
Agglomerative Hierarchical Clustering: An Introduction to1

Essentials. (1) Proximity Coefficients and Creation of a2

Vector-Distance Matrix and (2) Construction of the Hierarchical3

Tree and a Selection of Methods4

Refat Aljumily15

1 University of Newcastle6

Received: 13 December 2015 Accepted: 1 January 2016 Published: 15 January 20167

8

Abstract9

The article is on a particular type of cluster analysis, agglomerative hierarchical analysis, and10

is a series of four main parts. The first part deals with proximity coefficients and the creation11

of a vector-distance matrix. The second part deals with the construction of the hierarchical12

tree and introduces a selection of clustering methods. The third deals with a variety of ways13

to transform data prior to agglomerative cluster analysis. The fourth deals with deals with14

measures and methods of cluster validity. The fifth and final part deals with hypothesis15

generation. The present article covers the first and second partsonly. It explains how16

agglomerative cluster analysis works by implementing it in a data matrix step by step.17

Different types of agglomerative hierarchical clustering methods are applied on18

purposely-made data matrix so different types of cluster structures are made from that same19

dataset. The last three parts will be covered in the next publication(s).There are many20

articles, tutorials, and books on this subject. The article has two main objectives: (1) to keep21

the discussion short and easy to understand by (hopefully) any reader and (2) to develop the22

motivation for using agglomerative hierarchical clustering to analyse any highdimensional data23

of interest with respect to some research question.24

25

Index terms— proximity, metric space, vector space, (non) euclidean space, symmetric matrix, agglomera-26
tion, centroid, sum of squares, median.27

1 Introduction28

gglomerative Hierarchical Cluster Analysis, abbreviated (AHCA), is a particular type of cluster analysis and is29
a useful multivariate exploratory technique that has found application in different research fields such as data30
mining, social sciences, biology, information retrieval, statistics, pattern recognition, ecology and psychology.31
Agglomerative Hierarchical Cluster Analysis is not a single method but rather a family of different but32
related computational methods that make no a priori assumptions about the structure of data. Agglomerative33
Hierarchical Analysis methods try to discover structured interrelationships among data vectors that might be34
interesting in relation to a research purpose. More specifically, all the methods of the family try to identify and35
graphical display of structure in data when data is too large either in terms of the number of variables or of36
the number of objects described, or both, for it to be readily interpretable by direct inspection. Agglomerative37
Hierarchical Analysis methods generate hierarchically ordered clusters and represent proximity structure among38
objects in high-dimensional space not as a spatial cluster but as a constituency tree or dendrogram. All the39
methods work by grouping a set of objects in the domain of interest into distinct clusters according to how40
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4 SPACE CONCEPTS A) CLUSTER DEFINITIONS

relatively similar/dissimilar those objects are in terms of the variables that describe them. Each object is41
described by a set of variables. Any two objects will be more or less similar/dissimilar on the basis of some42
definition of proximity between them.43

This article is in four main parts. The first part gives a general description of agglomerative hierarchical cluster44
analysis and proposes an interpretation of the result related to it. The second part first provides some relevant45
mathematical concepts that will be used in agglomerative hierarchical clustering: cluster, metric space, vector46
space, and proximity matrix, and then goes into the detail of how proximity among pairs of vectors is measured47
and how a cluster tree is built. The third part shows twelve different varieties of agglomerative hierarchical48
analysis and applies them to a data matrix M. The final part concludes the discussion.49

2 a) Agglomerative Hierarchical Cluster Analysis (AHCA) and50

interpretation51

AHCA is known as a bottom-up or alternatively left to right approach. This approach is the more often used and52
also better covered in the relevant textbooks, e.g., [1], [2], and [3]. This is probably because AHCA provides more53
information than the other methods in that they not only identify the main clusters, but also their constituency54
relations relative to one another as well as their internal structures. The result of the utilization of AHCA is55
shown by a diagram called a ’constituency tree’ or ’dendrogram’, which groups together related data vectors56
based on the relativities of proximity among all pairs of data vectors. In it the letters at the leaves are labels for57
the vectors in the dataset: ”A” is the first vector, ”B” the second, and so on. These labels are agglomerated into58
clusters in a sequence of steps. AHCA treats each data vector as a single cluster on its own and then sequentially59
agglomerate pairs of clusters until all clusters have been agglomerated into a single larger cluster that contain60
all data vectors. The links included in the hierarchy represent the constituency structure for the entire dataset:61
vector ”A” and vector ”B” constitute a cluster (A B), vector ”C” and vector ”D” constitute a cluster (C D), which62
itself combines with vector ”E” so constitutes a cluster ((C D) E) that are combined together with (A B) to form63
an even higher-level cluster ((A B) ((C D) E)), and so on. The lengths or heights of the links represent degrees of64
closeness: the shorter the link, the more similar the clusters. This is reflected in the cluster tree by the relative65
lengths of these links by the constituency structure of the proximity relations among, for example, vectors (A66
B)and vectors (F H) or vector (G). The longest (vertical/horizontal) lines at the top or right of the dendrogram67
separate the vectors into three main groups. The dendrogram represents vector proximity in n-dimensional space.68
For example, vector ”F” and vector ”H” are very close in the data space, and this pair is close to vector ”G”.69

3 II.70

4 Space Concepts a) Cluster Definitions71

From cluster analysis viewpoint, the power of human eye or brain can recognize structures that are contained in72
data by perceiving any clusters in it, despite the fact that the clusters may vary somewhat in different viewpoints,73
in many different sizes and shapes or even when they are interpreted or understood. To accept such a view we74
have to understand what a cluster is. Indeed, humans can detect patterns or connections in any surrounding75
environment and can distinguish between them, and clusters are a kind of pattern. In a countryside position, for76
example, we can see clusters of trees, or farm buildings, of sheep. In any clear night we can see in the sky clusters77
of stars. And, closer to current interests, anyone looking at a data plot immediately sees any clusters that might78
be present. Looking at the data plotted in the two-dimensional space below, on the basis of our innate pattern79
recognition capability and without recourse to any obvious definition of the cluster, we can see that in figure/2a80
there is a random cloud of points with no clear structure emerging behind the data, and that in figure/2b there81
are some local areas of concentrations of points, but these are not explicitly defined. By contrast, we can clearly82
see that in figures/2c and 2d there is a clear structure: figure ?? The term cluster, however, does not have a83
precise definition, but there are some working definitions of what a cluster is that are commonly used. Three of84
them are given by [4] and [5]. They are:85

