

1 An Evaluation of the Performance of Higher Educational 2 Institutions using Data Envelopment Analysis: An Empirical 3 Study on Algerian Higher Educational Institutions

4 Sulieman Ibraheem Shelash Al-Hawary¹, Dr. Imane Bebba² and Dr. Imane Bebba³

5 ¹ University Kasdi Merbah Ouargla-Algeria

6 *Received: 14 December 2016 Accepted: 4 January 2017 Published: 15 January 2017*

7

8 **Abstract**

9 The aim of this research paper is to clarify to evaluate the performance of the Algerian
10 institutions of higher education using data envelopment analysis method based on the concept
11 of benchmarking. Five indicators of inputs as well as outputs that reflect three dimensions of
12 teaching, learning, and scientific research were used were used; total number of students
13 enrolled in graduation, total number of students enrolled in post-graduation, permanent
14 professors, graduated students, and scientific publications. The findings of data envelopment
15 analysis pointed out that there is a significant variation in the performance of the Algerian
16 institutions of higher education in favor of the academic years. It was highlighted that
17 inefficient internal processes or poor conditions surrounding these processes were the main
18 causes of the weak performance.

19

20 **Index terms**— data envelopment analysis method, efficiency, performance indicators, performance evalua-
21 tion.

22 **1 Introduction**

23 ne of the most common conceptualizations of performance was the evaluation of this concept based on the financial
24 outcomes using the income statement or so-called profit and loss account. However, complexity of business
25 structures and transactions along with the multiplicity of financial reporting standards make the identification
26 and evaluation of performance harder (ICAS, 2016), which in turn led to question the efficiency and effectiveness
27 of using the rest of the institution's resources, i.e., nonfinancial resources in the process of performance evaluation.
28 Hence, new approaches and methods used to evaluate the performance of profit-oriented or nonprofit institutions
29 using different institutional resources have been considered. In fact, the simplest and oldest method utilized to
30 evaluate performance depends on calculating the technical efficiency index that goes along with Farrell's (1957)
31 definition of efficiency, which deemed efficiency as a ratio of outputs to inputs, provided that all inputs as well
32 as outputs are assessed correctly. Farrell's (1957) definition evinces that a highly efficient institution is the one
33 that has succeeded in producing as many outputs as possible using a specified amount of inputs. Thereupon,
34 one can consider that the definition of Farrell remains acceptable and valid if an institution have a multiple
35 homogeneous outputs and multiple homogeneous inputs with known relative weights. Consequently, performance
36 can be evaluated by calculating the efficiency index, which equals the ratio of total homogeneous output to total
37 homogeneous inputs (Kaftrroodya & Aminnaserib, 2014) as shown in the following equation:

38 **2 Performance**

39 (efficiency) index = $(U_1 Y_1 + U_2 Y_2 + \dots + U_r Y_r) / (V_1 X_1 + V_2 X_2 + \dots + V_m X_m)$, where Y: outputs X:
40 inputs U₁, U₂, ? Ur: relative weights of outputs V₁, V₂, ? V_m: relative weights of inputs Even though clarity
41 and accuracy of the above equation, the process of measuring the performance of higher education institutions

4 III. THE CONCEPT DATA ENVELOPMENT ANALYSIS

42 is not easy, especially as they fall within the complex organizations that use multiple and different inputs to
43 produce multiple and different outputs. In this sense, the current study aims at clarifying the extent to which
44 the performance of higher education institutions can be measured and evaluated using a relatively modern
45 method known as data envelopment analysis, which is based on benchmarking and is widely used in assessing
46 the performance of many non-profit institutions.

47 For the purpose of the current study, the detailed overview of data envelopment analysis and how this analysis
48 can be used to evaluate the performance of institutions in general, was included in the theoretical framework.
49 The empirical part of the study demonstrated how data envelopment analysis was used in the current study to
50 evaluate the performance of Algerian higher education institutions during 16 consecutive academic years.

