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6

Abstract7

Common Core Mathematics Standards (CCMS) is a major effort at revamping the U.S. K-128

mathematics education in order to improve American students? mathematical performance9

and international competitiveness. To ensure the successful implementation of CCMS, there10

have been calls for both recruiting from those with the strongest quantitative backgrounds11

(e.g., STEM majors) and offering rigorous mathematics training in teacher preparation.12

Missing from the literature are questions of whether STEM majors who arguably represent the13

strongest candidates for the teaching force have the depth of content understanding in order14

to teach mathematical topics at the rigorous level that CCMS expects, and whether future15

mathematics teachers need the opportunities to learn rigorously the K-12 mathematical topics16

they are expected to teach down the road. Our paper addresses the knowledge gap in these17

two areas through investigating the understanding of the concept of slope among a group18

STEM majors who were enrolled in an undergraduate experimental teacher preparation19

program. We found that even among these students, there are holes in their conceptual20

understanding of slope and of the connection between linear equation and its graph. These21

weaknesses could pose challenges for their preparedness to teach the slope concept consistent22

with the rigor that CCMS calls for. Taking courses that specifically address the K-12 math23

topics is helpful. We discuss implications of these findings for the content preparation of24

mathematics teachers.25

26

Index terms— common core mathematics standards, stem majors, content preparation, slope concept.27

1 Introduction28

mproving American students’ opportunities to learn and performance in mathematics and science has been of29
major concern for several decades. Despite waves of reform, student mathematical performance in the U.S.30
remains lackluster in international comparisons (Loveless, 2013;OECD, 2014). Common Core Mathematics31
Standards (CCMS), characterized by its focus, coherence, and rigor, are believed by many to have potential32
for improving students’ mathematical learning, if well implemented (Schmidt & Houang, 2012). The success of33
CCMS on student learning in part depends on teachers who are capable of teaching CCMS. Consequently, there34
have been calls for both recruiting from those with the strongest quantitative backgrounds (e.g., STEM majors)35
and offering rigorous Author ? : e-mail: xiaoxia_newton@uml.edu mathematics training in teacher preparation36
(Schmidt, Houang, & Cogan, 2011).37

Despite such calls, existing literature is void in two areas. First, to the best of our knowledge, there has been38
no empirical evidence on whether these STEM majors who arguably represent the strongest candidates for the39
teaching force have the depth of content understanding in order to teach mathematical topics at the rigorous level40
that CCMS expects. Secondly, it is not clear from the existing literature what counts as rigorous mathematics41
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2 II.

training. Should rigorous training in mathematics mean more advanced college mathematics courses (e.g., taking42
more upper division math courses)? Or should rigorous training mean future mathematics teachers need the43
opportunities to learn rigorously the K-12 mathematical topics they are expected to teach down the road?44

Our paper is an attempt to address the knowledge gap in these two areas through investigating the45
understanding of the concept of slope among a group STEM majors who were enrolled in an undergraduate46
experimental teacher preparation program. Though we could have chosen any topic, slope concept provides an47
ideal platform for investigating the question of whether teacher candidates are adequately prepared to teach48
mathematics at the level of rigor that is required by CCMS for the following reasons. First, slope of a line49
features prominently in algebra and is a foundational concept in functions. Despite its importance, research has50
well documented the difficulties both students and teachers (pre-and inservice) have in terms of understanding51
the concept of slope (Stump, 2001a(Stump, , 2001b; Teuscher & Reys, 2010; Zaslavsky, Sela, & Leron, 2002).52
Secondly, this difficulty will likely increase with the adoption of Common Core Mathematics Standards (CCMS),53
because CCMS approaches the concept of slope in significantly different ways.54

To begin with, CCMS makes the distinction between the slope of a line and the slope of two chosen points55
on the line. In contrast, most existing textbooks conflate the two. Furthermore, CCMS emphasizes reasoning56
and proof. Therefore, CCMS requires that students be able to prove that slope of a line can be defined by any57
two distinctive points on the line. The proof invokes the concept of similar triangles and therefore, according58
to CCMS, students will be exposed to the concept of similar triangles before learning the concept of slope.59
This also means that students are expected to have a much stronger grasp of the connection between linear60
equations and their graphs than expected in the past. This logical sequence of topics and the emphasis on the61
connection between equations and graphs are absent in the current curriculum and textbooks (Wu, 2014). Given62
the significant departure of CCMS from the old ways of teaching and learning of slope, the question naturally63
arises: How prepared are pre-service teachers in terms of their own understanding of slope according to CCMS?64