? ”A cluster is a set of entities which are alike, and entities from different clusters are not alike”;86
? ”A cluster is an aggregation of points in the test space such that the distance between any two points in the87

cluster is less than the distance between any point in the cluster and any point not in it”;88
? ”Clusters may be described as connected regions of multi-dimensional space containing a relatively high89

density of points, separated from other such regions by a region containing a relatively low density of points”.90
The first definition of a cluster is a very general one and is best described as a similarity-based cluster definition.91

It assumes that objects are similar to each other within the same cluster and dissimilar to objects in different92
clusters. The second introduces the distance view of similarity and is best described as a distancebased cluster93
definition. It assumes that the similarity or dissimilarity between data vectors can be measured on the basis of94
the distance between them. The third definition of a cluster introduces density view of similarity and is best95
described as a density-based cluster definition. It assumes that each cluster is representing a given region that has96
its own demand distribution which symbolizes the data vectors enclosed by that region. This definition is more97
often used when the clusters are irregular or intertwined, and when noise and outliers are present [6]. Considering98
these three working definitions, we can see that even if the clusters consist of entities, points, or regions, the data99
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vectors within each cluster are more similar in some respects than are other data vectors outside the clusters.100
A cluster is therefore a collection of data vectors which are similar between plotted (left) with its corresponding101
clusters (right) on a two-dimensional scatter plot.102

5 b) Proximity coefficient103

Cluster analysis, by definition, is a process of identifying those data vectors that are similar and of establishing104
a hierarchical classification relationship among them on the basis of some index of proximity. What we mean by105
”on the basis of some index of proximity” is to calculate how data vectors plotted as points in multidimensional106
space are ”close to” or ”far away from” each other. To do so, we need to know the relative proximity between107
any two data vectors in different clusters.108

A proximity coefficient is either a similarity or distance coefficient between every pair of data vectors in the109
space. The term proximity is more commonly used to refer to either one of these two coefficients. The term of110
proximity always suggest the question: proximity with respect to what? Most clustering procedures use pairwise111
measures of proximity. Two data vectors are close when their distance is small or their similarity is large. The112
choice of proximity coefficient is a crucial problem in cluster analysis [4]. The choice of which For details of each113
of the data types see, for example, [7], [8], and [9].114

However, proximity between pairs of data vectors can be measured in terms of their correlation, of their115
similarity coefficient, of the angle between them, or of distance in Euclidean space [2]. With data in which all116
the variables are categorical, measures of similarity are most generally used. The most commonly used similarity117
coefficient, at least for binary data is the Jaccard similarity coefficient and is calculated as: Sij=a/(a+b+c). To118
illustrate, Table ??119

6 Vectors120

Where each row vector is a student and the column vectors are binary tags or states of some student response,121
e.g. answer to test questions. The state (1) means a variable is present indicating a correct answer in the data122
vectors and (0) means it is absent indicating an incorrect answer. This data can be summed and placed in a123
contingency table in the form of the count of the number of the variables in each vector. The first two column124
data vectors (A) and (B) are worked out and the coefficient of matches among them are shown in Table ?? In125
this table, the rows represent the presence or absence of a set of X variables for a single student {x1, x2,??x8} for126
the first two row data vectors in Table ??1. Cell a includes the count of the number of the X variables for which127
the two vectors both have the variable present. Cell b represents the number of variables the number of variables128
for which the first has the variables present and the second does no, and cell c includes the number of variables129
for which the second student has the variable present and the first student does not. Finally, cell d includes the130
count of the number of the X variables for which neither student has the variable present. Jaccard Similarity131
Coefficient equates similarity with the three types of matches (a, b, c) only, excluding the coefficient of match132
’d’. It, however, indicates maximum similarity when the two data vectors have identical values, in which case133
b=c=0 and S AB= 1.0. This coefficient also indicates maximum dissimilarity when there are no 1-1 matches, in134
which case a=0 and S AB= 0.0. The basic idea of similarity coefficient is to give relative similarity between data135
vectors. Two data vectors are similar, relative to the cluster membership, if their profiles across variables are136
”close” or they share ”many” characteristics in common, relative to those which other pairs share in common.137
For the Jaccard similarity coefficient matrix, we obtain the following hierarchical tree: More is said about all of138
these methods in due course; the important thing to realize at this stage is that Jaccard Similarity Coefficient139
was tried with Ward, Median, Centroid, and Sum of Squares, but the application showed that these methods are140
not defined for similarity coefficients. To work on it, however, similarity coefficient would have to be converted141
to dissimilarity by subtracting every value from the maximum similarity by using one of the standard conversion142
methods:???????????? ???? = ??????? ???? + ?????? ???? ? 2?????? ????143

7 (Note when you subtract from the maximum we invert the144

scale so that previously small values are large. Another way145

to invert the scale is to multiply the similarity values by minus146

one, creating dissimilarity values).147

The possible similarity coefficients of pairwise similarity are many, and these, together with their equations and148
properties, are available in, for example, [2], [3], and [10].149

8 Hamann coefficient150

9 Sij=(a+d)-(b+c)/(a+d)+(b+c) Sorenson coefficient151

Sij=2a/2a+b+c Rusell and Rao coefficient Sij=a/a+b+c+d152
However, when all the selected variables are numerical (continuous or discrete), distance between all pairs of153

data vectors is commonly computed by using a suitable distance coefficient. A distance coefficient is a measure154
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13 D) DISTANCE IN VECTOR SPACE

which defines a distance between vectors of a set of data and it is typically termed metric space if it achieves the155
metric (triangular) inequality. Ideally, every distance measure should be a metric if the following conditions are156
satisfied:d(x,y) ?0157

this condition defines a positive -definite function, saying that distance can’t be negative. d(x,y)=0 if x=y:158
this condition says, as above, that distances are always positive except where the data vectors are identical in159
which case the distance is necessarily 0. d(x,y)=d(y,x): this condition says that the distance from x to y is the160
same as the distance from y to x, i.e. the distance is symmetric. d(x,z)?d(x,y)+d(y,z): this condition is called161
the triangle inequality which says that for any triangle, the sum of the lengths of any two sides must be greater162
than or equal to the length of the remaining side. The triangle inequality can only be an equality if the remaining163
side lies exactly on the line connecting the two sides.164