51 3 II. Theoretical Framework: A Detailed Overview of Data 52 Envelopment Analysis

53 The method of data envelopment analysis is a result of a doctoral dissertation prepared by Edwardo Rhodes
54 under the supervision of William Cooper at Carnegie Mellon University's School of Urbanand Public Affairs.
55 The dissertation was designed to evaluate educational programs provided to disadvantaged and underprivileged
56 students, through conducting largescale studies on a sample of similar public schools in the United States, with
57 the support of the federal government. Rhodes was able to access the largest quantitative database with multiple
58 input variables and outputs related to the target group. No information on the prices was available. Consequently,
59 the researcher found it difficult to measure efficiency in an effective manner. Even after several attempts and
60 the use of a set of standard statistical approaches, the researcher did not obtain satisfactory results to evaluate
61 the efficiency of this program in each school (Cooper et al., 2011). Hence, the researcher began to think about
62 a more effective method by re-focusing on Farrell's work published in 1957 in order to develop new models
63 to assess productivity, in addition to reviewing a previous work conducted by the supervisor of the thesis and
64 Charnes, which the researchers presented an applicable mathematical model known as Tjalling Koopmans. A
65 model that falls under the concepts of activity analysis used by Farrell (1957). With the combined efforts of
66 the three researchers, it was concluded that input prices and output quantities could be determined by their
67 ability to meet final demand (identifying inputs through outputs). More importantly, the performance of other
68 decision-making units (public schools) can be used to assess the behavior of each decision unit on all outputs and
69 inputs of other decision-making units used in the study. This enables them experimentally to determine their
70 relative efficiency (Cooper et al., 2011). In 1978, Charnes, Cooper, and Rhodes published a scholarly article in
71 the European Journal of Operations Research, in which the term Data Envelopment Analysis (DEA) was first
72 coined (Cooper et al., 2011). From that time on, the use of this technique spread and many attempts were made
73 to modernize its models. The DEA method is one of the most widely methods used to analyze the efficiency
74 of government organizations (Abbott & Doucouliagos, 2003). A review of the literature revealed that DEA was
75 utilized to evaluate the performance of hospital departments, banks, military institutions, courts, industrial and
76 commercial companies as well as educational institutions, in addition to evaluation of economies of countries.

77 4 III. The Concept Data Envelopment Analysis

78 The method of data envelopment analysis is a modern mathematical method used in the field of quantitative
79 management models (Kaftroodya & Aminnaserib, 2014). It is a linear programming technique viewed as a data-
80 oriented approach employed to assess the performance of a group of entities (Cooper et al., 2011). This method
81 is one of the best-known and used approaches to evaluate and compare the relative efficiency of a group of
82 similar decision-making units. It also helps to determine the best practice of resource use among a similar set of
83 organizations or decision-making units. As a technical analysis, the DEA method depends on analyzing a group
84 of decision-making units (DMUs), identifying a group of these units that are fully efficient. This group is regarded
85 as a reference unit for the other inefficient units. Mathematically, DEA is a linear programming procedure for the
86 input and output frontier analysis. The DEA assigns a balance of 1 or 100% for the fully efficient input / output
87 unit compared to the other units and assigns a different balance from one (1) for inefficient units (Rosenmayer,
88 2014). The group of highly efficient units form a belt that encapsulates all inefficient units. This is actually, why
89 this analysis is named data envelopment analysis (Fahmi, 2009). a) Basic models of data envelopment analysis
90 i. Charnes, Cooper and Rhodes (CCR) Model

91 The CCR model is the first applied model used the DEA method, which was presented in the research paper
92 that was conducted by Charnes, Cooper and Rhodes in 1978. The short name of this model is the first letters of
93 the names of the three researchers. The model was used to evaluate a program called "Follow through Program"
94 and provided a new definition of the efficiency used in assessing the contribution of non-profit organizations'
95 activities in public programs. A model in which several inputs and outputs of decision-making units participated
96 in this program is monitored in order to extract a numerical scale of the efficiency of each unit, which provides a
97 new way to estimate and identify shortcomings (Charnes at al., 1978).This model calculates the total efficiency
98 and combines it into a single value. It is valid for units that operate at their optimal size. Thereupon, the efficiency
99 index on this model represents CRS as an abbreviation for Constant Returns to Scale. This assumption indicates
100 that the decision-making units (DMU) operate under constant return to scale. That is, any increase in the inputs
101 will result in a proportional increase in the outputs (Marti et al., 2009).