We focused on STEM majors who were part of the undergraduate mathematics and science teacher preparation65
program at one of the research universities in the west coast of the United States. Focusing on STEM majors66
provides an opportunity to assess content understanding among those who arguably possess the strongest67
mathematical and quantitative backgrounds. There have been sustained efforts at recruiting undergraduate68
STEM majors into teaching through programs such as 100k10 in New York, UTeach in Texas, and UTeach69
replication sites across the country. The undergraduate teacher preparation program we focused on offers a70
unique opportunity to examine the mathematical understanding of prospective teachers, because the mathematics71
department offers a threecourse sequence coursework focusing on grades 6 through 12 mathematics topics for72
mathematics majors who intend to pursue teaching as a career. The content of these courses aligns well with73
the CCMS. Consequently, we ask the question: Is there any qualitative difference in the understanding of slope74
concept between those who took the course versus those who did not?75

This paper is structured as follows. We first provide an overview of how slope is typically conceptualized in76
previous research, state content standards, and textbooks, highlighting the problematic aspects of how slope is77
typically conceptualized and contrasting this with how CCMS intends to overcome these problems. We then78
review the literature on characteristics of mathematical understanding as a basis on which to build a framework79
for examining the mathematical content understanding of slope according to the CCMS. After this, we describe80
various aspects of the inquiry methods. Following this, we present our findings and discuss their implications for81
mathematics teachers’ content training in order to teach K-12 mathematics topics that meet the expectations of82
CCMS.83

2 II.84

Conceptualization of Slope: Pre-Common Core Vs. State standards and textbooks (e.g., Burger et al.,85
2007;Collins et al., 1998; ??arson et al., 2004a ??arson et al., , 2004b)), on the other hand, tend to define86
slope in terms of the ratio, in particular, what is considered as geometric ratio in terms of ”rise over run”87
(Stanton & Moore-Russo, 2012). This definition is problematic. To begin with, the focus on ”rise over run”88
orient learners’ attention on the algorithm for calculation instead of conceptual understanding of what slope is.89
Secondly, the definition conflates the slope calculated using two points on the line with the slope of the line. In90
other words, if we were to take two different points, how do we know the ratio will be the same? Further, are91
we confident that two pairs of points (i.e., four points) are enough to say that any two points will give the same92
ratio since there are infinite numbers of points on the line? Finally, the definition assumes teachers and students93
will know why the ratio (of vertical change per unit of horizontal change) is always the same without given an94
explanation. These problems make it difficult for the intended users (i.e., teachers and students) to make sense95
of what slope is. The likely consequence of over-relying on the formulaic definition of slope is that learners will96
know the formula without understanding what the formula means or why it works. As Walter and Gerson (2007)97
observed that:98

”In virtually every classroom in the U.S., students are taught the phrase ’rise over run’ as a mnemonic for the99
algorithm for calculating slope ’change in y, over the change in x,’ for an arbitrary pair of points in a coordinate100
plane. The result of this instrumental device is an instrumental understanding ??Skemp, 1976 ??Skemp, /[2006]])101
of slope as a fraction, with the change in y as the numerator and the change in x as the denominator. Students102
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with this understanding are calculation-based understanding to global understanding of the quotient’s meaning103
for the way a line is positioned in the plane or to make connections with the idea of rate of change.” (p. 204).104

Consistent with Walter and Gerson’s observations, studies have shown that students have difficulties identifying105
slope of a line from its graph ??Postelnicu & Greens, 2012), computing slope of a line, or relating slope to the106
measure of steepness (Postelnicu, 2011; ??ostelnicu & Greens, 2012;Stump, 2001b). These difficulties point to107
the importance of helping students understand why taking any two points on the line will give the same answer108
and that how the slope being the same along the graph controls its shape. The implication is that in order to109
have a firm understanding of slope, one must understand explicitly the connection between linear equation and110
its graph. Indeed the concept of slope brings forth the need to connect the algebraic aspect of linear equation111
and the geometric aspect of its graph.112

