

GLOBAL JOURNAL OF HUMAN-SOCIAL SCIENCE: E ECONOMICS

Volume 17 Issue 3 Version 1.0 Year 2017

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-460x & Print ISSN: 0975-587X

A Paradigm for Economic Growth in The 21st Century

By Dr. Ordean Olson

Nova Southeastern University

Abstract- This study presents a paradigm for determining economic equilibrium in economic systems. The economic disequilibria curve is introduced and shows the robust correlation between productivity and exchange rates and plots the optimal rate of economic growth and interest rates along the economic disequilibria curve. This study examines the evidence for a productivity based model of the dollar/euro real exchange rate. Cointegrating relationships between the real exchange rate and productivity, real price of oil and government spending are estimated using the Johansen and Stock-Watson procedures. The findings show that for each percentage point in the US-Euro productivity differential there is a three point change in the real dollar/euro valuation. These findings are robust to the estimation methodology, the variables included in the regression, and the sample period.

Keywords: exchange rates, labor productivity and economic growth and equilibrium.

GJHSS-E Classification: FOR Code: 910103

A PARADIGM FOR ECONOMIC GROWTH IN THE 21 CENTURY

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

A Paradigm for Economic Growth in The 21st Century

Dr. Ordean Olson

Abstract- This study presents a paradigm for determining economic equilibrium in economic systems. The economic disequilibrium curve is introduced and shows the robust correlation between productivity and exchange rates and plots the optimal rate of economic growth and interest rates along the economic disequilibrium curve. This study examines the evidence for a productivity based model of the dollar/euro real exchange rate. Cointegrating relationships between the real exchange rate and productivity, real price of oil and government spending are estimated using the Johansen and Stock-Watson procedures. The findings show that for each percentage point in the US-Euro productivity differential there is a three point change in the real dollar/euro valuation. These findings are robust to the estimation methodology, the variables included in the regression, and the sample period.

Keywords: exchange rates, labor productivity and economic growth and equilibrium.

I. INTRODUCTION

The euro greatly depreciated against the dollar during the period 1995-2001. This decline has often been associated with relative productivity changes in the United States and the euro area over this time period. During this time period in particular, average labor productivity accelerated in the United States, while it decelerated in the euro area. Economic theory suggests that the equilibrium real exchange rate will appreciate after an actual or expected shock in average labor productivity in the traded goods sector. Such an equilibrium appreciation may be influenced in the medium term by demand side effects. Thus, productivity increases raise expected income, which leads to an increased demand for goods. However, the price of goods in the traded sector is determined more by international competition. By contrast, in the non-traded sector, where industries are not subject to the same competition, goods prices tend to vary widely and independently across countries.

The work of Harrod (1933), Balassa (1964), Samuelson (1964) and Olson (2012) show that productivity growth will lead to a real exchange rate appreciation only if it is concentrated in the traded goods sector of an economy. Productivity growth that has been equally strong in the traded and non-traded sectors will have no effect on the real exchange rate.

This paper analyses the impact of relative productivity developments in the United States and the

euro area on the dollar/euro exchange rate. This paper then provides evidence on the long-run relationship between the real dollar/euro exchange rate and productivity measures with and without the oil prices and government spending variables. Importantly, to the extent that traders in foreign exchange markets respond to the available productivity data stresses the importance of reliable models.

From the first to the second half of the 1990's, average productivity accelerated in the United States, while it decelerated in the euro area. This relationship has stimulated a discussion on the relationship between productivity and appreciation of the dollar during this time period. Also, of equal importance is the depreciation of the dollar during the early part of the 2000's (United States productivity increased slowly while the euro area productivity increased more rapidly). Bailey and Wells (2001), for instance, argue that a structured improvement in US productivity increased the rate of return on capital and triggered substantial capital flows in the United States, which might explain in part the appreciation of the US dollar during the early part of the 2000's. Tille and Stoffels (2001) confirm empirically that developments in relative labor productivity can account for part of the change in the external value of the US dollar over the last 3 decades. Alquist and Chinn (2002) argue in favor of a robust correlation between the euro area United States labor productivity differential and the dollar/euro exchange rate. This would explain the largest part of the euro's decline during the latter part of the 1990's.

This paper presents the argument that the euro's persistent weakness in the 1995-2001 period and its strength during the 2001-2007 period can be partly explained by taking into consideration productivity differentials. In particular, the study analyses in detail the impact of relative productivity developments in the United States and the euro area on the dollar/euro exchange rate.

a) Productivity Developments and the Real Exchange Rate

The theoretical relationships that link fundamentals to the real exchange rate in the long-run center around the Balassa-Samuelson model, portfolio balance considerations as well as the uncovered (real) interest rate parity condition. According to the Balassa-Samuelson framework, the distribution of productivity gains between countries and across tradable and non-

tradable goods sectors in each country is important for assessing the impact of productivity advances on the real exchange rate. The intuition behind the Balassa-Samuelson effect is rather straight-forward. Assuming, for instance of simplicity, that productivity in the traded goods sector increases only in the home country, marginal costs will fall for domestic firms in the traded-goods sector. This leads (under the perfect competition condition) to a rise in wages in the traded goods sector at given prices. If labor is mobile between sectors in the economy, workers shift from the non-traded sector to the traded sector in response to the higher wages. This triggers a wage rise in the non-traded goods sector as well, until wages equalize again across sectors. However, since the increase in wages in the non-traded goods sector is not accompanied by productivity gains, firms need to increase their prices, which do not jeopardize the international price competitiveness of firms in the traded goods sector Harrod (1933), Balassa (1964) and Samuelson (1964).

Tille, Stoffels and Gorbachev (2001) revealed that nearly two-thirds of the appreciation of the dollar was attributable to productivity growth differentials (using the traded and non traded differentials). However, it is important to note that Engel (1999) found that the relative price of non-traded goods accounts almost entirely for the volatility of US real exchange rates. .

