

1 Differences in Academic Performance by School District Size for
2 Students in Special Education: A Multiyear, Statewide
3 Investigation

4 John R. Slate¹, Glenn E. Barnes Jr² and George W. Moore³

5 ¹ Cleveland ISD, Sam Houston State University

6 *Received: 10 December 2016 Accepted: 3 January 2017 Published: 15 January 2017*

7

8 **Abstract**

9 In this empirical statewide, multiyear analysis, the extent to which the academic performance
10 of students enrolled in special education was influenced by school district student enrollment
11 was determined. Five years of Texas statewide data on the Texas Assessment Knowledge
12 Skills Reading, Mathematics, Science, Social Studies, and Writing exams were analyzed as a
13 function of three school district sizes: (a) small-size (up to 1,599 students); (b) moderate-size
14 (1,600 to 9,999 students); and (c) large-size (10,000 or more students). Inferential statistical
15 procedures revealed that students in special education who were enrolled in large-size school
16 districts had statistically significantly higher passing rates on all five exams than did students
17 in special education who were enrolled in either moderate-size or small-size school districts for
18 all 5 years. Effect sizes were small.

19

20 **Index terms**— students in special education, school district size, texas assessment of knowledge and skills,
21 passing rates.

22 **1 I. Introduction**

23 school district consolidation and its relationship to student academic performance and cost effectiveness has been
24 and continues to be debated in forums involving school reform. During the 2013 legislative session, Texas State
25 Representative Roland Gutierrez from San Antonio amended an education bill to require the Texas Education
26 Agency to determine whether bigger Texas school districts would be better than the many small Texas school
27 districts in existence (Mathis, 2014). On the opposite end of the spectrum, legislation was proposed to split school
28 districts considered too large to improve performance. Specifically, Texas State Representative Jason Villalba
29 threatened to split the 160,253 student Dallas Independent School District if it did not move faster with reform
30 measures (Mathis, 2013).

31 In an effort to increase both engagement with school and academic achievement, school districts across the
32 United States have created small high schools (Weiss, 2010). Pittman and Haughwout (1987) and Avila (2011)
33 contended that small schools or smaller learning communities have greater student engagement, higher graduation
34 rates, and high extracurricular participation than larger-size high schools. All of these factors contribute to
35 academic success and positive feelings about the school experience. Cotton (1996) identified that small schools
36 produce equal or superior achievement for students than do large schools. Smaller schools benefit students when
37 their family background is atypical (i.e., economically disadvantaged) of what is considered successful (Leithwood,
38 2009). Proponents of small schools have identified several variables that contribute to student success within
39 small school districts. Howley (1996) and Riggan (2013) emphasized the influence of economic status on student
40 academic achievement and its relationship to school size. Riggan (2013) in her Ohio school size study established
41 that economic status had the largest influence on student reading levels. In a study of West Virginia students,
42 Howley (1996) contended that small schools were instrumental in the academic achievement of impoverished
43 students, whereas large schools facilitated the academic achievement of affluent students.

2 A) SCHOOL DISTRICT SIZE AND SPECIAL NEEDS STUDENTS

44 Friedkin and Necochea (1988) also observed the same trends between school district size and socioeconomic
45 status. In their investigation, larger school size was associated with positive effects for affluent students. Bullard
46 (2011) identified in her study of California schools that larger size schools had positive effects on SAT scores,
47 however, a negative influence was documented for overall school achievement. Bullard (2011) determined that
48 every 100 students added to student enrollment in a school resulted in a decline in academic performance. Smaller
49 size, by contrast, was associated with positive effects for students in poverty. In a Washington state study, Wilson
50 (1985) determined that school systems of less than 2,000 pupils had greater proportions of higher achieving
51 schools. Wilson in his study focused on the mathematics achievement of students in relation to school district
52 size. Turner, Camilli, Kroc, and Hoover (1986), in their study of 102 Colorado school systems, documented that
53 elementary pupil achievement decreased as school district enrollment increased.

54 Andrews, Duncombe, and Yinger (2002) identified an optimum size for a high school is between 600-900
55 students, even when student economic background is taken into account. Black (2006) also contended that the
56 arguments in support of large schools, especially in the area of diversified curriculum can be counteracted by
57 small schools, when they restructure their curriculums to suit their strengths. Small schools need to utilize more
58 independent study to compensate for the lack of available course offerings.

59 Researchers (e.g., ??etchum Lenear (2013) compared the performance of Black, Hispanic, and White students
60 in relation to school district size. She determined that school district size had a statistically significant impact on
61 the academic performance of Black, Hispanic, and White students. In another recent investigation of school size,
62 Morris and Slate (2012) analyzed student performance on Advanced Placement and International Baccalaureate
63 exams as a function of high school size. They documented that students enrolled in large-size high schools had
64 statistically significantly higher passing rates than did students enrolled in either small-size or moderate-size high
65 schools.