102 ii. Banker, Charnes, and Cooper Model Due to the widespread use of data envelopment analysis and its related
103 research, the researchers Banker, Charnes and Cooper developed a model in 1984. This model was abbreviated
104 as BCC based on the first letters of the three researchers' names. It is a model that includes the concept of
105 variable returns to scale rather than constant returns to scale. The reason for this is that it is illogical for all
106 institutions to operate at optimal volumes, especially in the face of competition and restrictions on organizations,
107 whether governmental, financial or otherwise restrictions. Under this mode, a new variable has been added, (?),
108 which can be used to identify variable returns to scale of the decision-making unit under study ??Mahmoud
109 and Madhar, 2010). This model distinguishes between two types of efficiency, namely, technical efficiency and
110 efficiency scale. The latter is expressed by the following possibilities: First, the change in the results of outputs
111 or inputs is regarded as incremental for the other one, and this known as increasing return to scale (IRS). Second,
112 the increased inputs result in increased outputs, in a percent greater than the increase in the outputs, and this
113 is known as decreasing variable return to scale (DRS). These models can be applied according to the quality
114 of the decision-making units whose performance will be measured, either by input-oriented or output-oriented
115 directing (Fahmi, 2009). Input-oriented directing means measuring efficiency by minimizing inputs, i.e., using
116 a possible minimum amount of inputs to produce a certain amount of services or outputs. In order to conduct
117 benchmarking using this type of directing, one of the two models can be used. A model known as CCR-I that
118 assumes constant returns to scale by minimizing inputs, or the model known as BCC-I that presumes variable
119 returns to scale by minimizing outputs. On the other hand, output-oriented directing refers to the measurement
120 of efficiency based on maximizing outputs, i.e., the measurement of the efficiency of decision-making units that
121 aim at producing a larger amount of services or outputs using the available amount of inputs. In this case, one
122 of two models can be adapted. A model known as CCR-O that assumes constant returns to scale by maximizing
123 outputs, or the model known as the BCC-O model that postulates variable returns to scale by maximizing
124 outputs.

125 **5 b) The difference between the models of returns to scale**

126 The first difference that can be derived from the concept of each model is that CCR model theorize that all
127 enterprises operate at their optimum size, either by input-oriented or output-oriented directing. In contrast,
128 BCC model considers the change in the return to scale, which may be decreasing, constant or increasing. On
129 the other hand, the efficiency indicators according to the CCR model are determined by input-oriented directing
130 and output-oriented directing are same. Therefore, the application of one direction is adequate. However, one
131 can find that evaluations often differ according to the type of direction, input-oriented or output-oriented in
132 case of BCC application. In fact, the main reason behind this is that the different assumptions of each model
133 (Marti et al., 2009). In most assessments, an efficient decision unit in one model, i.e., CCR, is also found to
134 efficient in the other model, i.e., BCC model. Hence, this unit of decision meets the requirements of the efficient
135 constant returns to scale, or in other words operates at its optimum size (Fahmi, 2009). Finally, the efficiency
136 measurement results from BCC model represents the net efficiency of the internal processes. While the efficiency
137 measurement results from CCR model refers to the overall efficiency. In this case, both models are compared in
138 order to identify the sources of inefficiency of inefficient units; is it due to inefficient internal processes of these
139 units, due to environmental conditions surrounding the work of these units, or due to both reasons size (Fahmi,
140 2009). c) Advantages of using data envelopment analysis On the basis of the above-mentioned literature related
141 to DEA, one can said that this method represents the best method based on the idea of benchmarking. According
142 to Marti et al. (2009), examples of DEA advantages include: a frontier-based methodology, analyze every decision
143 making unit alone based on the minimum or maximum scale of performance of each unit. The author regarded
144 DEA as a main alternative that can be used to avoid the use of the limits of random cost, due to the fact that
145 DEA is a non-boundary method. DEA is characterized by a random frontier approach that does not require the
146 development of any mathematical formula related to the functional form of the best mathematical formula of the
147 function that links input and output variables. Cooper et al. (2011) provided additional advantages of DEA such
148 as: the definition of decision making unit is characterized by comprehensiveness and flexibility, DEA requires
149 very few assumptions in order to illustrate the relationship between multiple inputs and outputs correlated to
150 decision making units, the relative effectiveness is defined in accordance of DEA avoids the need for other prices
151 or other assumptions of variables' weights, which must be identified in advance and which are presumed to reflect
152 the relative importance of different inputs and outputs. Finally, DEA enables to avoid the need for clarifying the
153 supposed relationships between inputs and outputs. Fahmi (2009) identified the following advantages of DEA:
154 this method combine both internal efficiency, either quantitative or qualitative, and external efficiency. Therefore,
155 the method deals with descriptive variables that are difficult to measure, such as quality, customer satisfaction
156 with services provided, in case of the availability of sufficient as well accurate qualitative data. On the other
157 hand, DEA deals with factors that are beyond the control of the unit to be measured, determines sources and
158 amounts of constant capacity of inputs used by the less efficient units, determines sources and amounts of excess
159 capacity or the possibility of increasing outputs in less efficient units without increasing inputs. Finally, DEA
160 determines the nature of the return on the volume of production at the limits of efficiency (fixed or variable
161 return). d) Limitations of using DEA Despite the above-mentioned features of DEA, this method has its own
162 shortcomings, such as the identification of identify input and output variables, especially in the higher education
163 sector, which includes multiple and overlapped variables. Montoneri (2014) indicated that the basic models of