Accordingly, there should be a proportional link between relative prices and relative productivity. Labor productivity, however, is also influenced by demand-side factors, though their effect should be of a transitory

rather than of a permanent nature. In particular, as the productivity increases raise future income, and if consumers value current consumption more than future consumption, they will try to smooth their consumption pattern as argued by (Bailey and Wells 2001). This leads to an immediate increased demand for both traded and non-traded goods. The increase in demand for traded goods can be satisfied by running a trade deficit. The increased demand for non-traded goods, however, cannot be satisfied and will lead to an increase in prices of non-traded goods instead. Thus, demand effects lead to a relative price shift and thereby to a real appreciation.

According to the Balassa-Samuelson model, the distribution of productivity gains is important for assessing the impact of productivity on the real exchange rate. Increases in productivity can lead to an increase in exchange rates and growth of the economy as shown below (productivity 1 to productivity 2 and price vector 1 to price vector 2).With this change the growth rate of the economy increases from A to B and the interest rate decreases from A to B. The increase in the exchange rate is shown as point A to point B (exchange rate 1 to exchange rate 2).The optimum growth and interest rate is at point B. The growth rate can be increased to point B but any further increase in the growth of the national output beyond B will result in a less than optimum rate of interest and economic growth rate. These results are shown in the Economic Disequilibria Curve in Fig. 1.

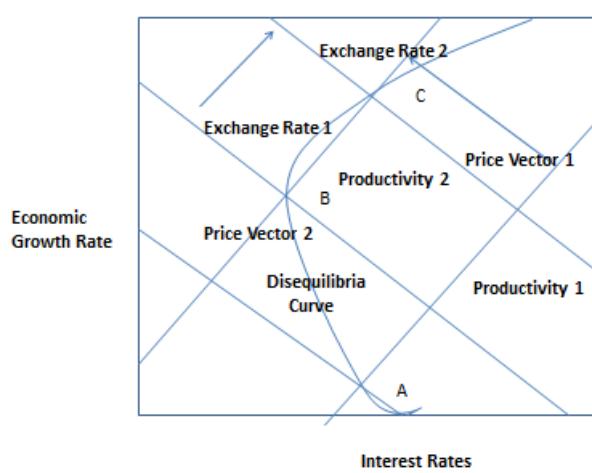


Figure 1: The Economic Disequilibria Curve

II. THE STATIONARY PROCESS OF THE MODEL

This section presents evidence in favor of stable long-run relationships between the real dollar/euro exchange rate, the productivity measure, and the other variables. One model specification was estimated for

the productivity measure. The sample covers the period from 1985 to 2007 but forecasts the productivity measure for the period 2007-2018. The general model includes all or variables discussed above as well as deterministic components.

a) *UnitRoots*

Fuller (1976) and Dickey & Fuller (1979) proposed the augmented Dickey-Fuller (ADF) test for the null hypothesis of a unit root. It is based on the t -

statistic of the coefficient ϕ from an OLS estimation (see table 1). Schmidt & Phillips (1992) propose another group of tests for the null hypothesis of a unit root when a deterministic linear trend is present.

Table 1

ADF Unit Root Tests		Lagged Difference	Critical Values	Test Values	Schmidt & Phillips	
Sample Range					Critical Values	Test Values
US Prod	1985-2008	2	-3.2535	3.13*	-9.9532	18.1**
Euro Prod	1985-2008	2	-4.1978	3.96	-17.3112	18.1**
US GDP	1985-2008	2	-5.4389	3.41	-11.5869	18.1**
Euro GDP	1985-2008	2	-3.2786	3.96***	-11.4467	25.2**
US CPI	1985-2008	2	-5.4851	3.13	-18.5775	25.2**
Euro CPI	1985-2008	2	-3.7792	3.41**	-12.1413	18.1**
US PPI	1985-2008	2	-2.013	2.56***	-5.4734	18.1**
Euro Govt % of GDP	1985-2008	2	-1.0952	1.94**	-15.0563	18.1**
Oil Prices	1985-2008	2	-2.7965	3.96***	-2.5623	25.2**

Significance at the 99%, 95% and 90% levels are noted by ***, ** and * respectively. The Sand L critical values are taken from tables computed by Saikkonen and Lutkepohl

The empirical analysis employs cointegration tests as developed by Johansen (1995). In the present setting, some variables would theoretically be expected to be stationary, but appear to be near-integrated processes empirically. The presence of the cointegration relationships is tested in a multivariate

setting. Table 2 and 3 show the results of the cointegration tests. Over all, the results suggest that it is reasonable to assume a single cointegration relationship between the variables and suggest being viewed as an order of I(1).

Table 2

Cointegration Without Oil	Period	Specification	LR Ratios	Critical Ratios & Test Results
US Prod	1985-2008	2 lags	3.72	16.22***
Euro Prod	1985-2008	2 lags	2.7	12.45**
US GDP	1985-2008	2 lags	2.23	12.53**
Euro GDP	1985-2008	2 lags	3.32	9.14**
US CPI	1985-2008	2 lags	10.59	12.45**
Euro CPI	1985-2008	2 lags	2.48	12.45**

Significance at the 99%, 95% and 90% levels are noted by ***, ** and * respectively. The S and L critical values are taken from tables computed by Saikkonen and Lutkepohl.

Table 3

Cointegration With Oil	Period	Specification	LR Ratios	Critical Ratios & Test Results
US Prod	1985-2008	2 lags	15.34	25.73**
Euro Prod	1985-2008	2 lags	31.68	42.77**
US GDP	1985-2008	2 lags	13.61	16.22***
Euro GDP	1985-2008	2 lags	26.07	30.67***
US CPI	1985-2008	2 lags	17.82	25.73**
Euro CPI	1985-2008	2 lags	16.62	30.67**

Significance at the 99%, 95% and 90% levels are noted by, and respectively. The S and Lcritical values are taken from tables computed by Saikkonen and Lutkepohl

b) Data for Variables

For the period prior to 1999, the real dollar/euro exchange rate was computed as a weighted geometric average of the bilateral exchange rates of the euro currencies against the dollar. In addition, the model was estimated controlling for several other variables, which included US productivity, M2, oil prices, government spending and US GDP. As regards the real price of oil, its usefulness for explaining trends in real exchange rates is documented. For example, Amano and Van Norden (1998a and 1998b) found strong evidence of a long-term relationship between the real effective exchange rate of the US dollar and the oil price. As regards government spending, the fiscal balance constitutes one of the key components of national saving. In particular, Frenkel and Mussa (1985) argued that a fiscal tightening causes a permanent increase in the net foreign asset position of a country, and consequently, an appreciation of its equilibrium exchange rate in the long term. This will occur provided that the fiscal consolidation is considered to have a long-run affect.

c) Explaining the Euro Volatility by Productivity Developments during 1995-2001 and 2001-2007.