66 In an analysis of elementary school size and Black students it was established that Black students attending
67 large-size elementary schools outperformed Black students attending small or very-small size elementary schools
68 (Zoda, Combs, & Slate, 2011). Similar results were reported for Black and Hispanic middle school students in
69 a study conducted by Riha, Slate, and Martinez-Garcia (2013). In their study middle school students attending
70 larger-size middle schools statistically significantly outperformed middle school students who attended small-size
71 middle schools on all four academic measures. Lenear (2013), Ketchum and Slate (2012), Barnes and Slate (2014)
72 have generated optimal sizes for school district size in reference to academic performance and administrative
73 costs. The Texas Education Agency recently conducted a study in conjunction with the University of Texas at
74 Dallas Education Research Center identified that cost savings can be expected for consolidations involving small
75 districts, but as the size of the consolidated district increases past 3,200 students, costs are expected to rise, not
76 fall (Gronberg, Jansen, Karakaplan, & Taylor, 2014). In deciding whether or not school consolidation is advisable,
77 factors such as class size, administrative costs, and transportation costs must be considered (Barnes & Slate,
78 2014). When school size is considered in isolation, schools between 500 and 1,000 students are probably operating
79 at peak economic efficiency (Turner & Thrasher, 1970). Sizable potential cost savings may exist by moving from
80 a very small district (500 or fewer pupils) to a district with 2,000 to 4,000 students, both in instructional and
81 administrative costs (Barnes & Slate, 2014).

82 2 a) School District Size and Special Needs Students

83 A literature review was conducted to identify relevant empirical published articles regarding school district
84 size and its influence on the academic achievement of students enrolled in special education. Searches were
85 conducted utilizing the EBSCO Academic Search Complete database and various other print and online sources.
86 Articles were selected based on school district size and student academic performance; if they were peer-reviewed;
87 contained full text; and were produced between 1962 and 2015. The articles selected were focused on topics related
88 to school district size, instructional expenditure ratios, students with programmatic labels, economies of scale,
89 and the demographic changes that are occurring in Texas that influence education.

90 Texas public school enrollment in 2013 was Texas Education Agency guidelines follow federal government
91 guidelines when making the determination of a student's eligibility for special education and related services
92 (Texas Education Agency, 2013). An Admission, Review, and Dismissal committee made up of parents,
93 diagnostician, school administrator, and teachers determine a student's eligibility for special education services.
94 A multidisciplinary team collects and reviews evaluation data in connection with the determination of a student's
95 eligibility (Texas Education Agency, 2013). With the passing of the No Child Left Behind Act, the identification
96 rates of students enrolled in special education services has fallen across the state and nation (Harper, 2013).
97 Dawkins (2010) documented that students enrolled in special education performed better in resources classes
98 in English and inclusion classes for mathematics and science. Students with disabilities performed better
99 academically in schools where fewer poor students were present and the population was smaller in number (United
100 States Department of Education, 1993). Wilson (2010) documented that students enrolled in special education
101 programs consistently achieved better in middle and upper class cohorts than students in low-income cohorts.
102 Student performance by special education class type was also analyzed. Hogan (2013) analyzed test scores of
103 third, fourth, and fifth grade students enrolled in special education to determine the influence of inclusion classes
104 and resource classes for special education students. Students performed better in regular education inclusion
105 classes versus their peers in resource classes (Hogan, 2013). Roach (2005) analyzed the influence of instructional

106 expenditures per student receiving special education services, percentage of students receiving special education
107 services, percentage of students receiving special education services taking the exam, and special education data
108 analysis system rating on students enrolled in special education services to determine their influence on state
109 testing. He determined that economic status was the dominant predictor of success of students enrolled in special
110 education programs. Exemplary campuses in the state of Texas identified students enrolled in special education
111 at lower rates than schools that obtained lower academic ratings. Exemplary campuses also exempted fewer
112 special education students from the Texas academic assessment system test than any of the other accountability
113 ratings (Grubbs, 2000). Campuses identified as low performing in the Texas accountability system had both
114 the highest special education identification rate, and the highest special education exemption rate of the four
115 rating categories in the Texas accountability system (Grubbs, 2000). In support of this study, Driscoll (2012)
116 contended that additional funding for regular and special education programs must be provided so that students
117 have research-based educational programs that foster student achievement and assist in closing the achievement
118 gap.

119 **3 b) Statement of the Problem**

120 Students enrolled in special education are tested and their passing rates count toward the accountability rating of
121 school campuses and school districts (Texas Education Agency, 2014). The Individuals with Disabilities Education
122 Act requires that each public school provide services to eligible students enrolled in special education in the least
123 restrictive School district leaders and policymakers are analyzing the possibility of consolidating districts to
124 provide more efficient and effective services to students in the state of Texas, as the push for accountability
125 increases. In conjunction with these efforts, the influence on the academic achievement of students enrolled in
126 special education will be examined to ensure they meet the requirements of a free appropriate public education
127 under Individuals with Disabilities Education Act. Results of this empirical research investigation will add to
128 the literature on the relationship of school district size and its influence on the academic achievement of students
129 enrolled in special education.

130 **4 c) Purpose of the Study**

131 The purpose of this multiyear-statewide investigation was to ascertain the extent to which differences might be
132 present in the academic performance by school district size for students enrolled in special education in Texas
133 schools. Analyzed herein were the passing rates on the 2006-2007 through the 2010-2011 school year Texas
134 Assessment of Knowledge and Skills (TAKS) English Language Arts, Mathematics, Science, Social Studies, and
135 Writing exams. Given the education budget situation in Texas (and in many other states as well), policymakers
136 and educational leaders need to make decisions, in this case regarding school district size, based upon the best
137 available empirical information.

138 **5 d) Significance of the Study**

139 School district size and its relationship to the academic achievement of students enrolled in special education
140 was the central focus of this study. Findings in this study may provide evidence that school district size is a
141 statistically significant factor in the academic performance of students enrolled in special education. Examining
142 the performance of students enrolled in special education is relevant within the state of Texas because this group
143 constitutes 8.8% of the current student population (Texas Education Agency, 2014). Findings of this study may
144 be used to develop standards and policies that will help increase the academic performance of students identified
145 with programmatic labels.