8 C) SUMMARIZING DATA

164 DEA, i.e., CCR and BCC model, assess the relative efficiency of decisionmaking units based on benchmarking.
165 However, these models do not permit any ranking or classification of the efficiency of these units. Abbott and
166 Doucouliagos (2003) highlighted that the common practice of the DEA method is to utilize inputs that can only
167 be controlled by senior level officials, usually focused on quantitative inputs, thus eliminating the use of input data
168 and intangible outputs, such as experiences, competencies, quality ... etc., in the process of efficiency analysis
169 and evaluation, despite the possible use of such outputs in case of sufficient data availability. For Rosenmayer
170 (2014), the DEA method reveals the efficiency of inputs used to achieve the required outputs, but does not tell
171 how costs can be reduced or how the value of outputs can be increased using different combinations of inputs and
172 used outputs. e) Basic conditions and rules for measuring and comparing performance using the DEA method It
173 was conclude that meeting the conditions of evaluation and comparing efficiency using DEA requires an available
174 set of symmetric and homogenous decision making units in terms of inputs, outputs with a same objective or
175 same output function. Furthermore, in order to get efficiency in the form of numbers, either coefficients or ratios,
176 the inputs as well as the outputs under DEA method should be positive and quantifiable values. Finally, the
177 relationship between inputs and outputs should be linear, so that an increase in input units results increased
178 units of output and vice versa. Rosenmayer (2014) added that the measurement and comparison of the relative
179 efficiency can be done in one of these cases: a time period for the same entity, multiple entities in the same year,
180 time period and multiple cases.

181 Concerning the basic rules required to ensure the successful implementation of DEA models, Manzoni (2007)
182 identified three rules. First, the number of decision making units involved in the study should be greater than
183 or equal to the return of inputs and outputs. That is $S \geq I+O$, where "I" refers to inputs and "O" represents
184 outputs. Second, the number of decision making units involved in the study should be greater than or equal to
185 the sum of inputs and outputs. That is $S \geq 2(I+O)$. the third rule indicates that the number of decision making
186 units with full efficiency based on constant returns to scale should be less than or equal to one third of the decision-
187 making units involved in the study. That is, $Eff DMUs \leq \frac{1}{3}S$, where "I" refers to inputs, "O" represents
188 outputs, S represents the sample size, and $EffDMUs$ stands for decision making units with full efficiency. Among
189 various programs designed specifically to measure the performance of a set of similar decision making units using
190 the DEA method, DEAP Version 2.1 will be used to achieve this goal.