3 b) CCMS Approach to Slope113

To remedy how slope has been treated in previous state standards and textbooks, CCMS presents a coherent114
learning progression on the topic. CCMS provides 8th graders with an intuitive approach to congruence and115
similarity by getting them comfortable with the angel-angle criterion for similar triangles. Following this, CCMS116
requires that 8th graders use similar triangles to explain why the slope of a nonvertical line can be calculated117
using any two distinctive points on the line. Teaching similarity to help students make sense of the concept of118
slope equips them with a powerful tool to solve all sorts of linear equation problems without having to resort119
to memorizing different forms of linear equations (two-point, pointslope, slope-intercept, and standard), because120
now students are provided with the explicit knowledge and understanding that slope can be calculated using any121
two points on the line that suit one’s purpose (for examples, see Newton & Poon, 2015).122

Furthermore, CCMS’ approach to slope connects the algebra of the linear equation and the geometry of the123
slope. This interconnectedness helps students see how slope being the same all along the graph controls its shape124
(Wu, 2010b ??Wu, , 2014, forthcoming), forthcoming). Finally, understanding similarity helps students to build a125
foundation for learning high school geometry. And a solid understanding of slope is foundational for studying other126
advanced topics involving slope such as functions. CCMS’s effort at maintaining grade-to-grade mathematical127
continuity and coherence represents a significant departure from old curriculum that is characterized as ”a mile128
wide but an inch deep” (Schmidt et al., 2001). The rationale for CCMS’ effort at promoting and emphasizing129
content understanding is best captured by the following paragraph:130

”Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base131
from which to work, they may be less likely to consider analogous problems, represent problems coherently,132
justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the133
mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from134
a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from135
engaging in the mathematical practices” (CCMS).136

4 c) Our Scenario Question137

Consistent with the emphasis of CCMS, we used the following scenario question to investigate preservice STEM138
majors’ understanding of the concept of slope and the connection between linear equation and its graph:139

How would you help eighth graders understand that the slope of a non-vertical line can be calculated using140
any two distinct points on the line (e.g., the slope of the line below can be calculated with points P 1 and P 2 or141
points P 3 and P 4 )?142

5 Characteristics Exemplify Content Understanding143

According to CCMS Several characteristics of content understanding central to teaching are common emphasis144
in the seminar work by leading scholars in education and mathematics community. These characteristics tend to145
cluster around coherence (e.g., connectedness among mathematical concepts), reasoning (e.g., using definitions146
as a basis for logical reasoning), and purposefulness and/or key ideas (e.g., mindful of why to study a concept147
and how the concept might be related to prior or later topics). These central characteristics are the basis of our148
framework for examining our study participants’ content understanding of the slope concept according to CCMS.149
This section reviews the key ideas proposed by prior researchers and shows how they informed the conception of150
our framework.151

6 d) Education and Mathematics Scholars’ Work on Content152

Understanding153

In his 1985 presidential address at the annual meeting of the American Educational Research Association, Lee154
Shulman (1986) described content as ”the missing paradigm” in research on teaching and proposed ”pedagogical155
content knowledge” (PCK) as one of the several types of knowledge teachers need in order to teach. Since156
then, scholars have attempted to elaborate what PCK may entail and link it to student learning (e.g., Ball,157
1990 One theoretical framework of proficiency in teaching mathematics came from Schoenfeld and Kilpatrick158
(2008). Schoenfeld and Kilpatrick (2008) argue that proficient teachers’ knowledge of school mathematics is159
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7 ?

both broad and deep. The breadth focuses on teachers’ ability to have multiple ways of conceptualizing the160
content, represent the content in various ways, understand key mathematical ideas, and make connections among161
mathematical topics. The depth, on the other hand, refers to teachers’ understanding of how the mathematical162
ideas grow conceptually from one grade to another.163

The characteristics of content understanding outlined in Schoenfeld and Kilpatrick’s framework are similar to164
the ideas rooted in a series of work by Deborah Ball and her colleagues (Ball, 1990; Ball, Hill, & Bass, 2005; Ball,165
Hoover, & Phelps, 2008) and to those outlined in the book of Liping Ma (1999) on ”profound understanding of166
fundamental mathematics (PUFM)”. Ball and her colleagues call the kind of content understanding described167
by Schoenfeld and Kilpatrick, ”mathematical content knowledge for teaching” (Ball, Hill, & Bass, 2005; Ball,168
Hoover, & Phelps, 2008). In her earlier work, Ball (1990) proposed four dimensions of subject matter knowledge169
for teaching that mathematics teachers need to have, including: (1) possessing correct knowledge of concepts and170
procedures; (2) understanding the underlying principles and meanings;171