146 **6 e) Research Questions**

147 Research questions addressed in this study were: (a) What is the difference in TAKS Reading passing rates as
148 a function of school district size for students enrolled in special education?; (b) What is the difference in TAKS
149 Mathematics passing rates as a function of school district size for students enrolled in special education?; (c)
150 What is the difference in TAKS Science passing rates as a function of school district size for students enrolled
151 in special education?; (d) What is the difference in TAKS Social Studies passing rates as a function of school
152 district size for students enrolled in special education?; and (e) What is the difference in TAKS Writing passing
153 rates as a function of school district size for students enrolled in special education? These five research questions
154 were repeated for each of the five years of data analyzed herein. Thus, a total of 25 research questions were
155 addressed in this investigation regarding the relationship of school district size to the academic performance of
156 students enrolled in special education.

157 **7 II. Method a) Research Design**

158 A causal-comparative quantitative research design ??Schenker & Remrill, 2004) was used because it allowed
159 for the testing of intact independent variables that are not amenable to experimental manipulation. Archival
160 data from the Texas Education Agency Academic Excellence Indicator System database were analyzed for this
161 article. The independent variable of school district size had already occurred, along with the passing rates on the

9 III. RESULTS

162 TAKS tests. Accordingly, neither the independent variable nor the dependent variables were amenable to being
163 manipulated.

164 Enrollment and academic data for the ??006-2007, 2007-2008, 2008-2009, 2009-2010, and 2010-2011 school
165 years were extracted from the Texas Education Agency Academic Excellence Indicator System database. Texas
166 Assessment of Knowledge and Skills test score data were analyzed to measure student performance rather than
167 the STAAR (State of Texas Assessment of Academic Readiness) because of difficulties in implementation of the
168 STAAR exam. Passing rate data for students enrolled in special education were obtained, along with school
169 district enrollment numbers.

170 School district size was coded into three separate groups, using the definition provided by Cullen (2012).
171 Enrollment was divided into small-size, moderate-size, and large-size districts (Cullen, 2012). Small-size school
172 districts were identified as containing up to 1,599 students, moderate-size school districts had 1,600-9,999 students,
173 and large-size school districts had 10,000 or more students (Cullen, 2012). These groupings were utilized so that
174 results from this investigation could be compared to Cullen's (2012) study.

175 8 b) Participants and Instrumentation

176 All data were downloaded from the Texas Education Agency Academic Excellence Indicator System for the ??006-
177 2007, 2007-2008, 2008-2009, 2009-2010, and 2010-2011 school years. From this website, the following variables
178 were downloaded: school district student enrollment, student programmatic enrollment in special education, and
179 passing rates on the TAKS Reading, Mathematics, Science, Social Studies, and Writing passing rates. Data on
180 the TAKS Writing test are not available for the 2011-2012 school year because that exam was not administered
181 during that school year.

182 9 III. Results

183 To answer the five research questions previously delineated, a Multivariate Analysis of Variance (MANOVA)
184 procedure was conducted, using school district size as the independent variable and the five TAKS measures as
185 the dependent variables. Prior to conducting the MANOVA procedures for the five school years, its underlying
186 assumptions were checked. Data normality, Wilks' Lambda, Box's Test of Equality of Covariance, and the
187 Levene's Test of Equality of Error Variances were specifically examined. These assumptions were not met,
188 however, Field (2005) contends that the MANOVA procedure is sufficiently robust to be able to withstand these
189 violations. For the 2006-2007 school year, a MANOVA revealed a statistically significant overall difference, Wilks'
190 ? = .94, p = .05, partial ? 2 = .03, a small effect size (Cohen, 1988), as a function of school district size.
191 Following this overall analysis, univariate follow up analysis of variance (ANOVA) procedures were calculated.
192 A statistically significant difference was present for only the TAKS Writing test, F(2, 313) = 5.73, p = .004,
193 partial ? 2 = .04, small effect size (Cohen, 1988). Statistically significant differences were not revealed for the
194 TAKS Reading test, F(2, 313) = 0.50, p = .61; the TAKS Mathematics test, F(2, 313) = 0.61, p = .54; the TAKS
195 Science test, F(2, 313) = 1.16, p = .32; and the TAKS Social Studies test, F(2, 313) = 0.29, p = .74. Average
196 passing rates on the TAKS Reading, Mathematics, Science, and Social Studies exams were congruent for students
197 enrolled in special education across the three school district sizes.

198 For the one statistically significant ANOVA, a Scheffé post hoc procedure was calculated to determine which
199 pair of school district sizes differed. This post hoc procedure revealed that the TAKS Writing passing rates
200 for students enrolled in special education were highest in large-size school districts in comparison to small-size
201 and moderate-size school districts. Moderate-size school districts did not differ in their TAKS Writing passing
202 rates from small-size school districts. Readers are directed to Table 1 for the descriptive statistics for the TAKS
203 passing rates in the 2006-2007 school year by school district size for students enrolled in special education. For
204 the 2007-2008 school year, a MANOVA revealed a statistically significant overall difference, Wilks' ? = .87, p <
205 .001, partial ? 2 = .066, a medium effect size (Cohen, 1988), in overall student performance by school district
206 size. Following the overall analysis, follow-up univariate ANOVA procedures were calculated. A statistically
207 significant difference was yielded on the TAKS Science test, F(2, 370) = 4.05, p = .018, partial ? 2 = .021, small
208 effect size; and on the TAKS Writing test, F(2, 656) = 13.41, p < .001, partial ? 2 = .068, medium effect size
209 (Cohen, 1988). Statistically significant differences were not revealed for the TAKS Reading test, F(2, 370) =
210 0.01, p = .99; the TAKS Mathematics test, F(2, 370) = 2.38, p = .09; and the TAKS Social Studies test, F(2,
211 370) = .624, p = .54. Students in special education had similar average passing rates on the TAKS Reading,
212 Mathematics, and Social Studies exams across the three school district sizes.

