

1 Anthropometry of Workers for Some Specific Regions in 2 Bangladesh

3 Moumita Saha¹

4 1

5 Received: 9 December 2015 Accepted: 31 December 2015 Published: 15 January 2016

6

7 **Abstract**

8 The anthropometric measurements are mainly used to design human fitted tools, clothing,
9 workstation, personal equipment, comfortable devices that increases human comfort, safety,
10 quality of working and efficiency. The intension of this paper is to forecast the anthropometric
11 characteristics of Bangladeshi population by geographical region (Khulna Division- Khulna,
12 Bagerhat, Chuadanga, Jessore, Kushtia, Magura, Meherpur, Narail and Satkhira), age and
13 gender which are used for various purposes of design. We have considered here both male and
14 female. This is based on the study done with several industries from districts in Khulna
15 Division of Bangladesh. There are almost 300 measurements in anthropometry but used only
16 36 of them because these measurements are commonly used in industry. The measurements
17 are almost same and does not vary too much except the tribal region. Here we calculated 5P,
18 50P and 95P which will help to design an adjustable system which will consider flexible to all.

19

20 **Index terms**— anthropometry, body dimension, industrial worker.

21 **1 I. Introduction**

22 The word "anthropometry" means measurement of the human body. It is derived from the Greek words anthropos
23 means man and metron means measure. Anthropometric data are used in ergonomics to specify the physical
24 dimensions of workspaces, equipment, furniture and clothing so as to fit the task to the man ??Grandjean, 1980)
25 and to ensure that physical mismatches between the dimensions of equipment and products and the corresponding
26 user dimensions are avoided. Anthropometry is important for both developed and developing countries. Many
27 developed countries like U.S.A., European countries, Japan etc. have their own anthropometric measurement
28 of people and workers. Developing country like Bangladesh has their own anthropometric measurements of
29 people and workers. Bangladesh Bureau of statistics survey different regions of Bangladesh and collect their own
30 data of people and workers. The purpose of anthropometry is to secure data on human body measurements
31 which describes the use the data in such a way that can be used for deduction and anthropological comparison.
32 Anthropometric data can 1. We have taken 150 male workers and 50 female workers from every industries
33 from different districts for our anthropometric data. For mean, standard deviation, Max and Min calculation
34 we have considered two hundred workers (approximately 150 male and 50 female workers) of each industries.
35 But in some places the female workers number was higher than fifty. We considered the male and female both
36 genders separately and calculated the mean. The male workers participating in the survey were within the age
37 group of 15-34 years, 35-54 years, 55-64 years and above 65 years. The percentages were 52.82% for 15-34years,
38 32.82% for 35-54years, 8.2% for 55-64 years and 6.13% for above 65 years. The female workers participating
39 in the survey were within the same age groups as same as male. The percentages were 81.29% for 15-34years,
40 15.29% for 34-54years, 2.43% for 55-64 years and 1% for above 65 years. The data were obtained from the
41 survey work were analyzed for mean, standard deviation and percentile values of population. The 5th, 50th and
42 95th percentile values were obtained for various anthropometric dimensions. Those dimensions are important for
43 designing workstations, tools, clothing, furniture etc. The methodology, which was used in this, enables to collect

3 CONCLUSION

44 valid and reliable information/data and to analyze those data to conclude with a correct decision. For this study
45 we have used different statistics method. The data were analyzed by probability statics method, ratio scaling
46 method, regression method. "Ratio scaling" (used by Pheasant in 1986 and 1996 to establish the British) is
47 one technique to estimate data from known body dimensions (Pheasant, C.M 2003). It relies on the assumption
48 that, though people vary greatly in size, they are likely to be relatively similar in proportions. Another way of
49 estimating the relations among dimensions is through regression equation if we were able to do so, we would
50 describe the parameters of that total population by the mean (average) and standard deviation (SD).