In mathematics, a metric space is a set for which distances between all data vectors in the set are defined.165
These distances, taken together, are called a metric on the set. A distance coefficient is said to have the Euclidean166
property or to be Euclidean if it always produces distance matrices that are fully embedded in a Euclidean space167
(i.e. points in space). If a distance matrix is Euclidean then it is also metric but the converse does not follow.168
Non-Euclidean distances are of different kinds: some still satisfy the metric inequality but have no Euclidean169
representation (e.g. City block distance), while others are not (e.g. Bray-Curtis distance). The application of170
these distance measures in agglomerative clustering still makes very good sense as a distance measure between171
different objects. Discussions on non-Euclidean distances and their applications can be found in, e.g. [11] and172
[12].173

However, choices for some of these distance coefficients are given in the following table that summarizes their174
equations and properties: E p = S iep c i S j ?? ?? (?? ???? ????? ?? ) 2 ?? ?? ?? ??175

Where: X ij is the value of variable j in data vector i within cluster P Ci is an optional differential weight for176
data vector i W j is an optional differential weight for variable j m pj is the mean of variable j for cluster P177

The total ESS for all clusters P is thus E=S p E p and the increase in the Euclidean Sum of Squares I p E q178
at the union of two clusters p and q is: IpEq = Epd ij = S K ?? ?????? ??? ???? ??? ???? ? ?? ?? ?? ??????179

10 Product-Moment Correlation180

Pearson’s correlation coefficient gives the correlation coefficient distance between vectors A and B, and is expressed181
as:?? ??,?? = ? (?? ??,?? ? C ?? )(?? ??,?? ? C ?? ) ?? ?? ?1 ?? (C k,i -C i ) 2 ? (C k,j -C j ) 2 N K -1 N K -1182

11 ?183

These distances are closely related, and if all the variables are measured on the same scale or have been184
transformed or standardized, there is no particular reason to prefer one over another. But if all the variables185
are measured on the different scale or if the data comprise different variables, then it is important to select the186
most appropriate proximity coefficient prior to clustering. Detailed discussion on distances in vector space can187
be found in, e.g., [13] and [14].188

12 c) Vector space189

The central concept in agglomerative hierarchical clustering is data vectors in n-dimensional vector space. To190
understand how hierarchical clustering works, it is necessary to have a firm grasp of this concept. For the present191
purpose, the distance measure that is most commonly used, most straightforward to apply, and practically simple192
to understand, will be sufficient. This is the Euclidean distance, or straight-line distance, and almost everyone is193
familiar with, i.e. can be measured with a ruler.194

A Euclidean vector space is a geometrical interpretation of a vector in which the dimensionality n of the vector195
defines an n-dimensional space, the sequence of numerical values comprising the vector specifies coordinates in196
the space, and the vector itself is a point at the specified Cartesian coordinates [1], [15], [16], and [17]. For197
example, a vector v = (2, 4) defines a two-dimensional space and its two components are coordinates in that198
space; a vector v = (2,4,6) defines a 3-dimensional space, and its values in the specified coordinate system place199
it at the corresponding position in the space; and so on to any dimensionality. This is shown graphically in200
Figure/8: Any number m of vectors can exist in an n-dimensional vector space, where m corresponds to the201
number of rows in any given matrix M, and n corresponds to the number of columns.202

13 d) Distance in vector space203

In what follows, the generic term ”proximity” is used to refer to the distance relations between and among pairs204
of vectors. This may be understood in the following ways.205

To speak of a vector as a straight line, we see that if we draw a straight line from the origin (0,0) to the206
position of any point in the space of the axes (X,Y), the distance between the origin to that point is known as207
the length of a vector and can be measured as in Because each vector is understood as a straight line determined208
by 2 points in the coordinate system, we may find the position of any vector if its coordinates are known (i.e.209
the position of vectors with reference to those two lines is known when we know their distances from the axes).210
Thus, in the figure/10 the position of the vector A is (0.2, 0.8) and vector (B) is (0.4,0.3).211
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Based on geometrical notions, we may state that the basic elements of vector space are length and angle. These212
can be used to determine the distance relations between and among vectors, and thus their cluster structure. To213
illustrate this, when two straight lines (or vectors) meet at a point in a space, there is an angle ? between them,214
as shown in the Figure ?? After the length and angle are identified, the distance between two vectors can be215
measured and relative distances between pairs of vectors compared, so that distance (AC) in figure/12 is greater216
than distance (AB); this is the basis for several types of clustering method.217

14 Figure 12 : Vector distances218

The distance between any two vectors in a space is determined by the size of the angle between the straight lines219
meeting at the main point or origin of the space’s coordinate system, and on the lengths of those lines. Suppose220
A and B to be any two vectors having identical lengths and separated by an angle ? (figure/13):221

Figure 13222

If the angle is fixed and the lengths of the vectors are not the same, then the distance between the two vectors223
A and B increases (figures/14a and 14b).224

15 Figure 14225

If the lengths of the vectors are the same but the degree of the angle is increased, the distance between the vectors226
increases (figure/15a), and if the degree of the angel is decreased, the distance is also decreased (figure/15b).227

