all	Reverse 61,5	$3\ 68,13$	3	$52,\!4$	0,9
 population) Number of registered crimes per 100,000 people Number of visits of museums per 1000 people Number of hospital beds total, ths Number educational institutions of preschool Integral indicator for social unit 		Direct 1970 1515 Reverse 343 342 Reverse 18,5 13,3 Reverse 645 487 0,75 0,70		1515 0,70	1969,526310,2374,6	0,0 0.8 0,9 0,8 0,8	
Aggravation of	situation in $\%$ /Units		Ecological 30% reduction	(IV)	(1V)	Economic 30% redu	(V ; ctio
For consolidate	For unit (level 1 of convo d assessment (level 2 of co	lution) nvolution)	7,3 1,8 twofold redu	ction		6,8 1,8 twofold re	18 7,0 educ
For consolidate	For unit (level 1 of convo d assessment (level 2 of co	lution) nvolution)	$17 \\ 3,5$			20 7,0	34 21

Figure 4: Table 3 :

7 CONCLUSION

178 .1 Acknowledgements

This research was financially supported by the Russian Foundation for Basic Research by the following grant projects: 13-05-00648 "Development of criteria and models of integrated assessment of the quality of the environment and the quality of life for planning of sustainable development of the regions and regional policy of Russia"; 16-05-00715-a"Development and testing of models of integrated assessment of the sustainability of land and aquatic landscapes and socioecological-economic systems".

[Dmitriev et al. ()] 'Approaches to assessment and GIS mapping of sustainability and environmental wellbeing of geosystems. Part IV. Integrated assessment of ecological wellbeing of terrestrial and aquatic
ecosystems. Vestnik of Saint-Petersburg University. Series 7'. V V Dmitriev, I V Fedorova, A S Birykova.
10.21638/11701/spbu07.2016.204. Geology. Geography 2016. (2) p. .

[Dmitriev and Kaledin ()] 'Integrated assessment of regional socio-ecological-economic systems and the quality
 of life (case study the constituent entities of the'. V V Dmitriev , N V Kaledin . *The Baltic region* 2016. 8 (2)
 p. .

[Dmitriev ()] 'Integrated assessment of the state of complex systems in nature and society'. V Dmitriev. Biosphere
 2010. 2 (3) p. .

193 [Osipov ()] 'Landscape-ecological zoning and monitoring of lands of the Leningrad region / N'. A G Osipov . //

194 Mining information-analytical Bulletin (scientific and technical journal, 2013. 11 p. .