213 Concerning the two statistically significant ANOVAs, Scheffé post hoc procedures were calculated to determine
214 which pair of school district sizes differed. For the TAKS Science test, passing rates for students enrolled in special
215 education were highest in large-size school districts in comparison to small-size school districts. No differences
216 were observed on the TAKS Science exam between large-size districts and moderate-size districts or small-size
217 and moderate-size school districts. Students in special education had higher passing rates on the TAKS Writing
218 test in moderate-size school district in comparison to smallsize school districts. Students in special education had
219 higher passing rates on the TAKS Writing exam in largesize school districts than in small-size school districts.
220 Readers are directed to Table 2 for the descriptive statistics for the TAKS passing rates in the 2007-2008 school
221 year by school district size for students enrolled in special education. For the 2008-2009 school year, a MANOVA

222 yielded a statistically significant overall difference, Wilks' $\lambda = .85$, $p < .001$, partial $\eta^2 = .079$, a medium effect
223 size (Cohen, 1988), on the TAKS exams as a function of school district size. Following the overall analysis,
224 followup univariate ANOVA procedures were calculated. A statistically significant difference was yielded on the
225 TAKS Mathematics test, $F(2, 314) = 4.86$, $p = .008$, partial $\eta^2 = .03$, small effect size; on the TAKS Science
226 test, $F(2, 314) = 4.93$, $p = .008$, partial $\eta^2 = .03$, small effect size; on the TAKS Social Studies test, $F(2, 314)$
227 $= 3.20$, $p = .04$, partial $\eta^2 = .02$, small effect size; and on the TAKS Writing test, $F(2, 314) = 17.38$, $p <$
228 $.001$, partial $\eta^2 = .10$, medium effect size (Cohen, 1988). A statistically significant difference was not present
229 on the TAKS Reading test, $F(2, 314) = 0.75$, $p = .47$. Average passing rates on the TAKS Reading exam were
230 congruent across the three school district sizes for students enrolled in special education.

231 For each of the four statistically significant ANOVAs, Scheffé post hoc procedures were calculated to determine
232 which pair of school district sizes differed. The average TAKS Mathematics passing rates for students in special
233 education were higher in large-size school districts in comparison to small-size school districts. Moderate-size
234 school districts also had higher average passing rates than small-size school districts. Higher average TAKS
235 Science passing rates were present for students in special education in large-size school districts than in small-
236 size school districts. No differences were observed in Science passing rates between moderate-size and large-size
237 school districts or between small-size and moderate-size school districts. With respect to the TAKS Writing
238 passing rates, students in large-size school districts had higher averages than moderate-size and small-size school
239 districts. Students in small-size school districts also differed in their TAKS Writing passing rates in comparison
240 to moderate-size school districts. No differences were observed in Social Studies passing rates between small-size,
241 moderate-size, and large-size school districts. Readers are directed to Table 3 for the descriptive statistics for the
242 TAKS passing rates in the 2008-2009 school year by school district size for students enrolled in special education.
243 For the 2009-2010 school year, a statistically significant overall difference was revealed, Wilks' $\lambda = .93$, $p < .001$,
244 partial $\eta^2 = .038$, a small effect size (Cohen, 1988), on the TAKS exams as a function of school district size.
245 Following the overall analysis, followup univariate ANOVA procedures were calculated. A statistically significant
246 difference was yielded on the TAKS Mathematics test, $F(2, 502) = 5.02$, $p = .007$, partial $\eta^2 = .02$, small effect
247 size; on the TAKS Science test, $F(2, 502) = 2.97$, $p = .052$, partial $\eta^2 = .012$, medium effect size; and on the
248 TAKS Writing test, $F(2, 502) = 8.79$, $p < .001$, partial $\eta^2 = .034$, small effect size (Cohen, 1988). A statistically
249 significant difference was not present on either the TAKS Reading test, $F(2, 502) = 1.19$, $p = .31$; or the TAKS
250 Social Studies exam, $F(2, 502) = 2.05$, $p = .13$. Students enrolled in special education, regardless of school district
251 student enrollment, had similar average passing rates on the TAKS Reading and Social Studies exams.

252 Concerning the three statistically significant ANOVAs, Scheffé post hoc procedures were calculated to
253 determine which pair of school district sizes differed. For the TAKS Mathematics passing rates, students in
254 special education who were enrolled in large-size school districts had higher passing rates than in small-size school
255 districts. No differences were observed in TAKS Mathematics passing rates between small-size and moderate-size
256 school districts and between moderate-size and large-size school districts. Average passing rates on the TAKS
257 Science exam were commensurate for the small-size, moderate-size, and large-size school districts. With respect
258 to the TAKS Writing passing rates, students in special education in large-size school districts had higher passing
259 rates than small-size school districts. The TAKS Writing passing rates for moderate-size school districts were
260 lower than large-size school districts. Small-size school districts did not differ in their TAKS Writing passing rates
261 from moderate-size school districts. Delineated in Table 4 are the descriptive statistics for the TAKS passing
262 rates in the 2009-2010 school year by school district size for students enrolled in special education. For the
263 2010-2011 school year, a statistically significant overall difference was yielded, Wilks' $\lambda = .94$, $p < .001$, partial η^2
264 $= .029$, a small effect size (Cohen, 1988), on the TAKS exams as a function of school district size. Following the
265 overall analysis, follow-up univariate ANOVA procedures were calculated. A statistically significant difference
266 was yielded on the TAKS Social Studies test, $F(2, 673) = 6.35$, $p = .002$, partial $\eta^2 = .02$, small effect size;
267 and on the TAKS Writing test, $F(2, 673) = 6.82$, $p = .001$, partial $\eta^2 = .02$, small effect size (Cohen, 1988).
268 A statistically significant difference was not present on the TAKS Reading exam, $F(2, 673) = 0.61$, $p = .54$;
269 the TAKS Mathematics exam, $F(2, 673) = 1.52$, $p = .22$; and the TAKS Science test, $F(2, 673) = 1.24$, $p =$
270 $.29$. Average passing rates were congruent for students enrolled in special education, regardless of school district
271 student enrollment, on the TAKS Reading, Mathematics, and Science exams.