Figure 15228

16 e) Distance in vector space229

Most agglomerative hierarchical clustering methods however rely on the concept of distance among data vectors230
in n-dimensional space (data is represented in the form vectors of real numbers). Data vectors are grouped into231
similar or dissimilar clusters based on the information found in them: data vectors are considered similar if they232
are closer together and dissimilar if they are further apart in n-dimensional space. An intuition for how the233
measure of the distance between vectors in a vector space is best gained by working through a simple numerical234
example. Very often we use the equation for the Euclidean distance to quantify the distance in vector space.235
Consider the following triangle: The horizontal line (i.e. distance) goes from V1 at (1, 1) to V2 at (4,5), so it236
is obvious that its lengthâ?”?X1-X2â?”?is (4-1)=3 units. The vertical line or distance goes from V2 at (4,5) to237
(1,1), so again its length â?”?Y1-Y2â?”?is obvious = 4 units. With this in mind, we get a right-angled triangle238
with lengths 3 and 4. By the Pythagorean theorem, the square of the hypotenuse is (hypotenuse) 2 = 3 2 +4 2239
= 25, which gives the length of the hypotenuse as 25, same as the distance between the two vectors V1 and V2240
according to the distance equation above. Thus the Euclidean distance between them is ????1, ??2 = ?(4 ? 1) 2241
+ ?(5 ? 1) 2 =5.242

Various other distance measures are also possible as discussed above, but they needn’t concern us here.243
Euclidean distance is the simplest and most widely used of the various distance measures. Euclidean distance is244
also best provided for in software implementations, and so is used here.245

However, this quantification applies to any dimensionality n. That is, Euclidean distance applying Pythagoras’246
theorem can also be generalized or extended to measure the distance between any number of data vectors in any247
number of dimensions.248

Look at the figure/18which shows 9 data vectors forming four triangles in 3-dimensional space, where each249
triangle is in its own space. More triangles can be found based on the distance measurements among the 9 data250
vectors but in this figure we limit the calculation to four triangles and the dimensionalities to three.251

17 f) Distance matrix and agglomerative clustering252

Because the above quantification of distance in vector space applies to any dimensionality, and not just to the 2253
and 3-dimensional spaces that can be visualized, it can be used to define clusters in data of any dimensionality.254
This is what agglomerative hierarchical clustering does, and it does so in two steps:255

18 i. Construction of a distance matrix256

When all the distances between all possible pairs of data vectors are measured, they are gathered and entered in257
a distance matrix which looks like the Table 5: Looking at the distance matrix shows that all of the entries on258
the main diagonal are zero because the distance from a data vector to itself is zero and that the stored values in259
the triangle below the diagonal are mirror-images of the stored ones in the triangle above. The distance matrix260
is an n x n symmetrical, with rows and columns, on either side since the distance between V1 and V2 is identical261
to the distance between V2 and V1: the distance between any pair of vectors is the same in either direction.262
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20 ( G )

19 ii. Construction of a hierarchical tree based on the distance263

matrix264

Agglomerative hierarchal cluster analysis uses the quantified notion of distance described above, and the distance265
table more particularly, to find clusters in data. Numerous ways of doing this has been developed, most of them266
are variations on a theme; for present purposes the theme goes like this. ? For a data set containing m vectors,267
we start by defining m clusters, one for each vector. ? Using as many steps as necessary, at each step we combine268
the two clusters with the smallest distance between them into a new, composite (sub) cluster.269

To understand this, consider the following data that consists of 14 two-dimensional points shown in Table 6.270
For this data matrix, we abstract the following distance matrix: 13 14 1 0.000 0.006 0.010 0.146 0.599 2.339 2.266271
2.259 2.120 2.738 3.291 2.550 2.696 2.673 2 0.006 0.000 0.005 0.140 0.589 2.366 2.264 2.275 2.123 2.726 3.212272
2.560 2.717 2.694 3 0.010 0.005 0.000 0.100 0.612 2.389 2.287 2.299 2.146 2.758 3.245 2.575 2.723 2.703 4 0.146273
0.140 0.100 0.000 0.726 2.490 2.388 2.405 2.250 2.853 3.326 2.778 2.896 2.884 5 0.599 0.589 0.612 0.726 0.000274
1.520 1.464 1.478 1.356 1.505 1.967 3.712 3.893 3.910 6 2.339 2.366 2.389 2.490 1.520 0.000 1.464 1.478 1.356275
1.505 1.967 3.712 3.893 3.910 7 2.266 2.264 2.287 2.388 1.464 0.046 0.000 0.018 0.069 0.109 0.382 4.691 4.922276
4.955 8 2.259 2.275 2.299 2.405 1.478 0.008 0.018 0.000 0.054 0.125 0.545 4.546 4.764 4.789 9 2.120 2.123 2.146277
2.250 1.356 0.075 0.069 0.054 0.000 0.108 0.592 3.813 4.015 4.048 10 2.738 2.726 2.758 2.853 1.505 0.144 0.109278
0.125 0.108 0.000 0.330 4.905 5.131 5.186 11 3.291 3.212 3.245 3.326 1.967 0.643 0.382 0.545 0.592 0.330 0.000279
6.396 6.690 6.773 12 2.550 2.560 2.575 2.778 3.712 4.634 4.691 4.546 3.813 4.905 6.396 0.000 0.015 0.011 13 2.696280
2.717 2.723 2.896 3.893 4.847 4.922 4.764 4.015 5.131 6.690 0.015 0.000 0.010 14 2.673 2.694 2.703 2.884 3.910281
4.866 4.955 4.789 4.048 5.186 6.773 0.011 0.010 0.000282

In what follows a 6 x 6 subset of the original 14 x14 distance matrix constructed in Table/7will be used. This283
makes it possible to show the whole process of constructing a hierarchical tree step by step rather than just284
a fragment, thereby baking the discussion clearer. The procedure is based on the principal that a set of data285
vectors has a cluster structure if it can be divided into two or more groups in which the members of any given286
group are close to one another in the data space, and far from members of other cluster in the space. At each287
step in tree construction, therefore, one looks for the clusters that are closest to one another and amalgamates288
them into a super ordinate cluster, and this continues until all the data vectors have been assigned to one of the289
clusters. The following discussion will demonstrate this.290

Initially, each row vector of the data matrix is taken to be a cluster on its own; i.e., clusters here and henceforth291
are shown in brackets. The distance matrix is now searched to find the smallest distance between these data292
vectors. This is the distance between vector 3 and vector 2 in Table ??293