This study shows how much of the decline of the euro against the US dollar during the 1995-2001 period can be attributed to relative changes in productivity in the United States and the Euro area. While the estimation covers the period 1985-2007, the following analysis concentrates on two distinct periods.

Period 1 (1995-2001) covers the US dollar appreciation against the euro. Moreover, it encompasses the period during which the productivity revival in the United States has taken place. Over this period, the dollar appreciated by almost 41% against the euro area currency. During the first three years

(1998-2001) of the euro, it depreciated by almost 30% against the US dollar. Figure 5 shows the impact of a change in relative productivity developments over these periods on the equilibrium real exchange rate. The contribution of the relative developments in productivity on the explanation of the depreciation of the euro against the US dollar since 1995 is significant. However, these developments are far from explaining the entire euro decline. Figures 3-4 show the impact of a change in relative US GDP and Euro GDP on the equilibrium dollar/euro real exchange rate.

Period 2 (2001-2007) covers the US dollar depreciation against the euro. Figure 5 also shows the impact of a change in relative productivity developments over these periods on the equilibrium real exchange rate. The impact of productivity on the real exchange rate is significant. The contributions of the oil prices, US GDP, M2 and US government spending on the explanation of the volatility of the euro against the US dollar since 1995 are also shown in chart 1.

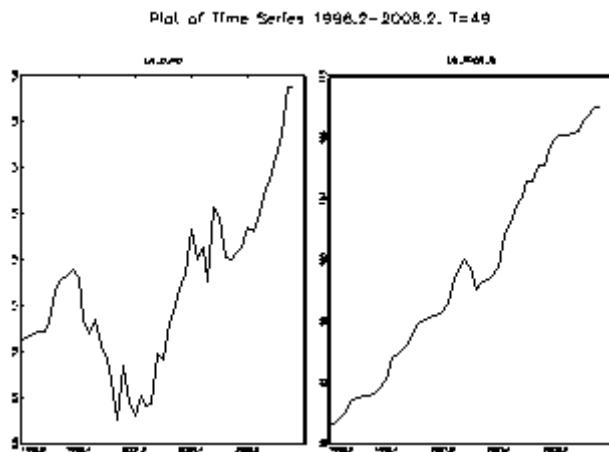


Figure 2: US Prod, USD/EURO Exchange Rate

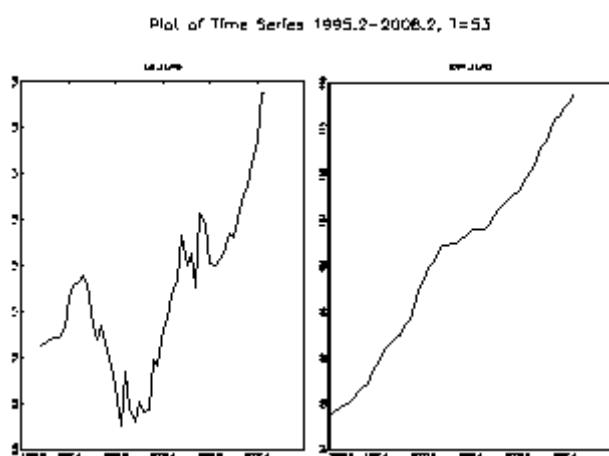


Figure 3: Euro GDP, USD/EURO Exchange Rate

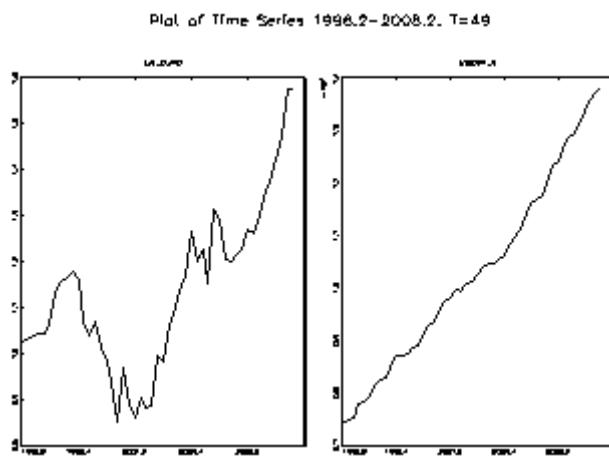


Figure 4: US GDP, USD/EURO Exchange Rate

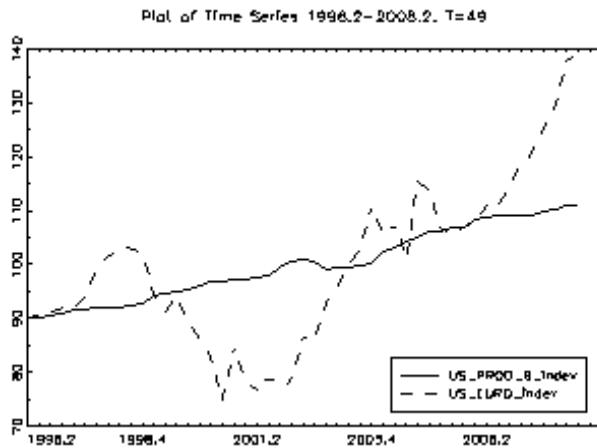


Figure 5: US Prod > Dollar/Euro Exchange Rate

34 d) Estimation and Structural VECM

Lutkepohl (2004) suggests a vector autoregressive and error correction model (neglecting deterministic terms and exogenous variables):

For a set of K times series variables

$$y_t = A_1 Y_{t-1} + \dots + A_p Y_{t-p} + \mu_t$$

Lutkepohl (2004) suggests the VAR model is general enough to accommodate variables with stochastic trends, but not the most suitable type of model if interest centers on the cointegration relations because they do not appear explicitly. He recommends the following VECM form as it is a more convenient model setup for cointegration analysis:

$$y_t = \Pi y_{t-1} + I_1 A_{t-1} + \dots + I_{p-1} A_{t-p+1} + \mu_t$$

e) Deterministic Terms

Lutkepohl (2004) recommends several extensions of the basic model to represent the main characteristics of a data set. It is clear that including deterministic terms, such as an intercept, a linear trend term, or seasonal dummy variables, may be required for a proper representation of the data gathering process. One way to include deterministic terms is simple to add them to the stochastic part,

$$y_t = \mu_t + x_t$$

Here μ_t is the deterministic part and x_t is a stochastic process that may have a VAR or VECM representation.