272 For the two statistically significant ANOVAs, Scheffé post hoc procedures were calculated to determine which
273 pair of school district sizes differed. Students enrolled in special education had higher average passing rates
274 on the TAKS Social Studies exam in small-size school districts than in moderate-size school districts. Higher
275 average TAKS Social Studies passing rates were present in large-size school districts than in moderate-size school
276 districts. Average passing rates on the TAKS Social Studies exam did not differ between small-size and large-size
277 school districts. With respect to TAKS Writing passing rates, students in large-size school districts had higher
278 averages than in both small-size and moderate-size school districts. Small-size and moderate-size school districts
279 did not differ in their TAKS Writing passing rates. Readers are directed to Table 5 for the descriptive statistics
280 for the TAKS passing rates in the 2010-2011 school year by school district size for students enrolled in special
281 education.

282 **10 IV. Discussion**

283 In this empirical analysis, the extent to which differences were present in the academic achievement of students
284 enrolled in special education as a function of school district student enrollment was addressed. Five years of
285 Texas statewide data for the 2006-2007 through 2010-2011 school years were obtained and analyzed. A summary
286 of the results for the five school years and the extent to which trends were present will now be discussed.

287 **11 a) Small-size School Districts**

288 For the 2006-2007 school year, school district size was not related to the academic achievement of students who
289 were enrolled in special education. In the 2007-2008 school year, students in special education and who were
290 enrolled in small-size school districts had lower average passing rates on the TAKS Science exam than their peers
291 who were enrolled in large-size school districts. During the same school year, small-size school districts also had
292 lower passing rates on the TAKS Writing exam than either moderate-size or large-size school districts. Students
293 enrolled in special education in small-size school districts had lower passing rates on the TAKS Mathematics
294 and Writing exams than their peers in either moderate-size or large-size school districts in the 2008-2009 school
295 year. Also in the 2008-2009 school year, small-size school districts had lower passing rates than large-size school
296 districts on the TAKS Science exam. During the 2009-2010 school year, students enrolled in special education
297 in small-size school districts had lower passing rates on the TAKS Mathematics exam than students in large-size
298 school districts. Small-size school districts also had lower average passing rates on the TAKS Writing exam
299 than moderate-size and large-size school districts. Students in special education who were enrolled in small-size
300 school districts had lower passing rates on the TAKS Reading exam than their peers in moderate-size school
301 districts. Similarly, small-size school districts had lower average passing rates on the TAKS Writing exam than
302 did large-size school districts.

303 **12 b) Moderate-size School Districts**

304 Moderate-size school districts did not differ in their passing rates from either the small-size or large-size school
305 districts on any of the TAKS exams in the 2006-2007 school year. Students in special education who were enrolled
306 in moderate-size school districts during the 2007-2008 school year had higher average passing rates than small-
307 size school districts but lower average passing rates than large-size school districts on the TAKS Writing exam.
308 During the 2008-2009 school year, moderate-size school districts had higher average passing rates than small-size
309 school districts on the TAKS Mathematics and Writing exams. Moderate-size school districts had lower average
310 passing rates than large-size districts on the TAKS Writing exam during the 2008-2009 and 2009-2010 school
311 years. In the 2010-2011 school year, moderate-size school districts had lower passing rates on the TAKS Reading
312 and Mathematics exams than large-size school districts. Moderate-size school districts had higher passing rates
313 than small-size school districts on the TAKS Reading exam.

314 **13 c) Large-size School Districts**

315 Students in special education who were enrolled in large-size school districts had higher average passing rates
316 on the TAKS Reading exam than did their peers in moderate-size school districts during the 2006-2007 school
317 year. Large-size school districts had higher passing rates on the TAKS Science and TAKS Writing exams than
318 did small-size school districts in the 2007-2008 school year. They also had higher average passing rates on the
319 TAKS Reading test than moderate-size school districts. Large-size school districts had higher average passing
320 rates on the TAKS Mathematics, Science, and Writing exams than small-size school districts for the 2008-2009
321 school year. They also had higher passing rates on the TAKS Writing exam than their peers in moderate-size
322 school districts. In the 2009-2010 school year, large-size school districts had higher average passing rates on
323 the TAKS Mathematics and Writing tests than small-size school districts. Large-size districts also had higher
324 passing rates on the TAKS Writing test than moderate-size school districts. Higher passing rates were present for
325 large-size school districts in comparison to moderate-size school districts on the TAKS Reading and Mathematics
326 exams during the 2010-2011 school year. Large-size school districts also had higher average passing rates on the
327 TAKS Mathematics test than small-size school districts for the 2010-2011 school year. Presented in Table 6 is
328 the summary of the statistical analyses for the TAKS measures of students enrolled in special education across
329 the 2006-2007 through the 2010-2011 school years.