51 2 Result and Discussion

52 We have used 200 (approximately 150 male and 50 female workers) workers anthropometry measurements for
53 each area. We have used nine districts and two hundred workers for each industry to calculate the mean and
54 standard deviation. We have used Microsoft Excel for calculating mean and standard deviation. After calculating
55 the mean and standard deviation we have calculated the 5 th , 50 th and 95 th percentiles. The 95 th percentile
56 value of stature of workers were 70.89 inch. So any entry and exit to any workstation should not be less than
57 70.89inch. 95% of total population can easily enter and exit from workstation by using 70.89inch entrance. The
58 5th percentile value can be used for lower limit of designing workstation, tools, selecting operator etc. The 50 th
59 percentile value is the average value. We can use this value for designing workstation, tools, selecting operator etc.
60 work which is perfect for 5 th and 95 th percentile. Most commonly the 5 percentile of female and 95 th percentile
61 of male dimensions are used to design. The 5 th percentile of female dimensions are the smallest measurement
62 for the design of population. 5 th and 95 th range accommodates approximately 90% of the population. Table ??
63 shows the Mean, Standard deviation and percentile calculation of male workers of Khulna, Bagerhat, Chuadanga,
64 Jessore, Kushtia, Magura, Meherpur, Narail and Satkhira and Table ?? shows Mean, Standard deviation and
65 percentile calculation of female Fig. ?? : District-wise distribution of mean weight of workers both male and
66 female of Bangladesh

67 From figure ?? we can see that the lowest average weight of male workers is from Chuadanga and the highest
68 average weight is from Satkhira. The lowest average weight is 57.2kg and the highest average weight is 63.5kg.
69 From the same figure we can see that the lowest average weight of female workers is from Meherpur and the
70 highest average weight is from Khulna. The lowest average weight is 39.9kg and the highest average weight is
71 42.3kg. From figure ?? we can see that the lowest mean stature of male workers is from chuadanga and the
72 highest mean stature is from Satkira. The lowest mean stature value is 64.9inch and the highest mean stature
73 value is 68.4inch.

74 From the same figure we can see that the lowest mean stature of female workers is from Jhenidah

75 3 Conclusion

76 Anthropometry plays an important role in designing sector to improve efficiency, comfort and safety to human
77 being. We have taken 200 people anthropometric measurements among them 150 are male and 50 are female
78 in most cases. These data are taken from many industries of Khulna division of Bangladesh. We have taken 36
79 anthropometric measurements of workers. Then we have calculated mean, standard standard deviation, 5P, 50P
80 and 95P. All these percentile values are important for designing devices, equipment, clothing, workspaces and so
81 on. We have also shown the normal distribution curve of sitting height, elbow height, knee height and stature for
82 both male and female workers and shown the 5P, 50P Tables ??table 2 : Mean, Standard deviation and percentile
83 calculation of male workers of Khulna, Bagerhat, Chuadanga, Jessore, Kushtia, Magura, Meherpur, Narail and
84 Satkhira ^{1 2}

¹© 2016 Global Journals Inc. (US) Volume XVI Issue I Version I 15 (H)

²© 2016 Global Journals Inc. (US)

Figure 1: Fig. 1 :Fig. 2 :