A VAR representation for y_t is as follows:

$$y_t = v_0 + v_1 t + A_{y-1} + \dots + A_p y_{t-p} + \mu_t$$

A VECM $_{(p-1)}$ representation has the form

$$y_t = v_0 + v_1 t + \Pi y_{t-1} \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta_{t-p+1} + \mu_t$$

f) Exogenous Variables

Lutkepohl (2004) recommends further generalizations to include further stochastic variables in

addition to the deterministic part. A rather general VECM form that includes all these terms is

$$y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta_{t-p+1} + CD_t B_{zt} + \mu_t$$

where the z_t are unmodeled stochastic variables, D_t contains all regressors associated with deterministic terms, and C and B are parameter matrices. The z 's are considered unmodeled because there are no explanatory equations for them in the system.

Estimation of VECM's

Under Gaussian assumptions estimators are ML estimators conditioned on the presample values (Johansen 1988). They are consistent and jointly asymptotically normal under general assumptions,

$$V^{-T} VEC([\Gamma_1 \dots \Gamma_{p-1}] - [\Gamma_1 \dots \Gamma_{p-1}]) \xrightarrow{d} N(0, \Sigma_l)$$

Reinsel (1993) gives the following:

$$VEC(\beta_{k \times r}) \cong N(VEC(\beta_{k \times r}), \{y_{-1}^2 M y_{-1}^2\}^{-1} \phi \{a' \Sigma_{\mu}^{-1} a\}^{-1})$$

Adding a simple two-step (S2S) estimator for the cointegration matrix.

$$y_t - \Pi y_{t-1} - \Gamma x_{t-1} = \Pi_2 y_{t-1}^2 + \mu_t$$

The restricted estimator $\beta_{k \times r}^R$ obtained from $VEC(\beta_{k \times r}^R) = \Pi \Pi + h$, a restricted estimator of the cointegration matrix is

$$B_R = [I_r : B_{k \times r}]$$

g) Impulse Responses

Figures 6 and 7 display the impulse responses of the dollar/euro exchange rate to a one standard deviation change in the US productivity, M2, oil prices, and government spending. The responses are significant at the 95% level. Table 8 (in the appendix) displays the point estimates of the impulse responses of the real exchange rate to the one-standard deviation US productivity shocks. Also note that the results are relatively robust with the individual impulse responses falling within the 5% significant tests. Figure 13 shows that for the exchange rate these shocks have a highly

significant impact over the 10-year time period and the correlation between these impulse responses is high.

Refer to figures 10-17 for the US and Euro productivity differentials. Figure 9 shows the long-run impact of productivity shocks on the dollar/euro real exchange rate. Figure 13 shows the significance of large gaps in the euro and US productivity differentials especially around the years 2000-2001 when the dollar started to depreciate against the euro.

They show that productivity shocks have a very significant long-run impact on the dollar/euro exchange rate. The results follow those of Clarida and Galf (1992). The point estimates in table 8 show that for each

percentage point in the US-Euro area productivity differential there is a three percentage point real change in the dollar/euro valuation. This suggests that fundamental real factors are significant in the long-run fluctuations in real exchange rates.

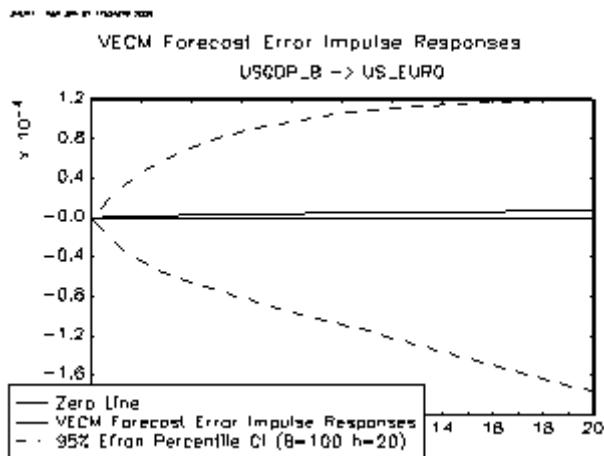


Figure 6: US GDP → US/EURO Exchange Rate

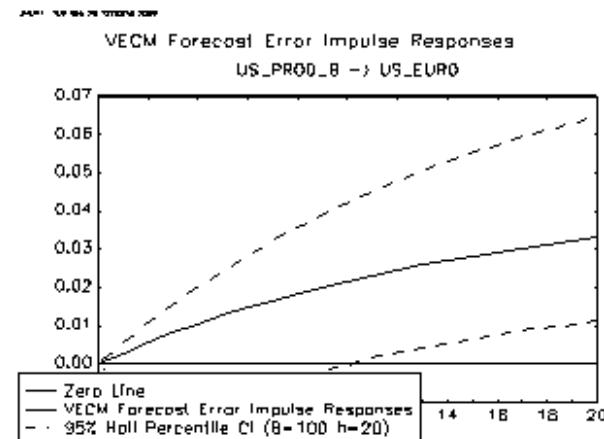


Figure 6: A US Productivity → US/EURO Exchange Rate

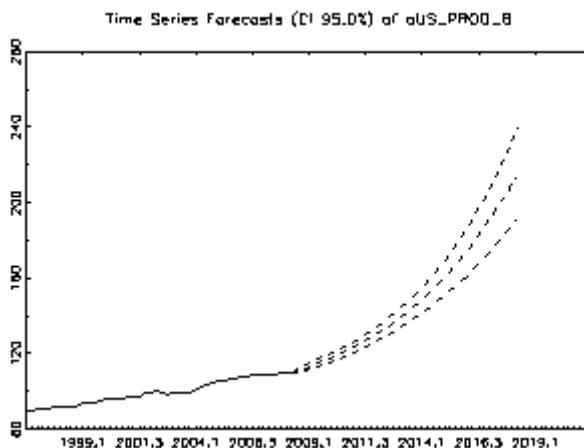


Figure 7: Time Series Forecast- US Productivity

h) Forecast error variance decomposition

Forecast error variance decomposition is a special way of summarizing impulse responses. Following Lutkepohl (2004) the forecast error variance decomposition is based on the orthogonalized impulse responses for which the order of the variables matters. Although the instantaneous residual correlation is small in our subset VECM, it will have some impact on the outcome of a forecast error variance decomposition. The forecast error variance is