191 IV.

192 6 Assessment of Algerian Higher Educational Institutions Per- 193 formance

194 In order to connect the theoretical framework presented above in the first part of this paper, and to give the
195 study an applied character that proves or rejects the extent to which the DEA models can be used to evaluate
196 performance, this method was applied to evaluate the performance of the Algerian higher education institutions
197 in each academic year. To achievement of this goal, a series of stages were followed.

198 7 a) Identification of input and output indicators

199 The precise identification of the basic input and output group required for the application of data envelopment
200 analysis provides a precise results of performance measurement which facilitate their analysis and subsequent
201 interpretations. For the current study, three inputs and four outputs were selected: Inputs: three inputs were
202 selected, which represents fundamental bases for any educational institution and reflect teaching and learning
203 process. These inputs are:

204 (1) students enrolled in graduation stage, which comprise the total number of students enrolled in the bachelor's
205 degree. (2) students enrolled in postgraduate stage, which consist all students enrolled in Masters and doctorate
206 programs. (3) Permanent instructors (or academic staff), which include the total number of fulltime members
207 from all academic levels. Outputs: two outputs were selected, which represents academic processes and scientific
208 research. These outputs are: (1) degrees' holders of graduates, which include the total number of students in
209 the graduation stage. (2) scientific publications, which refer to the total number of scientific papers published
210 every year in addition to theses, articles presented in conferences and available on the websites. b) Identification
211 of decision making units Decision making units that reflect the sample of the study to which the data analysis
212 method will be applied, a group of similar entities may be set within one year or may be set within several years
213 related to one entity, or may be set as several entities that reflect a period of time. The present study used
214 decision-making units of 16 academic years, including indicators of inputs and output of all institutions of higher
215 education in Algeria.

216 8 c) Summarizing data

217 Table ?? shows a summary of the aggregated data of all higher education institutions in Algeria during 16
218 academic years.

219 Table ???: Indicators of aggregated data of higher education institutions in Algeria for 16 years d) Evaluation
220 of the correct use of DEA method in assessment of higher education institutions in Algeria

221 Since the input and output indicators shown in Table (1) represent positive quantitative values concern the
222 indicators of the total Algerian higher education institutions over 16 successive academic years, from 2000 to 2015,
223 this allows to initially employ the DEA method to evaluate and compare the performance of these institutions in
224 each year. Before inserting the data in Table ?? into the DEAP program and conducting the DEA method, one
225 should ensure that correct selection of the method and the availability of the conditions of the estimation power
226 of the method. Consequently, following steps were followed: i. Assessment of the positive relationship between
227 inputs and outputs

228 In order to ensure a positive correlation between the variables of the study, we should ensure that inputs and
229 outputs of the total number of the higher educational institutions in Algeria, which is already organized in Table
230 (1), are correlated. Since we have quantitative variables, Pearson correlation Coefficients (r) were calculated.
231 Table 2 displays the matrix correlation between inputs and outputs of Algerian higher educational institutions.
232 The findings shown in Table 2 reveal that all correlation coefficients are statistically significant at 0.01. The table
233 shows that there is a strong positive correlation of more than 0.9 (90%) among all input and output variables.
234 This indicates a strong positive correlation between the output variables and the three input variables, i.e., the
235 increase in one or all inputs will inevitably lead to an increase in the quantity of outputs. In addition, there is
236 a strong positive correlation coefficient greater than 0.9 (90%), among the three input variables and among the
237 output variables.

238 ii.