(3) knowing the connections among mathematical ideas, and (4) understanding the nature of mathematical172
knowledge and mathematics as a field (e.g., being able to determine what counts as an ”answer” in mathematics?173
What establishes the validity of an answer? etc.).174

In the work that followed, Ball and her colleagues (Ball, Hill, & Bass, 2005) defined ”mathematical content175
knowledge for teaching” as being composed of two key elements: ”common” knowledge of mathematics that any176
well-educated adult should have and mathematical knowledge that is ”specialized” to the work of teaching and177
that only teachers need know.” (p. 22). The notion that there is content knowledge unique to teaching was178
further expanded in their most recent work. Ball and her colleagues ??Ball, Thames, & Phelps, 2008) proposed179
a sub-domain of ”pure” content knowledge unique to the work of teaching, called specialized content knowledge.180
Specialized content knowledge is needed by teachers for specific tasks of teaching (e.g., responding to students’181
why questions), which in principle seems similar to Liping Ma’s proposed concept of ”profound understanding of182
fundamental mathematics” (PUFM) (1999).183

Ma proposed the concept of PUFM in her much celebrated work on teachers’ understanding of four184
standard topics in elementary school mathematics between a group of Chinese and American teachers. Ma185
specified four properties of understanding that characterize PUFM, namely, basic ideas, connectedness, multiple186
representations, and longitudinal coherence. Shulman (1999) calls these four properties of understanding ”a187
powerful framework for grasping the mathematical content necessary to understand and instruct the thinking of188
schoolchildren” (p. xi).189

The characteristics of content understanding outlined by education scholars are in-sync with the ones proposed190
by Wu. Wu is one of the few mathematicians who have devoted decades of effort at delineating mathematical191
content knowledge that teachers need to have in order to teach at K-12 level (Wu, 2010b, 2011b, forthcoming). Wu192
proposed five basic characteristics capturing the essence of mathematics that is important for K-12 mathematics193
teaching (2010a, 2011a, 2011b):194

7 ?195

Reasoning: The lifeblood of mathematics. The engine that drives problem solving. Its absence is the root cause196
of teaching and learning by rote.197

? Coherence: Mathematics is a tapestry in which all the concepts and skills are interwoven. It is all of a piece.198
? Purposefulness: Mathematics is goal-oriented, and every concept or skill is there for a purpose. Mathematics199

is not just fun and games. Integrating the emphasis of CCMS on reasoning and understanding, the key200
ideas proposed by education researchers (e.g., Ball, Hoover, & Phelps, 2008;Ma, 1999;Schoenfeld & Kilpatrick,201
2008), and Wu’s five characteristics of mathematics (Wu, 2010a(Wu, , 2011a(Wu, , 2011b)), we propose three202
characteristics that exemplify the mathematical content understanding. Our framework of mathematical content203
understanding is centrally concerned with delineating characteristics of knowledge that demonstrate a relational204
understanding of a mathematical topic (i.e., knowing what to do and why) (Wu, 2011e), as opposed to an205
instrumental understanding which ??kemp (1976) regarded as knowing the ”rules without reasons”. Table 1 As206
Table 1 indicates, these characteristics of content understanding are consistent with and reflect the mathematics207
education community’s call for a profound understanding of school mathematics for teaching (e.g., Ball, 1990;Ma,208
1999;Schoenfeld & Kilpatrick, 2008). One point we want to emphasize is that we describe some of the relevant209
knowledge, acknowledging that there are various ways to conceptualize the content, and more than one way210
to approach the teaching of it (Cochran-Smith & Lytle, 1999). In addition, we want to point out that the211
characteristics of content understanding in our framework emphasize aspects of mathematical understanding212
”most likely to contribute to a teacher’s ability to explain important mathematical ideas to students” ??Shulman,213
1999, xi).214
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8 III.215