$$\delta^2_k(h) = \sum(\Psi_{kl,n}^2 + \dots + \Psi_{kn,n}^2) = \Psi_{kjo}^2 + \dots \Psi_{kh-1}^2$$

The term $(\Psi_{kl,n}^2 + \dots + \Psi_{kn,n}^2)$ is interpreted as the contribution of variable j to the h -step forecast error variance of variables k . This interpretation makes sense if the e_{μ} s can be viewed as shocks in variable i . Dividing the preceding by $\delta^2_k(h)$ gives the percentage contribution of variable j to the h -step forecast error of variable h .

$$\eta(h) = \Psi_{kjo}^2 + \dots \Psi_{kh-1}^2 / \delta^2_k(h)$$

Chart 1 shows the proportion of forecast error in the dollar/euro accounted for by US productivity, government spending, M2, oil prices and US GDP. The US productivity accounts for 28% over the 20 year time interval with a sharp rise of 21% during the first 5 years. This shows that productivity shocks have a very significant short-run impact on the 1 dollar/euro exchange rate while the long-run impact is more transitory in nature. Figures 9 and 13 show the time series forecasts of the system for the years 2007-2011 with 95% forecast intervals indicated by dashed lines. That all observed variables are within the approximately 95% forecast intervals is viewed as an indication of model adequacy for forecasting purposes.

III. APPENDIX

The data for this study was collected from the following sources:

Economic Data Base (FRED) of the Economic Research Department of the *Federal Reserve Bank of St.*

Louis. The PPI and CPI are used as proxies for tradable and nontradable goods. Data Bases and Tables of the Bureau of Labor Statistics.

The source of all of the graphs, figures and charts was the Software JMulTi. available from Lutkepohl, Helmut. *Applied Time Series Econometrics*, 2004, Cambridge University Press.

a) Test for Nonnormality

The following test for residual autocorrelation is known as the Portmanteau test statistic. The null hypothesis of no residual autocorrelation is rejected for large values of Q_h (test statistic). The p -value is relatively large: consequently, the diagnostic tests indicate no problem with the model

Lomnicki (1961) and Jarque & Bera (1987) propose a test for non normality based on the skewness and kurtosis for a distribution. The Jarque & Bera tests in table 7 show some non normal residuals for two variables (oil prices and government spending (u4 and u6).

Lutkepohl (2004) states that if nonnormal residuals are found, this is often interpreted as a model defect. However, much of the asymptotic theory on which inference in dynamic models is based works also for certain nonnormal residual distributions. Still nonnormal residuals can be a consequence of neglected nonlinearities. Modeling such features as well may result in a more satisfactory model with normal residuals. Sometimes, taking into account ARCH effects may help to resolve the problem. With this in mind a multivariate ARCH-LM test was performed. The results shown in Table 6 indicate the p -value is relatively large: consequently, the diagnostic tests indicate no problem with the model.

Table 6

*** Sun, 26 Jul 2009 07:38:32 ***		
PORTMANTEAU TEST ($H_0: R_h = (r_1, \dots, r_h) = 0$)		
tested order:	16	
test statistic:	419.1197	
p-value:	1.0000	
adjusted test statistic:	505.9513	
p-value:	0.9746	
degrees of freedom:	570.0000	
*** Sun, 26 Jul 2009 07:38:33 ***		
LM-TYPE TEST FOR AUTOCORRELATION with 5 lags		
LM statistic:	301.5520	
p-value:	0.0000	
df:	180.0000	
*** Sun, 26 Jul 2009 07:38:33 ***		
TESTS FOR NONNORMALITY		
Reference: Doornik & Hansen (1994)		
joint test statistic:	89.2009	
p-value:	0.0000	
degrees of freedom:	12.0000	
skewness only:	42.7256	
p-value:	0.0000	
kurtosis only:	46.4753	
p-value:	0.0000	
Reference: Lütkepohl (1993), Introduction to Multiple Time Series Analysis, 2ed, p. 153		
joint test statistic:	59.1903	
p-value:	0.0000	
degrees of freedom:	12.0000	
skewness only:	27.2345	
p-value:	0.0001	
kurtosis only:	31.9558	
p-value:	0.0000	
*** Sun, 26 Jul 2009 07:38:33 ***		
JARQUE-BERA TEST		
variable	teststat	p-Value(
u1	1.3867	0.4999
u2	0.6571	0.7200
u3	1.7748	0.4117
u4	35.4963	0.0000
u5	8.6994	0.0129
u6	33.7747	0.0000
*** Sun, 26 Jul 2009 07:38:33 ***		
MULTIVARIATE ARCH-LM TEST with 2 lags		
VARCHLM test statistic:	908.0688	
p-value(chi ²):	0.2642	
degrees of freedom:	882.0000	

Table 7

*** Sun, 26 Jul 2009 07:10:23 ***	
CHOW TEST FOR STRUCTURAL BREAK	
On the reliability of Chow-type tests.	
.., B. Candelon, H. Lütkepohl, Economic	
Letters 73 (2001), 155-160	
sample range:	[1996 Q3,
	2008 Q2], T = 48
tested break date:	1999 Q4
	(13 observations before break)
break point Chow test:	83.7823
bootstrapped p-value:	0.0000
asymptotic chi ² p-value:	0.0000
degrees of freedom:	27
sample split Chow test:	9.3234
bootstrapped p-value:	0.2500
asymptotic chi ² p-value:	0.1562
degrees of freedom:	6
Chow forecast test:	1.3188
bootstrapped p-value:	0.0000
asymptotic F p-value:	0.2388
degrees of freedom:	210, 20