Figure 21294

Transformation of the distance matrix takes a bit of understanding, so it is described in detail.295
? The table in figure 21 a is transformed into the one in figure 21b.296
? Row vectors and column vectors are removed from the distance matrix and replaced them with a single297

blank row and column to represent the (2,3) cluster; 0 is inserted as the distance from (2,3) to itself.298
? The minimum distances from (2,3) to the remaining data vectors ( ??), ( ??), ( ??), and ( ??) are inserted299

into the blank cells of the (2,3) row and column. Confused?300
Volume XVI Issue III Version I301

20 ( G )302

In the original distance matrix, the distance between ( 2) and ( ??) is 0.006 and between (3) and ( ??) is 0.010,303
shown shaded in figure/22a below. The minimum distance here is 0.006, and is inserted into the relevant cell304
representing the minimum distance between (2,3) and (1). The distance between ( 2) and ( ??) in the original305
distance matrix is 0.140 and between (3) and ( ??) it is 0.100. The minimum distance here is 0.100 and it is306
inserted into the relevant cell representing the distance between (2,3) and ( ??). The distance between (2) and307
( ??) in the original distance matrix is 0.589 and between (3) and ( ??) it is 0.612.The minimum distance here308
is 0.589 and it is inserted into the relevant cell representing the distance between (2,3) and (5). The distance309
between310

(2) and ( ??) in the original distance matrix is 2.366 and between (3) and ( ??) it is 2.389.The minimum311
distance here is 2.366 and it is inserted into the relevant cell representing the distance between (2,3) and (6).312
Emendation of the distance table is now complete, and the resulting table is the basis for the next step in the313
construction of tree. Now the distance table is searched to find the smallest distance between vectors. This314
is the distance between vectors (2,3) and (1): 0.006. Vectors (2,3) and ( ??) are now combined into a new315
subordinate cluster ((2,3),1) by drawing the tree as below, and then emending the distance table to incorporate316
the new cluster. We must note that the distance matrix has shrunk by one row and column. In any process of317
agglomerating clusters, this shrinkage will continue as we proceed.318

Emendation of the distance table proceeds as step (1) explained above by removing the rows and columns and319
replacing them with single blank row and column to represent the new ((2,3)1) sub-cluster. Then the minimum320
distance from ((2,3),1) to the remaining data vectors (4), ( ??), and ( ??) is inserted into the blank cells. From321
Figure/ 22, the distance between (2,3) and (1) is 0.006 and between (4) and ( ??) is 0.146; the minimum distance322
is 0.006, and it is inserted into the relevant cell. The distance (2,3) and (5) 0.589 and between (1) and ( ??) is323

6



0.599; the minimum distance here is 0.589, and it is inserted into the relevant cell. The distance between (2,3)324
and ( ??) is 2.366 and between (1) and ( ??) is 2.339; the minimum here is 2.339, and it is inserted into the325
relevant cell.326

(3) 0.005 (( 2),( ??))327
(1) 0.006 (((2),(3)),( ??)) (4) 0.006 c. Table of agglomeration d. Graphical representation of (c)328

Figure 23329

The distance table is searched to find the smallest distance between vectors. This is the distance between330
vectors ((2,3),1) and ( ??): 0.006. Clusters ((2,3),1) and ( ??) are now agglomerated into a subordinate cluster331
(((2,3),1),4) as shown in the tree above, and then emending the distance matrix to incorporate the new cluster.332
Emendation of the distance matrix proceeds as in step 1 and 2. The rows and columns (2,3) and ( ??) are333
removed from the table and replaced them with a single blank row and column to represent the new (((2,3,4),1)334
cluster. The next step is to insert into the blank cells the ((2,3),1),4) to the remaining clusters ( ??) and (6).335
The distance between ((2,3),1) and ( ??) is 0.589 and between (4) and ( ??) is 2.726; the minimum is 0.589 and336
it is inserted into the relevant cell. The distance between ((2,3),1) and ( ??) is 2.339 and between ( ??) and (337
??) is 2.490; the minimum is 2.339 and it is inserted into the relevant cell. Here the smallest distance is 0.589338
and thus clusters ((2,3),1),4) and ( ??) are now agglomerated into a subordinate cluster (((2,3),1),4),5) as shown339
in the tree below. The distance matrix is emended to incorporate the new cluster. Emendation of the distance340
table is now complete and the resulting matrix is the basis for the final step.341

(3) 0.005 ((2),( ??))342
(1) 0.006 (((2),(3)),( ??)) (4) 0.006 (((2),(3)),( ??),( ?? The minimum distance from (((2,3),1),4),5) to the343

remaining vector ( ??) is inserted into the blank cell of the (((2,3),1),4),5) column. The distance table generated344
in Figure/21 above is searched to find the smallest distance between vectors. There is only one remaining vector345
value. Clusters (((2,3)1,4),5) and ( ??) are now combined into a subordinate cluster (((((2,3),1),4),5),6) by346
drawing the tree and then emending the distance table to incorporate the new cluster. 2),( ??))347

(1) 0.006 (((2),(3)),( ??)) (4) 0.006 (((2),(3)),( ??),( ??))348
(5) 0.589 (((2),(3)),( ??),( ??),( ??)) (6) 0.2339349

21 c. Table of agglomeration d. Graphical representation of (c)350

Figure 25351

All 6 data vectors have now been incorporated into the cluster tree and tree construction stops.352

22 Figure 26353

In this example, we only obtained distance measurements and cluster agglomerations for only 6 data vectors from354
the original 14 x 8 data matrix of Table/7, because the calculation can become extremely long, it is important355
to emphasize that for a set of 14 data vectors there would be a total of 91 steps including the main diagonal356
zero-values. This can be given in Given that the hierarchical clustering tree tells us nothing more than what357
the two-dimensional plot tells us, what is gained? In the current case nothing. The real power of agglomerative358
hierarchical cluster analysis consists in its independence of vector space dimensionality. Put it another way,359
direct plotting is limited to two, three, or fewer dimensions but there is no dimensionality limit on agglomerative360
hierarchical cluster analysis. It can determine relative distances in vector spaces of any clustering and represent361
those distance relativities as a dendrogram like the one above.362

23 g) Agglomerative Hierarchical Clustering Methods363

Many agglomerative clustering methods are treated as variations on a single major approach; they require the364
data to be in the form of vectors of real numbers and follow the same standard framework:365