330 **14 d) Implications for Policy and Practice**

331 Based upon the five years of data analyzed, implications are present for policy and for practice. In this empirical
332 investigation, statistically significant differences were present in the academic achievement as a function of school
333 district size for students who were enrolled in special education. With the passing rates of students in special
334 education who were enrolled in small-size school districts being lower than the passing rates for students in special
335 education who were enrolled in either moderate-size or large-size school districts, the possibility of school districts
336 being consolidated merits consideration.

337 Students in special education had higher average passing rates on the TAKS Reading, Mathematics, Science,
338 Social Studies, and Writing exams in large-size school districts than in either small-size or moderate-size school

339 districts. With the rise in the academic expectations for students enrolled in special education in Texas schools,
340 state policymakers and educational leaders should consider the results delineated herein regarding the relationship
341 of school district size to the academic performance of students in special education. Students enrolled in special
342 education had their lowest passing rates in small-size school districts. Small-size school districts had the lowest
343 passing rates for students in special education on the TAKS Reading, Mathematics, Science, and Social Studies
344 tests for four of the five years analyzed. In 19 of the 25 TAKS passing rates calculated, smallsize school districts
345 had the lowest average passing rates. School district consolidation may merit discussion as a possible remedy for
346 districts that are not meeting Texas state academic standards. Policymakers should consider the facts presented
347 in this research when new bills are introduced related to school district reconstitution and school district size.

348 **15 e) Suggestions for Future Research**

349 Because the focus of this study was only on school district size for students enrolled in special education, several
350 suggestions for future research are provided. First, researchers are encouraged to examine the issue of school
351 district size for other groups of students such as English Language Learners, students in poverty, and at-risk.
352 Second, because the data that were analyzed in this investigation were aggregated at the school district level,
353 researchers are encouraged to obtain and analyze individual student level data. Analyses at the individual
354 student level would permit a more refined analysis than was possible in this study. Third, Texas changed its
355 state-mandated assessment from the TAKS to the State of Texas Assessment of Academic Readiness (STAAR).
356 Due to problems in the implementation of STAAR, data from its administration were not analyzed in this
357 investigation. Researchers are encouraged to extend this investigation by examining results of the STAAR, once
358 it has been properly implemented.

359 Fourth, no attempt was made in this investigation to determine any causal factors in the relationship of school
360 district size with student performance. Researchers are encouraged to delve more deeply into any underlying
361 mechanisms that might explain why large-size school districts have higher passing rates than do small-size
362 school districts. Finally, researchers are encouraged to conduct mixedmethods studies to obtain a more in-
363 depth understanding of the relationship between school district size and the academic performance of students
364 enrolled in special education.

365 **16 V. Conclusion**

366 In conclusion, the purpose of this research investigation was to determine the extent to which school district size
367 was related to the academic achievement of students who were enrolled in special education. Specifically analyzed
368 were the statemandated assessments in reading, mathematics, science, social studies, and writing for a 5-year
369 period. Higher average passing rates were typically present for students in special education who were enrolled in
370 large-size school districts than for either small-size or moderate-size school districts. Accordingly, policymakers
371 and educational leaders are encouraged to use these results in their deliberations on school district consolidation.

372 ¹

¹Differences in Academic Performance by School District Size for Students in Special Education: A Multiyear, Statewide Investigation

1

School District Size	n	of	M	SD
	school			
	dis-			
Reading				
Up to 1,500 students	28		71.64	10.77
1,600 to 9,999 students	198		70.89	11.67
10,000 or more students	90		72.30	10.04
Mathematics				
Up to 1,500 students	28		56.39	16.89
1,600 to 9,999 students	198		57.79	13.61
10,000 or more students	90		59.30	12.62
Science				
Up to 1,500 students	28		45.32	21.51
1,600 to 9,999 students	198		50.06	18.14
10,000 or more students	90		51.03	14.40
Social Studies				
Up to 1,500 students	28		70.54	17.64
1,600 to 9,999 students	198		71.09	14.71
10,000 or more students	90		72.31	10.02
Writing				
Up to 1,500 students	28		76.32	13.65
1,600 to 9,999 students	198		76.02	14.05
10,000 or more students	90		81.38	8.17

Figure 1: Table 1 :

2

School District Size	n	of	M	SD
	school			
	districts			
Reading				
Up to 1,500 students	61		73.70	13.07
1,600 to 9,999 students	219		74.00	12.62
10,000 or more students	93		74.02	10.42
Mathematics				
Up to 1,500 students	61		57.48	16.16
1,600 to 9,999 students	219		62.01	15.13
10,000 or more students	93		61.75	12.26
Science				
Up to 1,500 students	61		34.34	15.17
1,600 to 9,999 students	219		37.87	15.89
10,000 or more students	93		41.42	13.85

Figure 2: Table 2 :

3

School District Size	n	of	M	SD
	school			
	dis-			
Reading				
Up to 1,500 students	41		75.17	13.61
1,600 to 9,999 students	181		76.62	11.01
10,000 or more students	95		77.66	9.81
Mathematics				
Up to 1,500 students	41		60.29	13.37
1,600 to 9,999 students	181		66.48	14.23
10,000 or more students	95		68.01	11.83
Science				
Up to 1,500 students	41		39.44	14.74
1,600 to 9,999 students	181		44.81	16.59
10,000 or more students	95		48.58	14.76
Social Studies				
Up to 1,500 students	41		68.73	16.68
1,600 to 9,999 students	181		69.46	14.66
10,000 or more students	95		73.68	11.78
Writing				
Up to 1,500 students	41		70.71	16.51
1,600 to 9,999 students	181		76.49	14.68
10,000 or more students	95		84.05	7.43