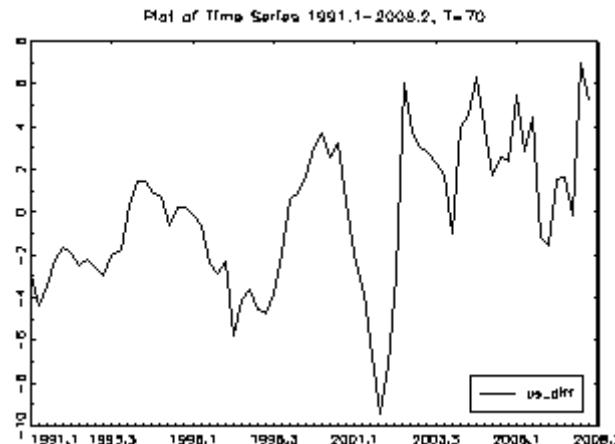


Figure 10: Time Series US Productivity Differentials

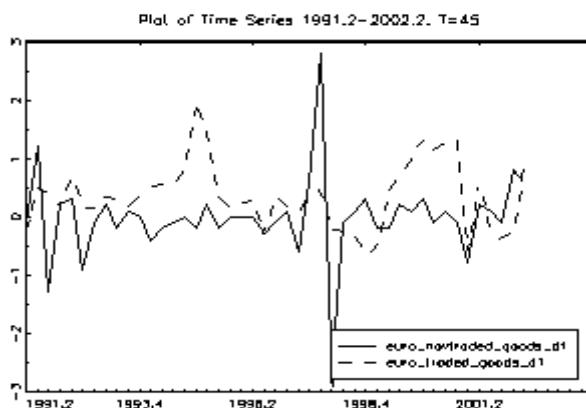


Figure 11: Time Series Euro Traded and Nontraded Goods

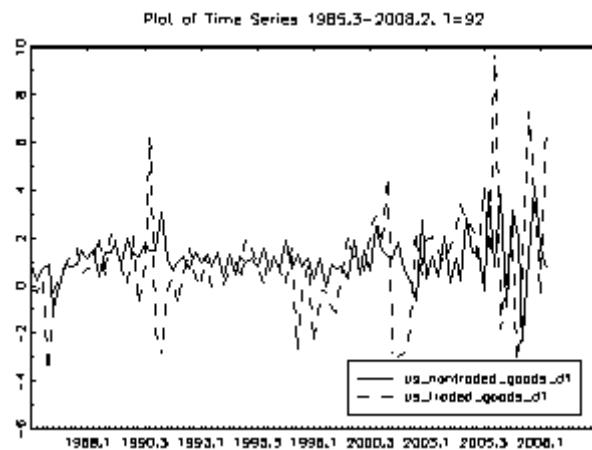


Figure 12: US Traded Goods US Nontraded Goods

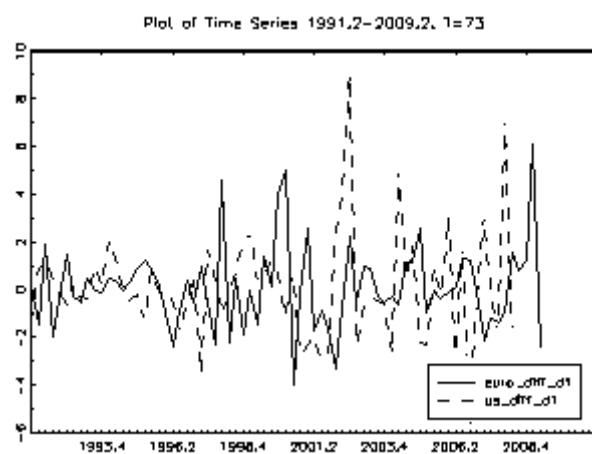


Figure 13: Time Series Euro and US Productivity Differentials

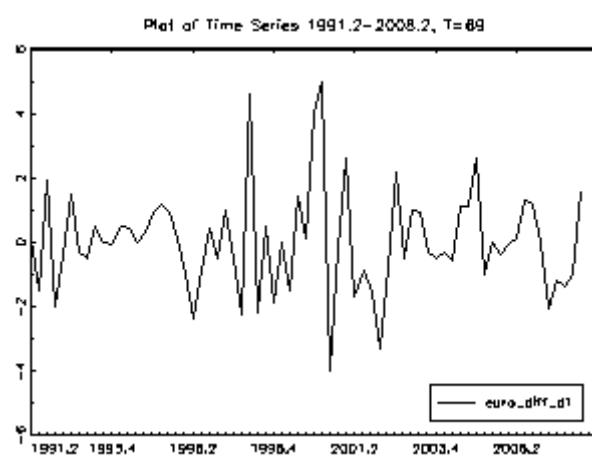


Figure 14: Euro Productivity Differentials

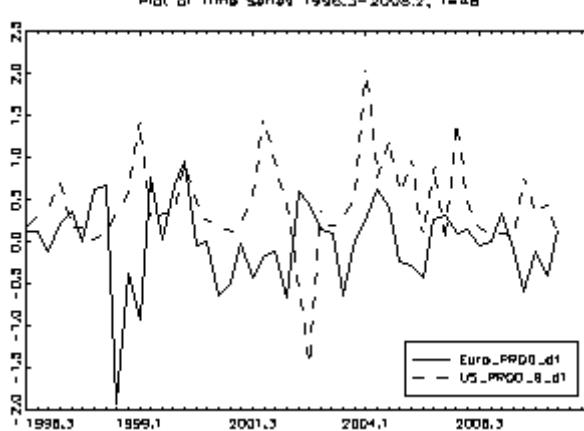


Figure 15: Euro Productivity US Productivity

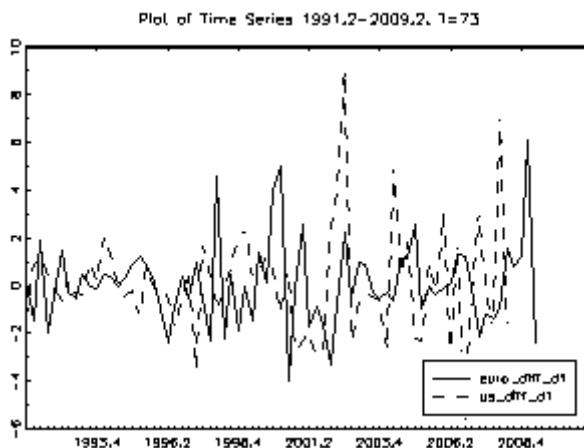


Figure 16: Time Series Euro and US Productivity Differentials

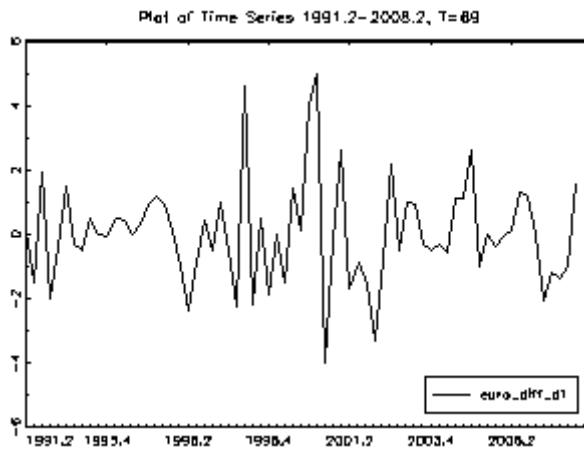


Figure 17: Time Series Euro Productivity Differentials

IV. RESULTS

This paper provides evidence on the long-run relationship between the real dollar/euro exchange rate and productivity measures, controlling for the real price of oil, relative government spending and M2. The results

of this study show evidence of high correlation between productivity shocks and the real us/euro exchange rate and the rate of growth of the US economy. Intuitively, it makes sense that an increase in the US productivity will be followed by an increase in the real euro/dollar exchange rate and the expansion of the US economy.

However, the results imply that the productivity measure can explain only about 27% of the actual amount of depreciation of the euro against the US dollar for the period 1995-2001. This outcome is confirmed by a specification in this study. This study shows that the productivity can explain only about 28% of the appreciation of the euro during the period 1995-2007. Evidently, productivity is not the only variable affecting the real exchange rate in the model specified. The other variables identified also affected the dollar/euro exchange rate. In particular, the surge in oil prices since early 1999 seems to have contributed to the weakening of the euro. The magnitude of the long-run impact of changes in the real price of oil on the dollar/euro exchange rate is certainly significant. Between 1997 and 2001, the model indicates on the average that the equilibrium euro depreciation related to oil prices developments could have been around 20%. These results are based on long-term relationships. Overall, the model is surrounded by significant uncertainty, reflecting the inherent difficulty of modeling exchange rate behavior. While we find that in 1995-2001 the euro traded well below the central estimates derived from these specifications, this uncertainty precludes any quantification of the precise amount of over or under valuation at any point in time. Again, this suggests a very cautious interpretation of the magnitude of over/under valuation. Additional studies are recommendation as additional data is needed for the period 2008-2017 even though this model forecasted projected productivity returns up to the year 2019

REFERENCES RÉFÉRENCES REFERENCIAS

1. Alquist, R. and M. D. Chinn. "Productivity and the Euro-Dollar Exchange Rate Puzzle", *NBER Working Paper*, 8824. as shown in Fig 18-21.