Initially, before clustering has begun, each data vector is treated as a cluster or group, clustering begins by a366
successive agglomeration of the two closest or nearest pair of clusters (i.e. the two data vectors that are separated367
by the smallest distance) to form first cluster. On this basis, at each step of the clustering process, we combine368
the two data vectors that have the smallest single linkage distance.369

24 ? Complete clustering (furthest neighbor) method370

In this method, the distance between two clusters A and B is based on the data vectors in each cluster that are371
furthest apart or furthest neighbors (longest distance).372

25 ? Average clustering method373

In this method, also known as the unweighted pair-group using average approach conventionally abbreviated374
(UPGMA), the distances between all possible data vectors embedded in the two clusters A and B are calculated375
and summed, and the distance between cluster A and cluster B is the average of that sum. This method has376
also been referred to as the weighted pair-group using average approach conventionally abbreviated (WPGMA).377
In this method, when two clusters A and B are agglomerated, the distance D between some other cluster, say,378
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27 ? MEAN PROXIMITY CLUSTERING METHOD

C and the newly formed cluster AB is the simple average of D CA and D CB , thus: (D) C, AB = ½ {D CA379
+ D CB } On this basis, at each step of the clustering process, we combine the two data vectors that have the380
smallest weighted average linkage distance.381

? Ward’s method or an increase in sum of squares clustering method382
This method involves the concept of sum-ofsquares error, abbreviated SSE. Given a set D of n values, the383

SSE of D is the sum of the squared differences between each value in D and the mean of all values in D: Ward’s384
method calculates the distance between clusters A and B as On this basis, at each step of the clustering process,385
we combine the two data vectors that have the smallest increase in the sum of squares.386

26 ? Sum of squares clustering method387

The distance between two clusters A and B is calculated as the sum of the squared distances between ( )) ( ) ( )388
, ( B SSE A SSE B A SSE D Ward + ? =389

sum of the squared distances between the data vectors and the centers (or means) of the clusters to which390
they belong. In this respect, it is very similar to Increase in Sum of Squares (Ward’s method) above. Sum of391
squared distances= d1 2 +d2 2 +??? ?? ?? This method is also known as the unweighted pair-group method392
using the centroid approach (UPGMC). The Centroid method is only calculated in terms of squared distances.393
The squared distance between two clusters A and B is calculated as the squared distance between the cluster394
means, or centroids. The size or weight of a cluster is not relevant, although its spatial distribution is used in395
the calculation of the centroid. This method should, strictly speaking, only be used with a matrix of squared396
distances. the data vectors of clusters A and B and the centroid of the agglomerated cluster. The sum of squares397
method is only calculated for squared distances. For a given set of n data vectors, this method seeks to minimize398
the On this basis, at each step of the clustering process, we combine the two data vectors that have the smallest399
centroid distance.__d AB =?X A -X B ? 2400

? Median clustering method Also known as the weighted pair-group method using centroid approach401
(WPGMC). The Median method is only calculated in terms of squared distance.402

In this method, the distance between two clusters A and B is represented by the squared Euclidean distance403
between the median (mid-point) for the data vectors in cluster A and the median for the data vectors in cluster404
B. This gives equal weight to clusters of different sizes, unlike the centroid, which is weighted by the number405
of data vectors in each cluster. However, the two data vectors with the smallest distance between medians are406
agglomerated at each step. ? Flexible beta clustering method This method calculates the distance between two407
data vectors on the basis of ? which is a supplied by the user. By allowing ? to vary, clustering results with408
various characteristics can be obtained. However, a value of ? = -0.25 gives results similar to Ward’s method. A409
detailed account on the mathematical properties of this method can be found in, e.g., [18] and [19].410

27 ? Mean proximity clustering method411

This method maximizes the average of the within-cluster distances or minimizes the average of the between-cluster412
distances, for all cluster comparisons.413

? Density search clustering using nearest-neighbor clustering approach This method falls into a class of414
clustering methods particularly designed to seek dense patches, regions or areas in the data vectors in a metric415
space depending on the type of the density estimation to be used. The density nearest neighbor method uses either416
K th nearest neighbor density estimates or smoothed K th nearest neighbor estimates. The density estimation417
of the former is based on a fixed number of values and the density estimation for the latter on a large number418
of values K, where k is the contiguous or the nearest neighbors to the desired point. The distance between two419
clusters A and B is based on the value specified for K; the estimated value of k controls the amount by which the420
data are smoothed or unsmoothed to give the density estimate on which the clustering procedure is based: when421
the value of k is non-increased or small, the density estimation becomes unsmooth or jagged, when the value of k422
is increased or large, the destiny estimate becomes smoother or less bumpy. To be more precise, the problem is423
that all K neighbors must be close to the desired point. This may or may not be possible. Theoretically speaking,424
this is possible when infinite number of data vectors is available, in such a situation the larger the k value the425
better is calcification (error rate gets closer to the lowest possible error rate for a given classification). Because426
this is not always possible in practice due to data vectors are finite, K value should be large so that error rate is427
minimized; too small values of K may lead to noisy decision boundaries and too large may lead to over-smoothed428
boundaries. That is, K value should be small enough so that only nearby data vectors are included. However,429
whatever density estimation it may take, this method consists of two main basic steps: initially, a new distance,430
based on density estimates and adjacencies in the data vectors, is calculated. This step is obtained by: calculating431
the K th nearest neighbor for the data vectors: given two clusters A and B, the data vectors X A and X B are432
said to be adjacent (the definition of adjacency depends on the method of density estimation), if D* (X A , X B433
) ?D K (X A ) or D K (X B ). Where D* is the distance and D K (X A ) is the kth nearest neighbor distance to434
data vector (X B ). The distance D (X A , X B ) between the data vectors X A and X B can be obtained as:D(X435
A , X B )= 0, if X A =X B ; = ½ [D K (X A ) + D k (X B )], if D*(X A ,X B )?D K (X A ) or D*(X A ,X B436
)?D K (X B ) = otherwise.437
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Finally, a single linkage clustering method is then applied to the resulted distance D* to obtain highdensity438
clusters [2], [3], [10], [16], [20], and [21]. A detailed account on the mathematical properties of these methods can439
be found in, e.g., [5] and [16].440