Figure 3: Table 3 :

4

School District Size	n	of school districts	M	SD
Reading				
Up to 1,500 students	153	64.32	13.28	
1,600 to 9,999 students	255	63.67	13.35	
10,000 or more students	97	66.08	12.29	
Mathematics				
Up to 1,500 students	153	50.10	15.04	
1,600 to 9,999 students	255	52.82	15.06	
10,000 or more students	97	56.09	12.66	
Science				
Up to 1,500 students	153	49.92	16.47	
1,600 to 9,999 students	255	52.87	16.00	
10,000 or more students	97	54.60	13.34	
Social Studies				
Up to 1,500 students	153	76.08	13.79	
1,600 to 9,999 students	255	76.64	12.09	
10,000 or more students	97	79.12	8.88	
Writing				
Up to 1,500 students	153	65.33	18.51	
1,600 to 9,999 students	255	67.47	15.83	
10,000 or more students	97	73.74	9.63	

Figure 4: Table 4 :

5

School District Size	n	of school districts	M	SD
Reading				
Up to 1,500 students	310	75.12	10.84	
1,600 to 9,999 students	266	74.24	10.49	
10,000 or more students	100	75.22	8.73	
Mathematics				
Up to 1,500 students	310	66.26	12.69	
1,600 to 9,999 students	266	66.12	11.80	
10,000 or more students	100	68.43	9.02	
Science				
Up to 1,500 students	310	59.76	15.03	
1,600 to 9,999 students	266	58.19	13.21	
10,000 or more students	100	60.16	9.98	
Social Studies				
Up to 1,500 students	310	78.05	12.64	
1,600 to 9,999 students	266	74.89	11.06	
10,000 or more students	100	78.26	7.89	
Writing				
Up to 1,500 students	310	71.09	15.85	
1,600 to 9,999 students	266	72.90	12.99	
10,000 or more students	100	76.95	8.31	

Figure 5: Table 5 :

6

TAKS Measure	Statistically Significant Differences Present	Lowest Performing School District Size	Frequency of Small Effect Size
Reading	0/5 = 0%	Moderate	0/5 = 0%
Mathematics	2/5 = 40%	Small	2/5 = 40%
Science	3/5 = 60%	Small	3/5 = 60%
Social Studies	2/5 = 40%	Small	2/5 = 40%
Writing	5/5 = 100%	Small	5/5 = 100%

Figure 6: Table 6 :

373 [Morris and Slate ()] 'Advanced Placement and International Baccalaureate performance differences as a function
374 of gender and school size'. J Morris , J R Slate . *The American Clearinghouse on Educational Facilities Journal*
375 2012. 3 (1) p. .

376 [Driscoll ()] *An examination of the achievement gap between special education students and their non-disabled peers*, J L Driscoll . UMI No. 1282352227. 2012. (Available from ProQuest Dissertations & Theses Full Text)

378 [Grubbs ()] *An investigation of special education population trends in Texas campuses rated Exemplary*. Available
379 from ProQuest Dissertations and Theses, B L Y Grubbs . 2000.

380 [Gronberg et al. ()] *Anticipating the consequences of school district consolidation in major metropolitan areas*.
381 University of Texas at Dallas Education Research Center and the Texas Education Agency, T Gronberg
382 , D Jansen , M Karakaplan , L Taylor . http://tea.texas.gov/Reports_and_Data/Program_Evaluations/Research_Reports/Program_Evaluation_Research_Reports/ 2014.

384 [Available from ProQuest Dissertations and Theses database] Available from ProQuest Dissertations and Theses
385 database, UMI No. 3531774.

386 [Riggen ()] Available from ProQuest Dissertations and Theses Full Text, V Riggen . UMI No. 1430500331. 2013.
387 (School size and student achievement)

388 [Beyond the report card: The multiple dimensions of secondary school performance of students with disabilities ()]
389 *Beyond the report card: The multiple dimensions of secondary school performance of students with disabilities*,
390 <http://files.eric.ed.gov/fulltext/ED365088.pdf> 1993. United States Department of Education.

391 [Weiss et al. ()] 'Big school, small school: (Re) testing assumptions about high school size, school engagement
392 and mathematics achievement'. C C Weiss , B V Carolan , E Baker-Smith . 10.1007/s10964-009-9402-3.
393 *Journal of Youth & Adolescence* 2010. 39 (2) p. .

394 [Zoda et al. ()] 'Black student performance and elementary school size: A 5-year statewide investigation. The
395 American Clearinghouse of'. P F Zoda , J P Combs , J R Slate . <http://www.acefacilities.org/Search.aspx> *Educational Facilities Journal* 2011. 2 (1) p. .

397 [Schenker and Rumrill ()] 'Causalcomparative research designs'. J Schenker
398 Texas Education Agency. , J Rumrill
399 Texas Education Agency. . http://tea.texas.gov/acctres/comp_annual_index.html 2014 comprehensive biennial report on Texas public schools, 2004. 2014a. 2014b. 21 p. . (Texas Education Agency.)

401 [Howley ()] 'Compounding disadvantage: The effect of school and district size on student achievement in West
402 Virginia'. C Howley . *Journal of Research in Rural Education* 1996. 12 (1) p. .