2. Amano, R. A. and .Van Norden (1998b) "Oil Prices and the Rise and Fall of the US Real Exchange Rate", *Journal of International Money and Finance*, 17, 299-316.
3. Bailey, A. S. and S. Wells (2001) "Capital Flows and Exchange Rates" *Bank of England Quarterly Bulletin, Autumn*, 310-318.
4. Balassa, Bela. 1964, "The Purchasing Power Parity Doctrine: A Reappraisal," *Jouornal of Political Economy* 72: 584-96.
5. Bartless, M. S. "Tests of Significance in Factor Analysis", *British Journal of Psychology*. 1950 Vol.3: 77-85.
6. Candelon, B. & Luitkepohl, H. (2001) "On the Reliability of Chow-type Tests for Parameter Constancy in Multivariate Dynamic Models," *Economic Letters* 73: 155- 160
7. Clarida, R. & Gali, J. (1992). "The Science of Monetary Policy and the New Keynesian Perspective," *CEPR Discussion Paper No. 2139*, London Clostermann, J. and B. Schnatz (2006) "The Determinants of the Euro-Dollar Exchange Rate Synthetic Fundamentals and a Non-Existing Currency", *Konjunkturpolitik, Applied Economics Quarterly*, 46, 207-230.
8. De Gregorio, J.A., and Giovannini, H. Wolf (1994) "International Evidence on Tradables and Nontradables Inflation", *European Economic Review*, 38, 1225-1244. Detkin, C.A. Dieppe, J. and L. Oxland (eds): *Practical Issues in Cointegration Analysis*, Oxford, 117-156
9. Doornik, J., and Hansen, H. (1994), "An Omnibus Test for Univariate and Multivariate Normality", *Working Paper*, Nuffield College, Oxford.
10. Engel, E. (1999), "Accounting for US Real Exchange Rate Changes." *Journal of Political Economy*, Vol. 107, No. 3.
11. Fisher, C. (2002) "Real Currency Appreciation in EU Accession Countries: Balassa-[18] Samuelson and Investment Demand", *Deutsche Bundesbank Discussion Paper* 19.02.
12. Frenkel, J. and Mussa, M. (1995) "Asset Markets, Exchange Rates and the Balance of Payments", R. Jones and P. Kenen (eds): *Handbook of International Economics*, 2 North-Holland.
13. Fuller, Wayne A. *Introduction to Statistical Time Series*, Wiley, New York (1976).
14. Harrod, Roy. 1933, *International Economics*. London: James Nisbet and Cambridge University Press.
15. Godfrey, L., (1988). Misspecification Tests in Econometrics. Cambridge University Press, Cambridge.
16. Granger, C. E. J. (1969), "Investigating Casual Relations by Econometric models and Cross-Spectral Methods," *Econometrica* 37: 424-438.
17. Hansen, H. & Johansen, S., (1999), "Some Tests for Parameter Constancy in Cointegrated VAR Models," *Econometrics Journal* 2: 306-333.
18. Jarque, C. & Bera, A. K. (1987). "A Test for Normality of Observations and Regression Residuals," *International Statistical Review*, 55: 163-172
19. Johansen, S. (1995) Likelihood-based Inference in Cointegrated Vector Auto-Regresssive Models, Jorgenson, D. W. and K. J. Stiroh (2000) "Raising the Speed Limit: US Economic Growth in the Information Age", *Brookings Papers on Economic Activity*, I, 125-211
20. King, R. G., Plosser, C. I., Watson, M. W.. (1991). "Stochastic Trends and Economic Fluctuations.", *American Economic Review* 81:819-840.
21. Lominski, Z. A. (1961), "Tests for Departure from Normality in the Case of Linear Stochastic Processes," *Metrica* 4: 37-62. Lutkepohl, Helmut. (1991). "Introduction to Multiple Time Series," Springer-Verlag, Berlin.