239 Before analyzing the data presented in Table ??, the extent to which the initial rules of DEA method should
240 be investigated. The first rule was met due to the result that the return of inputs and outputs is less than the
241 number of decision making units included in the study:[Ss?I*O] [16 >3*2] [16 > 6]

242 Where O: number of outputs, I: number of inputs, Ss: number of decision making units.

243 Additionally, the second rule was met by reason of the result that the number of decision making units is
244 greater than the twice of the total of inputs and outputs.[Ss? 2(I+O)] [16 >2(3+2)] [16 > 10]

245 On the strength of the previous steps it was concluded that the basic requirements for applying DEA model
246 as well as estimation power rules of DEA are all available, which means thatwe have input and output indicators
247 covering 16 academic years (a time period) for one entity, which means the ability to measure the performance
248 and to compare the achieved performance between years. On the other hand, the values of inputs and outputs
249 are positive. The correlation coefficient between the selected indicators of inputs and outputs are positive, which
250 indicates their homogeneity and the existence of a positive relationship between these indicators. The sample size
251 (number of decision-making units) is greater than the return value of inputs and outputs. Moreover, the sample
252 size (number of decisionmaking units) is three times greater than the values of inputs and outputs. Finally, the
253 sum of outputs and inputs are less than one-third of the number of decisionmaking units.

254 V.

255 9 Results of the Measurement of the Performance of Algerian 256 Higher Education Institutions Using DEA

257 After the data entry of the quantitative values of the input and output variables into the analysis software, DEA
258 method was applied by selecting BCC model using output-oriented directing, in order to measure the performance
259 of Algerian higher education institutions during 16 academic years, constant return to scale technical efficiency
260 (Crste), variable return to scale technical efficiency (Vrste), efficiency scale (ES), return to scale (RS), decision
261 making units (DMU). The results are shown in Table 3. Before the discussion of performance results based on
262 BCC-I and BCC-O models, which we explained in detail in Table 3, we should assess the extent to which the
263 third rule of the DEA method is achieved.

264 EffDMUs ? 1/3*Ss 3 ? 1/3*16 3 < 5.33

265 The third rule was met, which means that the sample size is acceptable because of the number of decision-
266 making units or the number of academic years with full efficiency according to the Vrsteindicator is less than
267 one-third of the academic years in the study. Since all the requirements and rules of the estimation power were
268 met, this makes the performance measurement results obtained using the DEA method accurate and valid. These
269 results will be analyzed, interpreted and compared as follows:VI.

270 Discussion of the Results of the Performance of Algerian Higher Education Institutions b ased on

271 10 BCC-I And BCC-O

272 We first applied the BCC-I model, which takes into account the change in returns to scale in terms of using
273 the least amount of inputs to achieve a certain amount of outputs. Then, we applied the BCC-O model, which
274 assumes a change in returns to scale , in terms of maximizing outputs using the inputs already available. The BCC
275 model gives both directions one value (1.00 or 100%) for a full efficiency academic year, and a value different from
276 one for the academic year that is not efficient. Through the various indicators of relative efficiency and efficiency
277 scale shown in Table ??3), we noted the following: (1) there is a variance in efficiency ratios (performance)
278 of Algerian higher education institutions between academic years either by inputoriented or output-oriented
279 directing. (2) Algerian higher education institutions achieved full efficiency in seven academic years according
280 to the Vrste indicator in both models: ??000, 2001, 2009, 2011, 2013, 2014 and 2015. (3) Higher education