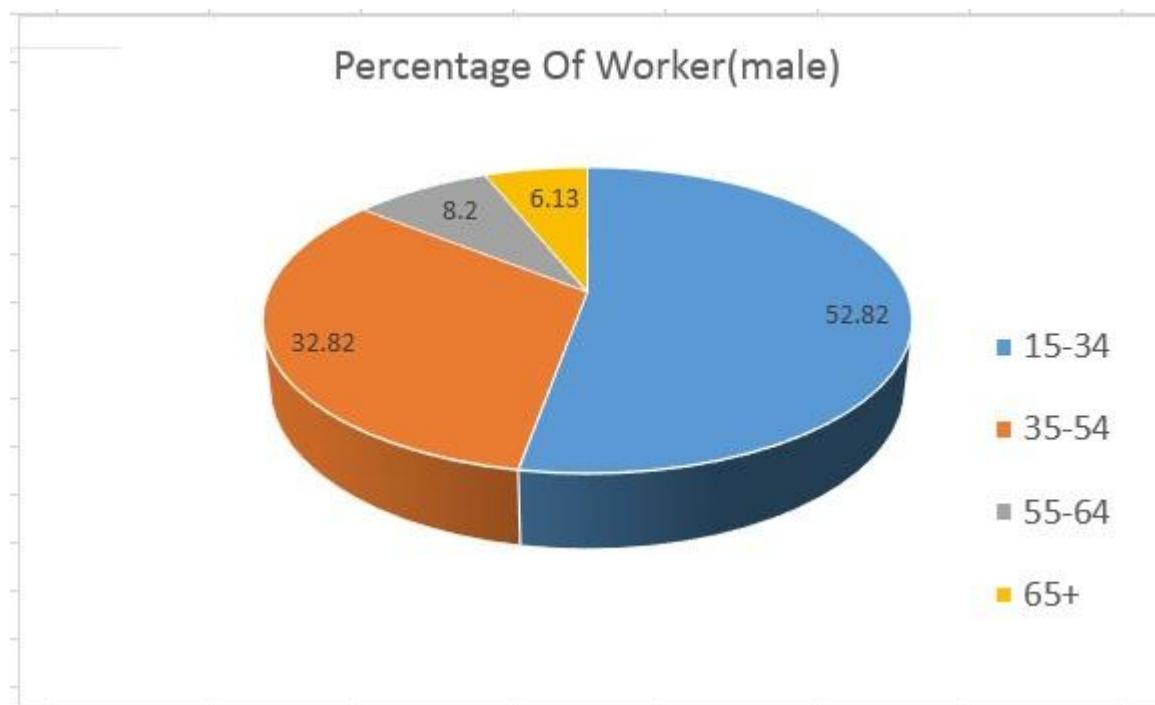


Figure 2:

3 CONCLUSION

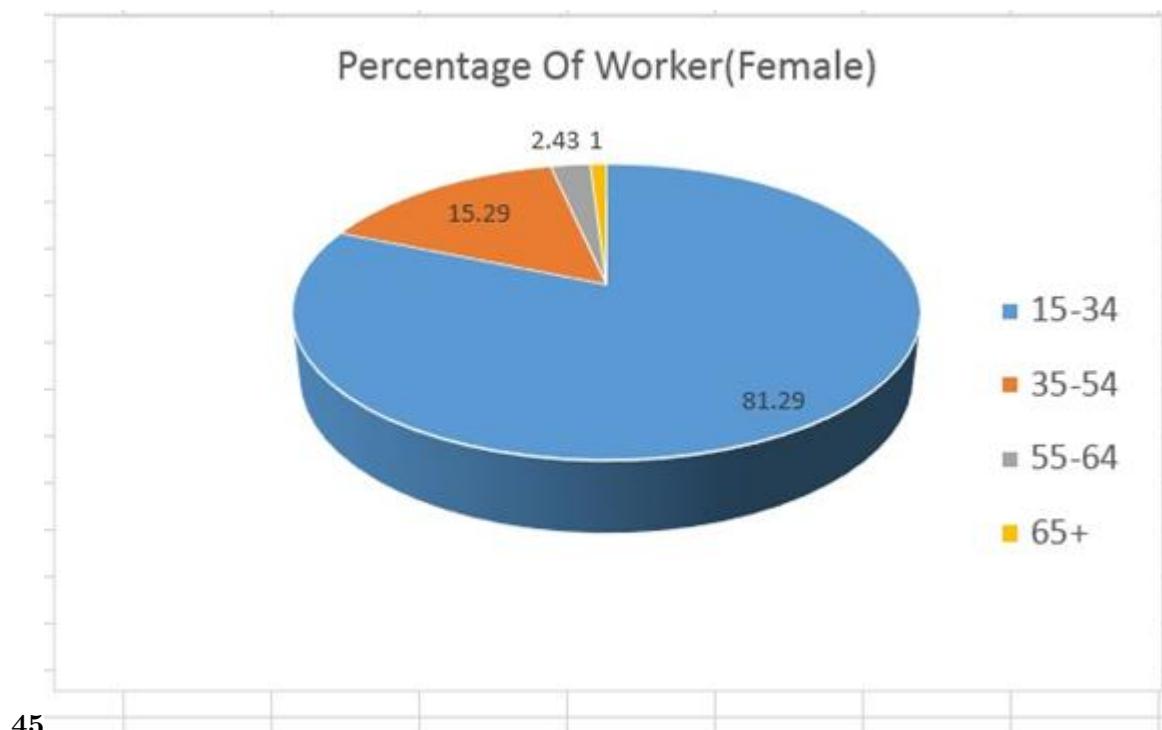


Figure 3: Fig. 4 :Fig. 5 :