22. Lutkepohl, Helmut. *Applied Time Series Econometrics*. 2004, Cambridge University Press.
23. Lutkohl, R. & Reimers, H. E. (1992). "Impulse Response Analysis of Cointegrated Systems." *Journal of Economic Dynamics and Control*. 16: 53-78.
24. 25. Lorenzen, H.P. and N. Thygesen (2000) "The Relation Between the Euro and the Dollar", paper presented at the EPRU Conference, Copenhagen. Maeso-Fernandez, F.C. Osbat and B. Schnatz (2001) "Determinants of the Euro Real Effective Exchange Rate: A. Beer/Peer approach", *ECB Working Paper*, 85.
25. Olson, O. G. (2012). "Productivity Growth and Its Influence on the IDollar/Euro Real Exchange Rate", *Global Journal of Management & Business Research, vol. 12, Issue 18, verson 10.* {30}
26. Olson, O. G. (2006). "Transmission of United States Monetary Policy in the 1970-2004 Period", *Critical Issues for the 21st Century Global Economy*, 2007 edition, p.43-57.
27. Park, J. Y. & Phillips, P. C. B. (1989). "Statistical Inference in Regressions With Integrated Processors: Part 2".*Econometric Theory* 5: 95-131.
28. Pesaran, M. H., R. P. Smith (1999) "Structural Analysis of Cointegrating VAR's", M. [38]McAler and L.Oxley (eds): *Practical Issues in Cointegrating Analysis, Oxford*, 55-89
29. Parzen, E. "Mathematical. Considerations in the estimation of Spectra." *Tecra-Metrics*. Vol. 3 (1961).

Chart 1

*** Fri, 30 Oct 2009 10:11:31 ***

VECM FORECAST ERROR VARIANCE DECOMPOSITION

forecast horizon	Proportions of forecast error in "bUS_EURO" accounted for by:				
	aUS_PROD_B	bUS_EURO	cOil_prices	dm2	g_spend_q
1	0.10	0.90	0.00	0.00	0.00
2	0.11	0.89	0.00	0.00	0.00
3	0.11	0.89	0.00	0.00	0.00
4	0.12	0.88	0.00	0.00	0.00
5	0.13	0.87	0.00	0.00	0.00
6	0.13	0.87	0.00	0.00	0.00
7	0.14	0.86	0.00	0.00	0.00
8	0.14	0.85	0.00	0.00	0.00
9	0.15	0.84	0.00	0.00	0.00
10	0.16	0.83	0.00	0.00	0.00
11	0.16	0.82	0.01	0.01	0.01
12	0.17	0.81	0.01	0.01	0.01
13	0.18	0.80	0.01	0.01	0.01
14	0.19	0.79	0.01	0.01	0.01
15	0.19	0.78	0.01	0.01	0.01
16	0.20	0.76	0.01	0.01	0.01
17	0.21	0.75	0.01	0.01	0.01
18	0.22	0.74	0.02	0.02	0.02
19	0.22	0.72	0.02	0.02	0.02
20	0.23	0.71	0.02	0.02	0.02

Table 8

VECM Orthogonal Impulse Responses

Selected Confidence Interval (CI):
a) 95% Hall Percentile CI ($B=100$ $h=20$)

Selected Impulse Responses: "impulse variable -> response variable"
 time aUS_PROD_B
 ->bus_EURO
 point estimate -0.0174
 CI a) [-0.0310, -0.0021]

1 point estimate	-0.0185
CI a)	[-0.0336, -0.0037]
2 point estimate	-0.0197
CI a)	[-0.0356, -0.0040]
3 point estimate	-0.0209
CI a)	[-0.0381, -0.0044]
4 point estimate	-0.0221
CI a)	[-0.0412, -0.0041]
5 point estimate	-0.0234
CI a)	[-0.0446, -0.0035]
6 point estimate	-0.0248
CI a)	[-0.0482, -0.0027]
7 point estimate	-0.0263
CI a)	[-0.0519, -0.0029]
8 point estimate	-0.0278
CI a)	[-0.0556, -0.0031]
9 point estimate	-0.0294
CI a)	[-0.0594, -0.0036]
10 point estimate	-0.0310
CI a)	[-0.0634, -0.0042]
11 point estimate	-0.0327
CI a)	[-0.0676, -0.0050]
12 point estimate	-0.0345
CI a)	[-0.0720, -0.0059]
13 point estimate	-0.0364
CI a)	[-0.0765, -0.0070]
14 point estimate	-0.0384
CI a)	[-0.0812, -0.0083]
15 point estimate	-0.0405
CI a)	[-0.0862, -0.0085]
16 point estimate	-0.0426
CI a)	[-0.0915, -0.0083]
17 point estimate	-0.0449
CI a)	[-0.0973, -0.0076]
18 point estimate	-0.0472
CI a)	[-0.1034, -0.0069]
19 point estimate	-0.0497
CI a)	[-0.1103, -0.0060]
20 point estimate	-0.0523
CI a)	[-0.1175, -0.0051]

This page is intentionally left blank