12 CONCLUSION

281 institutions have not achieved full efficiency in nine academic years, neither in terms of Crste or Vrste in both
282 input-oriented and output-oriented directing: ??002, 2003, 2004, 2005, 2006, 2007, 2008, 2010 and 2012. (4)
283 Higher education institutions in 2000, 2001, 2009 and 2015 achieved full efficiency in terms of Vrste and did
284 not achieve the efficiency of the Crste, which confirms that Algerian higher education institutions are subject to
285 change in returns to scale from one academic year to another. (5) The Vrste indicators for inefficient academic
286 years were varied in both models and relatively close to the full efficiency rate (i. e., close to 1.00). (??) Algerian
287 higher education institutions from 2000 to 2010, in addition to 2012 (i. e., 12 academic years), were operating
288 at increased returns to scale, which means that the increase in their annual inputs led to an increase in their
289 annual output by a ratio greater than the rate at which inputs increased. Thus, in these years, the Algerian
290 higher education institution could expand its production. This expansion is in varying proportions between an
291 inefficient academic year and another, as shown in the seventh column and the thirteenth column of Table ??3).
292 (??) Higher education institutions in 2011, 2013 and 2014 achieved full efficiency according to Crste, Vrste, and
293 even efficiency scale of institutions of higher education in these years is 1.00, which is the best three academic
294 years in terms of internal processes efficiency, and the overall efficiency of Algerian higher education institutions,
295 and that the institutions of higher education in these years used all inputs to achieve their actual outputs, and
296 it was not in their interest to expand in 2012 and 2015 and had to maintain their optimum performance. (8)
297 Algeria's higher education institutions are working at a decreasing return to scale in 2015, which means that the
298 increase in output of this year required institutions to use more of its inputs.(??) According to the BCC-I model,
299 the year 2000 was a reference academic year for twice; while 2001 and 2013 were repeated as a reference year for
300 eight inefficient academic years, while 2009 was repeated five times as a reference academic year, while 2011 was
301 repeated only three times. (10) According to the BCC-O model, 2000 was repeated for one time as a reference
302 academic year. While 2001 was repeated eight times. On the other hand, 2009 and 2011 was repeated four times
303 as a reference unit for inefficient academic years. The year 2013 was repeated eight times as a reference year for
304 inefficient academic years. (11) 2014, and 2015 have not been repeated as academic reference year for the rest of
305 the academic years is not efficient according to the both models. The above observations, which we obtained by
306 reading the results of Table 3 can be explained by Table 4, in which we explained the quantities of excess inputs
307 and constant outputs according to inputs minimization or output maximization. For quantities of excess inputs
308 and constant outputs in the academic years 2002 to 2008, as well as 2010 and 2012, Algerian higher education
309 institutions did not achieve full efficiency, in accordance with the goal of minimizing inputs and the goal of
310 maximizing output as shown in Table 4. That is, the possibility of achieving outputs in larger quantities than
311 the actual outputs actually shown in Table 3 by using less inputs than actually used, because higher education
312 institutions operate at increased returns to scale. The excess number of first and second entries represented in
313 the total number of students enrolled in the graduate stage, and the total number of students registered in the
314 post-graduate stage, show that the general policy of higher education in Algeria aims to increase the annual
315 quantities of these two inputs, while ignoring the need to maximize outputs, particularly those of total scientific
316 publications.

317 In our review of the results of the measurement of the quantitative performance of higher education institutions
318 as a unit according to Vrste model in terms of input-oriented or output-oriented directing, we can say that the
319 performance of the higher education institutions in Algeria varies between years. The Algerian higher education
320 institutions were able to use their actual inputs to achieve their actual outputs , i.e., more efficient in 2011,
321 2013 and 2014 and were operating at their optimal size levels. In the years 2000, 2001 and 2009, although they
322 achieved their actual outputs using their actual inputs, institutions were able to expand their output to achieve
323 the possible outcomes through the use of more than the actual amount of inputs. For the rest of the academic
324 years in which higher education institutions did not achieve full efficiency and were able to use fewer inputs
325 to achieve the same outputs or even maximize these outputs, it was clear through the results of excess inputs,
326 constant outputs, that in the period from 2002 to 2010 there was a large surplus in the number of students
327 enrolled in the graduate stage, and in the years 2002, 2004, 2007, students enrolled in the graduate stage, and in
328 the years ??002, ??004, ??007, ??008, ??010, ??012 there were surplus in the number of students enrolled in the
329 postgraduate phase. the third input represented by permanent academic staff, there were surpluses registered in
330 2003 only. In the rest of the years, all quantities were used to achieve the actual output possible to use the same
331 quantities to maximize the amount of output as well.

332 11 VII.