28 Volume XVI Issue III Version I441

Since the calculation both of the values in the original distance matrix and of the distances between composite442
clusters are based on linear measurement, agglomerative hierarchical clustering is a collection of linear cluster443
analysis methods.444

Extensive empirical clustering results, however, have shown that, relative to a given data matrix, each445
agglomerative clustering method has a ’signature’ in the sense that the hierarchical tree it produces tend to446
have specific characteristics [2] and [5].The literature search on the application of hierarchical clustering methods447
reports, for example, that Single link famously tends to generate ’chained’ structures, that is, trees with a448
strong tendency to either left or right branching but not both. It also reports that this method has satisfactory449
mathematical properties, which appears to give satisfactory results at identifying longated clusters that have450
curvy shapes instead of spherical or elliptical shapes, and it is somewhat robust to outliers in the set of data.451
Complete link tends to generate trees with extensive recursive embedding of left and right branching sub trees;452
also tends to generate very small compact clusters, which means that they have small diameter (max. distance453
between data vectors). In other words, group structure, all data vectors in the same cluster, will not be taken454
into account. On the other hand, this method is somewhat sensitive to outliers, and is suitable for compact but455
not well-separated clusters. Average linkage is intermediate between single and complete link; it is intermediate456
between single and complete linkage; it tends to generate small clusters of outliers and to find spherical clusters,457
i.e. ball-shaped clusters. Being relatively robust, this method can even deal with rather potato-shaped clusters.458
It is, however, more prone to chaining than Ward’s method. Ward’s method is like complete link, but in addition459
tends to find spherical clusters of roughly equal size. As such, some methods are more appropriate than others460
for data with a given density structure. If, for example, the data manifold has an elongated structure, single link461
would be best and Ward worst. Alternatively, a manifold with tends to generate different clusters with greater or462
lesser tendency to chain depending on different values of k. This method tends to overcome the chaining effects463
if k= 2log 2 n or several values around this value. On the other hands, this method is prone to produce noisy464
decisions boundaries. As such some methods are more appropriate than others for data with a given density465
structure; some methods work better for certain data sets, and other methods work better for other data sets.466
However, if, for example, the data manifold has an elongated structure, single or nearest neighbor linkage would467
be best and Ward worst.468

As might be expected, different agglomerative clustering methods can and often do give different results for469
the same dataset. Different clustering structures are obtained when we cluster analysed a data matrix consisting470
of 20 data vectors applying the 11 methods introduced above. The clustering analyses in this figure show that471
the application of various agglomerative methods on the same dataset may not always produce quite different472
results because the clustering results may have generated as a result of highly precise data or a small data matrix473
size.474

29 III.475

30 Conclusion476

When using agglomerative hierarchical analysis to form clusters, we need to keep the following in mind: ? Often,477
but not always, different agglomerative clustering methods for analysing data can yield different results. In478
particular for small data sets, different methods might produce similar results.479
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Figure 33:

1

1 gives a matrix of
binary variables of dimension 6 x 8.

Figure 34: Table 1 :
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2

two
vectors in Table (1)

Vector B
1 0

Vector A 1 a=2 b=1
0 c=1 d=4

Figure 35: Table 2 : A 2 x2 contingency table for the first

3

Similarity Coefficient Equation
Matching coefficient Sij=(a+d)/(a+b+c+d)
Jaccard coefficient (Jaccard 1908)

[Note: Sij=a/(a+b+c) Rogers and Tanimoto (1960) Sij=(a+d)/[a+2(b+c)+d] Sneath and Sokal (1973)
Sij=a/[a+2(b+c)] Gower and Legendre (1986 A) Sij=(a+d)/[a+1/2(b+c)+d] Gower and Legendre (1986 B)
Sij=a/[a+1/2(b+c)] Yule coefficient Sij=ad-bc/ad+bc]

Figure 36: Table 3 :

4

Distance coefficient Description
Squared Euclidean
Distance

2= S d ij k
Euclidean Distance This measures the distance d ij which is obtained by taking the Square root of Squared

Euclidean Distance d ij 2 as calculated
above.

Euclidean Sum of
Squares

[Note: This measures the distance d between two data vectors i and j, and is expressed as: ?? ?????? (?? ????
? ?? ???? ) 2?? ?? ?? ??????where: X ik is the value of variable k in data vector i, and W ijk is a weight
of 1 or 0 depending upon whether or not the comparison is valid for the kth; if differential variable weights are
specified. It is the weight of the kth variable, or 0 if the comparison is not valid.The Euclidean Sum of Squares
(ESS) EP for cluster P is expressed by:]

Figure 37: Table 4 :
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5

matrix based on Euclidean distance
between 4 data vectors
V1 V2 V3 V4

V1 0 2.828 3.162 5.99
V2 2.828 0 1.414 3.162
V3 3.162 1.414 0 2
V4 5.099 3.162 2 0

Figure 38: Table 5 :

6

Year 2016
36
Volume XVI Issue III
Version I
G )
(
Global Journal of Hu-
man Social Science -

a 14 x 8 data matrix

1 4 1.10 1.09 1.79 0.99 1.14 3.25
2 4 1.20 1.08 1.61 0.99 1.15 3.24
3 4 1.19 1.07 1.62 1.15 1.23 3.27
4 4 1.18 1.06 1.61 1.98 1.16 3.22
5 4 1.16 1.04 1.64 0.96 1.17 1.21
6 0.94 0.43 0.38 2.00 0.97 1.06 0.80
7 0.96 0.47 0.43 1.44 0.97 1.10 0.87
8 0.94 0.47 0.43 1.79 0.95 1.10 0.88
9 0.94 0.92 0.84 1.77 0.98 1.14 0.93

[Note: Agglomerative Hierarchical Clustering: An Introduction to Essentials. (1) Proximity Coefficients and
Creation of a Vector-Distance Matrix and (2) Construction of the Hierarchical Tree and a Selection of Methods
The x y coordinates of the points and the plots are shown in Figure/19:]

Figure 39: Table 6 :

7

1 2 3 4 5 6 7 8 9 10 11 12

Figure 40: Table 7 :
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1 2 3 4 5 6
1 0.000 ((2,3),1) 4 5 6
2 0.006 0.000 ((2,3),1) 0.000
3 0.010 0.005 0.000 4 0.006 0.000
4 0.146 0.140 0.100 0.000 5 0.589 0.726

0.000
0.000

5 0.599 0.589 0.612 0.726 0.000 6 2.339 2.490
1.520
0.000

6 2.339 2.366 2.389 2.490 1.520 0.000
a. Distance matrix from Table (8) b. Trans-

formed version
of a.