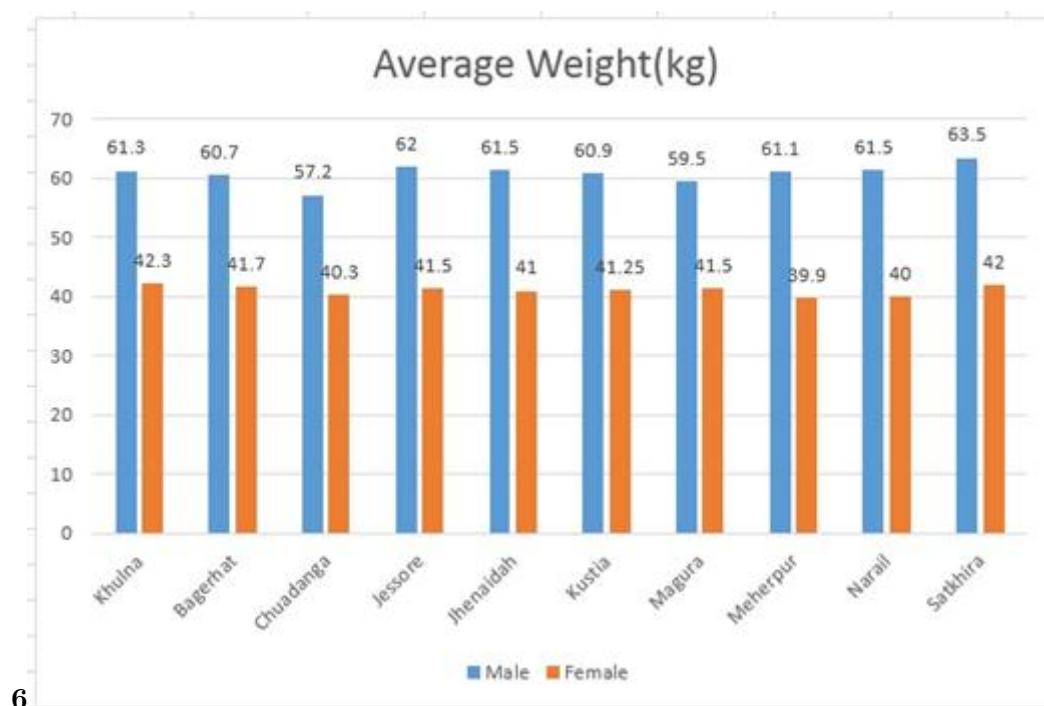
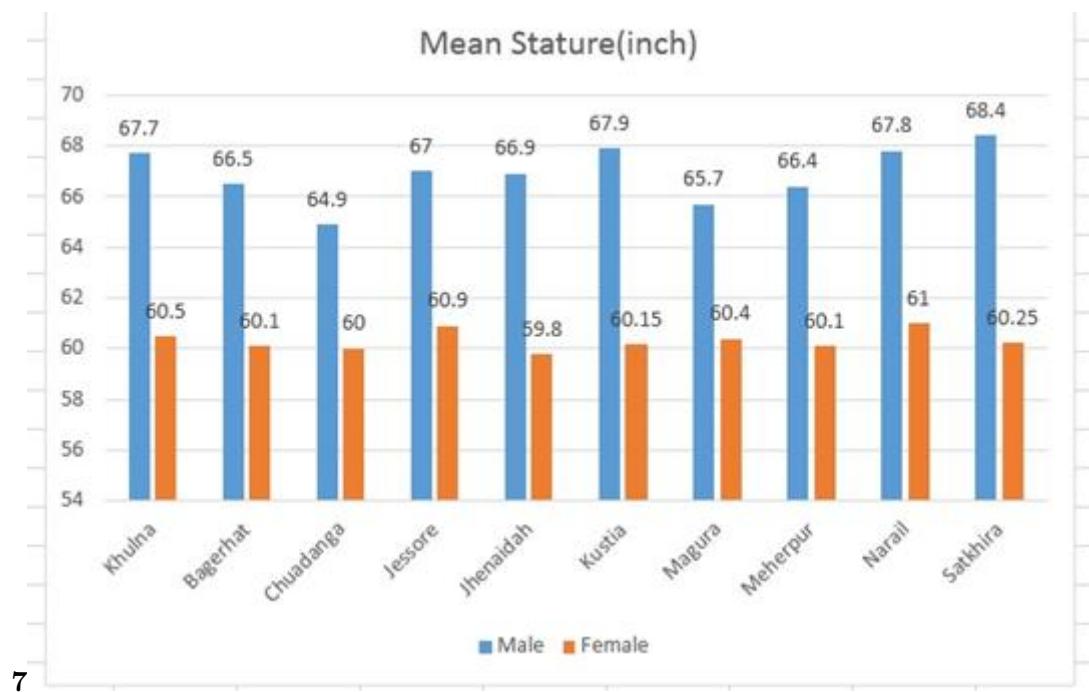
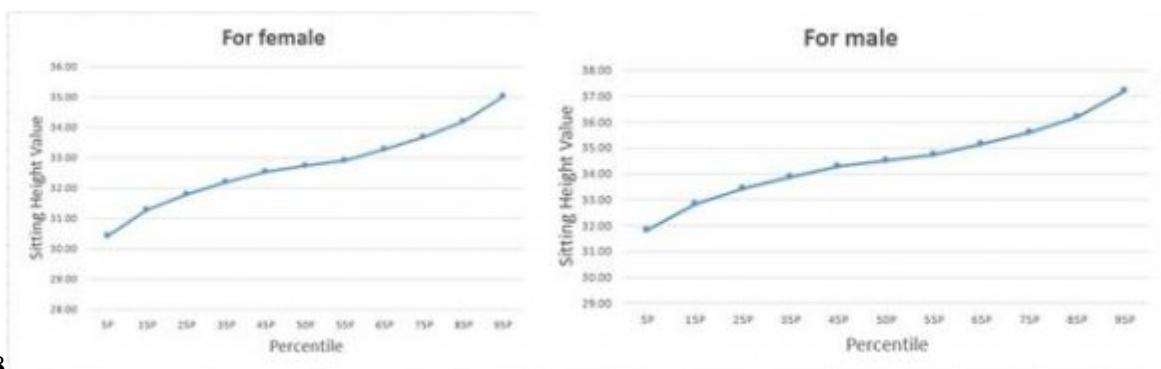