333 12 Conclusion

334 This paper aims to explain the effectiveness of using the method of data envelopment analysis in the evaluation
335 of the performance of Algerian higher education institutions, and despite the use of five indicators of inputs and
336 outputs of quantitative values and limited to reflect only the dimensions of teaching and scientific research only,
337 and does not reflect the service of the community and the quality of scientific research. However, the results of
338 the study are useful to various stakeholders and policy makers in the Algerian higher education sector and in
339 other institutions of higher education in the Arab world, because the results this study revealed will facilitate
340 the process of distribution and allocation of resources in future. It also provides institutions with an ideal way

341 to measure and compare the performance of universities, institutes, colleges, and departments and stand on the reasons for the inefficiency of each of them and try to improve its performance in future. ¹

2

Variables	1	2	3	4	5
Total number of students in graduate stage	1				
Total number of students in postgraduate stage	**9800.	1			
Total number of permanent instructors	**9460.	**9880.1			
Total number of degrees holders	**9330.	**9720.	**9841		
Total number of scientific publications	**9490.	**9870.	**9960.	**9820.	1

Significant at p-value ? 0.01

Source: results of SPSS statistics, V. 22

Figure 1: Table 2 :

3

BCC-O

Figure 2: Table 3 :

4

DMU	Excess inputs	Constant outputs	Excess inputs	Constant outputs
Input 1	Input2	3 In-put	Output	Output

Figure 3: Table 4 :

342

¹© 2017 Global Journals Inc. (US) An Evaluation of the Performance of Higher Educational Institutions using Data Envelopment Analysis: An Empirical Study on Algerian Higher Educational Institutions

343 [Source et al. ()] , : Ddp/ Source , Annuaire Sdpp , Republique Statistique ; Mesrs , Algerienne , Et Populaire
344 . 17/10/2017. <http://www.scimagojr.com/countrysearch.php?country=dz> 2009-2015. (References
345 Références Referencias)

346 [Manzoni (2007)] *A New Approach To Performance Measurement Using Data Envelopment Analysis: Implications for Organisation Behaviour, Corporate Governance and Supply*, Alex Manzoni . March 2007.

348 [Kaftroodya et al. ()] 'Data Envelopment Analysis (DEA): Case Study Of The Iranian Universities'. Hosein
349 Kaftroodya , & Rad , Fatemeh Aminnaserib . *Indian Journal of Fundamental and Applied Life Sciences*
350 2014. 4 p. 1045.

351 [Marti ()] 'Data Envelopment Analysis -Basic Models and their Utilization'. Milan Marti . *Organizacija* 2009. 42
352 (2) p. .

353 [Cooper ()] *Handbook on Data Envelopment Analysis. International Series in Operations Research & Management
354 Science, Second Edition*, William Cooper . 2011. Springer Science+Business Media. 164 p. .

355 [Charnes ()] 'Measuring the efficiency of decision making units'. Charnes . *European Journal of Operational
356 Research* 1978. North-Holland Publishing Company. 2 p. .

357 [Mahmoudm Yasin and Madharm Abdul-Hameed ()] 'Measuring the efficiency of educational institutions performance
358 using Data Envelopment analysis'. *Tikrit Journal of Administrative and Economic Sciences* Mahmoudm
359 Yasin and Madharm Abdul-Hameed (ed.) 2010. 6 (17) p. 167.

360 [Fahmi and Shamil ()] 'Measuring the Relative Efficiency of Government Universities in Saudi Arabia'. Moham-
361 mad Fahmi , Shamil . *Umm Al-Qura University Journal for Educational and Psychological Sciences* 2009. I
362 (1) p. .

363 [Montoneri ()] 'Teaching Improvement Model Designed with DEA Method and Management Matrix'. Bernard
364 Montoneri . *The IAFOR Journal of Education* 2014. 2 (1) p. 129.

365 [Abbott Doucouliagos ()] 'The efficiency of Australian universities: A data envelopment analysis'. Abbott &
366 Doucouliagos . *Economics of Education Review* 2003. 22 p. .

367 [Farrell ()] 'The Measurement of Productive Efficiency'. M J Farrell . *Journal of the Royal Statistical Society,
368 Series A (General), Part III* 1957. 20 (3) p. .

369 [Rosenmayer ()] 'Using Data Envelopment Analysis: a Case of Universities'. Tomá? Rosenmayer . *Review of
370 Economic Perspectives-Národní hospodá?ský Obzor* 2014. 14 (1) p. .

371 [What is performance? ()] *What is performance?*, 2016. The Institute of Chartered Accountants of Scotland
372 (ICAS (Published by the Technical Policy Board of ICAS, P 6)