Cluster 1 Cluster
2

Agglomerating

distance
Figure 22

Figure 41:
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The process of agglomerating two data vectors and fusing their characteristics is repeated until only one cluster486

remains. Extensive range of agglomerative clustering methods exists; though most of them operate in a similar487
way, their calculation is different. Eleven of these methods are introduced. They are:488

? Single linkage (or nearest neighbor) method In this method, the distance between two clusters A and B489
is based on the membership (i.e. data vectors) in each cluster that are nearest together (shortest distance).490
well-defined spherical areas of vector density would reverse that. Ward’s method tends to find spherical clusters491
of roughly equal size. It is sensitive to outliers.492

On the other hand, many researchers report satisfactory results with this method (i.e. provides interpretable493
results). Centroids linkage tends not to chain as much as single linkage. It is nevertheless subject to reversals.494
Median linkage tends to chain for large set of data and is also subject to reversals. However, they are both fairly495
robust to outliers. Flexible beta linkage tends to generate 100 % chained clusters if ? approaches a value of +1.496
On the other hand, if ? approaches zero and then becomes negative, this method tends to cluster data vectors497
more intensely. A value of ? ?0. Which hierarchical analysis is the best? None of these clustering analyses is498
uniformly the best. In this practice it is advisable to try several methods and then compare the clustering results499
to form an overall judgment about the final structures of clusters.500

Occasionally, however, observed results are very different from those expected. Here is a little example to501
illustrate this. The following dendrograms generated from the eleven hierarchical clustering methods applied on502
a small data matrix (i.e. having small measurements).503

[Steinbach] , Michael Steinbach . http://www-users.cs.umn.edu/~han/dmclass/cluster_survey_10504

[Coxeter and Non-Euclidean Geometry ()] , H S M Coxeter , Non-Euclidean Geometry . The Mathematical505
Association of America: USA 1998.506

[Everitt et al. ()] , B S Everitt , S Landau , M Leese . 2001. Arnold: London.507

[Deza et al. ()] , M Deza , E Deza , Encyclopedia , Distances . 2009. Berlin: Springer.508

[Xu et al. ()] , Rui Xu , C Donald , Wunsch , Clustering . 2009. Hoboken, New Jersey: Wiley-IEEE Press.509

[Singhal (2015)] , Amit Singhal . http://singhal.info/-ieee2001.pdf July 2015.510

[_02_00 and Pdf (2015)] , _02_00 , Pdf . September 2015. p. 20.511

[Kirk (2015)] , Baker Kirk . https://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_512
Decomposition_Tutorial.pdf September 2015. p. 10.513

[Lance and Williams] ‘A general theory of classificatory sorting strategies I. hierarchical systems’. G N Lance ,514
W T Williams . Computer 1967 p. .515

[Milligan ()] ‘A study of the beta-flexible clustering method’. G W Milligan . Multivariate Behavioral Research516
1989. 24 p. .517

[Agglomerative Hierarchical Clustering: An Introduction to Essentials. (1) Proximity Coefficients and Creation of a Vector-Distance Matrix and (2) Construction of the Hierarchical Tree and a Selection of Methods References Références Referencias]518
Agglomerative Hierarchical Clustering: An Introduction to Essentials. (1) Proximity Coefficients and Creation519
of a Vector-Distance Matrix and (2) Construction of the Hierarchical Tree and a Selection of Methods520
References Références Referencias,521

[Jain and Dubes ()] Algorithms for clustering data, Anil Jain , Richard Dubes , R . 1988. Englewood Cliffs; NJ,522
USA: Prentice-Hall.523

[Cleaveland ()] An Introduction to Data Types, Craig J Cleaveland . 1986. Michigan.524

[Anderberg ()] Cluster analysis for applications, Michael Anderberg . 1973. Academic Press, Inc: London.525

[Moisl ()] Cluster analysis for corpus linguistics, Hermann Moisl . 2015. Berlin: De Gruyter Mouton.526

[Romesburg ()] Cluster Analysis for Researchers, Charles Romesburg . 1984. Wadsworth Inc: USA.527

[Philips and Stawarski ()] Data Collection Planning and Collecting. All Types of Data, Patricia Pulliam Philips528
, Cathy A Stawarski . 2008. Pfeiffer: USA.529

[Pyle ()] Data preparation for data mining, D Pyle . 1999. San Francisco: Morgan Kaufmann Publishers. (CA)530

[Berry and Browne ()] ‘Lecture notes in data mining’. M W Berry , M Browne . Fu Island offset printing,531
(Singapore) 2006.532

[Cornish (2015)] Mathematics Learning Centre, Rosie Cornish . http://www.statstutor.ac.uk/533
resour-ces/uploaded/clusteranalysis.pdf July 2015. p. 22.534

27

http://www-users.cs.umn.edu/~han/dmclass/cluster_survey_10
http://singhal.info/-ieee2001.pdf
https://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
https://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
https://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
http://www.statstutor.ac.uk/resour-ces/uploaded/clusteranalysis.pdf
http://www.statstutor.ac.uk/resour-ces/uploaded/clusteranalysis.pdf
http://www.statstutor.ac.uk/resour-ces/uploaded/clusteranalysis.pdf


30 CONCLUSION

[Rencher and Christensen ()] Methods of multivariate analysis, A C Rencher , W F Christensen . 2012. Hoboken,535
New Jersey: John Wiley and Sons. 3.536

[Bonola ()] Non-Euclidean Geometry. Lighting Source: USA, Berry Bonola . 2007.537

[Everitt ()] Unresolved Problems in Cluster Analysis, B S Everitt . Biometrics1979. 35 p. .538

28