403 [Wilson ()] 'Differences in elementary math instruction and achievement among districts of varying size in the
404 state of Washington'. S M Wilson . *Research in Rural Education* 1985. 3 (2) p. .

405 [Enrollment in Texas public schools ()] *Enrollment in Texas public schools*, <http://tea.texas.gov/student.assessment/taks/plds/> 2014c. 2013-2014. 2014d. (TAKS performance-level descriptors)

407 [Field ()] A Field . *Discovering statistics using SPSS*, (Thousand Oaks, CA) 2005. Sage. (2nd ed.)

408 [Pittman and Haughwout ()] 'Influence of high school size on dropout rate'. R B Pittman , P Haughwout .
409 *Education Evaluation and Policy Analysis* 1987. 9 p. .

410 [Turner and Thrasher ()] *Institute for Educational Management*, C C Turner , J M Thrasher . 1970. San Diego,
411 CA. 043 p. 946. (School size does make a difference. Retrieved from ERIC Document Reproduction Service.
412 (ED))

413 [Mathis (2013)] *Jason Villalba threatens to split DISD if it doesn't move faster on reform*, E
414 Mathis . http://blogs.dallasobserver.com/unfairpark/2014/09/jason_villalba_split_disd.php 2013. September 3. (Re: state rep. Web blog post)

416 [Riha et al. ()] 'Middle school size and Hispanic student achievement'. M Riha , J R Slate , C Martinez-Garcia .
417 *Journal of Education Research* 2013. 7 (1) p. .

418 [Turner et al. ()] 'Policy strategies, teacher salary incentive, and student achievement: An explanatory model'.
419 R Turner , G Camilli , R Kroc , J Hoover . *Educational Researcher* 1986. 15 (3) p. .

420 [Mathis (2014)] *Re: TEA says mega-Dallas school district idea is a recipe for disaster*, E
421 Mathis . http://blogs.dallasobserver.com/unfairpark/2014/09/tea_says_consolidating_dallas_schools_bad_idea.php 2014. September 5.

423 [Leithwood and Jantzi ()] 'Review of empirical evidence about school size effects: A policy perspective'. K
424 Leithwood , D Jantzi . *Review of Educational Research* 2009. 79 p. .

425 [Andrews et al. ()] 'Revisiting economies of size in American education: Are we any closer to a consensus?'. M
426 M Andrews , W Duncombe , J Yinger . *Economics of Education Review* 2002. 21 p. .

427 [Lenear ()] *School district size and academic performance: A multi-year study*. Available from ProQuest
428 Dissertations and Theses Full Text, B C Lenear . UMI No. 1459262474. 2013.

429 [Barnes and Slate ()] 'School district size and Limited English Proficient student performance: A statewide
430 analysis'. G Barnes , J R Slate . *Journal of Education Research* 2014. 8 (3) p. .

431 [Ketchum and Slate ()] 'School size and students designated as economically disadvantaged in Texas: Differences
432 in English Language Arts and math passing rates'. M R Ketchum , J R Slate . *International Journal of
433 Psychology Research* 2012. 7 (5/6) p. .

434 [Cotton ()] *School size, school climate, and student performance. School Improvement Research Series. (North
435 West Regional Educational Laboratory)* Retrieved from www.nwrel.org/scpd/sirs/10/c020.html 1996.

437 [Friedkin and Necochea ()] 'School system size and performance: A contingency perspective'. N Friedkin , J
438 Necochea . *Educational Evaluation and Policy Analysis* 1988. 10 p. .

439 [Avila ()] *Smaller learning communities and student performance at the high school level*, C Avila . 2011.
440 874239396. (Available from ProQuest Dissertations & Theses Full Text.)

441 [Hogan-Young ()] *Standardized testing of special education students: A comparison of service type and test scores*,
442 C Hogan-Young . 2013. (Available from ProQuest Dissertations and Theses Full Text. UMI No. 13719-66485)

443 [Cohen ()] *Statistical power analysis for the behavioral sciences*, J Cohen . 1988. Hillsdale, NJ: Lawrence Erlbaum.
444 (2nd ed.)

445 [Cullen ()] *Student achievement, district wealth, district size, and instructional expenditure: A Texas statewide
446 study*, M Cullen . 2012. (Doctoral dissertation)

447 [Text of the individuals with disabilities act ()] *Text of the individuals with disabilities act*, <https://www.gpo.gov/fdsys/pkg/PLAW-108publ446/PLAW-108publ446.htm> 2015. United States Department of
448 Education.

450 [Bullard ()] *The effects of school enrollment size on student achievement*, H C Bullard . 2011. UMI. (Available
451 from ProQuest Dissertations & Theses Full Text)

452 [Dawkins ()] *The impact of inclusion on the academic achievement of high school special education students*, H
453 S Dawkins . 2010. UMI. p. . (Available from ProQuest Dissertations & Theses Full Text.)

454 [Harper ()] *The relationship between the proportional size of the special education population and academic
455 achievement. Available from ProQuest Dissertations and Theses Full Text*, P K Harper . UMI No. 1424274234.
456 2013.

457 [Black ()] 'The right size school'. S Black . *American School Board Journal* 2006. 193 (4) p. .

458 [Roach ()] 'The school reform movement and high-stakes standardized testing: An analysis of factors impacting
459 the academic outcomes of students who receive special education services'. R G Roach . Available from
460 *ProQuest Dissertations and Theses*, 2005.

461 [Wilson ()] *Urban middle school instructional special education: Tenured versus nontenured teachers and the
462 impact on academic achievement. Available from ProQuest Dissertations and Theses Full Text*, S M Wilson
463 . UMI No. 769916467. 2010.