Figure 4: Fig. 6 :

7

Figure 5: Fig. 7 :

8

Figure 6: Fig. 8 :

3 CONCLUSION

1

Percentile	Percentile		Knee	Knee
	Sitting	height	height(Female)	height(Male)
5 th	30.4281	31.82836	16.4854	18.84073596
50 th	32.7241	34.50938	18.1254	20.69791667
95 th	35.0201	37.19039	19.7654	22.55509737
Percentile	Elbow	Elbow	height(Male)	
5 th	37.8698	39.0548		
50 th	39.3458	42.98958		
95 th	40.8218	46.92437159		

[Note: and 95P values of male and female workers individually in a chart to show the difference. Year 2016
6. Marras S. William, Karwowski Waldemar (2006) Fundamentals and Assessment Tools for Occupational Ergonomics Taylor & Francis. 7. Richard Tinning (2010) Pedagogy and Human Movement Taylor & Francis.
13. Jurgens, H.W., Aune, I.A., Pieper, U (1990) s -]

Figure 7: Table 1 :

85 [Thomson and Wiley] , Thomson , Wiley . Inderscience Publication.

86 [Agrawal et al. ()] , K N Agrawal , P S Tiwari , L P Gite , S Pharade , J Majumdar , V Bhushanababu . 2011.

87 [Anthropometry of Agricultural Workers of Madhya Pradesh Journal of Agricultural Engineering (2011)]

88 'Anthropometry of Agricultural Workers of Madhya Pradesh'. *Journal of Agricultural Engineering* October-December 2011. 48 (4) .

90 [RS] *Bridger Introduction to Ergonomics*, RS . McGraw Hill Publication.

91 [Roebuck et al.] *Engineering Anthropometry Methods*, J A Roebuck , K H E Kroemer , W G Thomson .

92 [Sanders] *MacCormick Human Factor in Engineering and Design seventh edition*, Mark S Sanders , ErnestJ .

93 McGraw Hill Publication.