9 Methods216

10 a) Research Site and Study Sample217

The present paper is based on a broader study of pre-service STEM teachers’ content understanding of three218
foundational algebra topics at a west coast research university in the United States (Newton & Poon, 2015). Study219
participants were recruited from undergraduate courses that focus on K-12 mathematics and on mathematics220
teaching and learning. We used a series of scenario questions (roughly 3-4 questions per topic) like the slope221
one shown above to probe study participants’ content understanding. Of the 46 students who responded to222
the scenario questions, 32 (70%) gave active consent to use their responses for research. Of these 32 study223
participants, 5 (16%) were science majors, 4 (13%) were engineering majors, 16 (50%) were mathematics majors,224
and 7 (22%) were humanities majors; 8 (25%) were transfer students from two-year colleges. The 14 students225
who did not give active consent were all STEM (Science, Technology, Engineering, and Mathematics) majors, of226
which 9 (69%) were mathematics majors. Their score distributions did not differ significantly from those of the227
study sample.228

11 b) Data Collection229

We collected two rounds of data, in spring 2010 and spring 2011. At each data collection occasion, one of the230
researchers visited the study participants’ classes. The research member explained the purpose of the study and231
distributed the form containing the scenario questions. In fall 2010, respondents were given about two weeks232
to finish the form. Based on the preliminary analysis of data collected in fall 2010, we reduced the number of233
scenario questions (without sacrificing the opportunity to assess respondents’ understanding of key mathematical234
concepts) and collected additional data in spring 2011. At the spring 2011 occasion, respondents answered the235
scenario questions during a 2-hour class period. Data for this paper came from spring 2010 where the slope236
scenario question was asked and included 16 STEM majors (out of 30 total respondents) who gave active consent237
to use their responses for research purposes.238

12 c) Data Analysis239

The authors (co-constructers of the scoring rubrics) independently coded all students’ responses.240
Initial agreement between the two researchers was close to 80%. In cases where there was a disagreement241

(mostly within 1-point difference), we compared the rationale for the score in order to reach an agreement for the242
final score. In scoring a respondent’s responses to a scenario question, we focus on the quality of the reasoning243
process. Specifically, the quality of the reasoning process is judged by the three characteristics that exemplify244
content understanding outlined in Table 1. These three criteria are the basis for the scoring rubric as shown in245
Table 2.246

13 2-instrumental understanding247

Responses do not meet the criteria of precision, coherence, and purposefulness. However, responses address the248
questions and have minimal mathematical errors. Mathematical understanding tends to focus knowledge at the249
surface, or mechanical level.250

14 3-transitional understanding251

Responses show some elements of precision, coherence, and purposefulness. For instance, there is evidence of an252
attempt or effort to emphasize the key mathematical idea, its rationale, the logical progression of mathematical253
concepts, and the connectedness among different mathematical concepts, procedures, and ideas. In addition,254
responses show an attempt to scaffold mathematical ideas for students.255

15 4-relational understanding256

Responses exemplify precision, coherence, and purposefulness. There is consistent (or substantial) evidence of an257
attempt or effort to emphasize the key mathematical idea, its rationale, the logical progression of mathematical258
concepts, and the connectedness among different mathematical concepts, procedures, and ideas. In addition,259
responses show attention to how to scaffold mathematical ideas to students (e.g., from simple to complex; from260
specific to general).261

Using this rubric, responses to the scenario question were scored on a scale of 1 to 4 (blank responses were262
categorized as missing data and no one in the sample scored 4). Quantitatively, we examined the frequency263
distributions of scores for each of the questions by college major. For the qualitative content analysis, we first264
describe several key patterns that reveal students’ understanding of slope. We then compare the quality of265
reasoning between the observed students’ responses and the level-4 response (described below) based on the266
three criteria described above. In addition, we compare the quality of the responses between those who took the267
three-course sequence coursework focusing on grades 6 through 12 mathematics topics versus those who did not.268
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19 . THE SLOPE OF THE LINE CAN BE CALCULATED USING POINTS P
(THE POINT WE USED TO DEFINE THE SLOPE) AND S (ANY OTHER
POINT ON THE LINE). 2. WE CAN CALCULATE THE SLOPE OF A LINE
BY DIVIDING THE LENGTH OF THE VERTICAL LINE SEGMENT BY THE
LENGTH OF THE HORIZONTAL LINE SEGMENT OF . BECAUSE WE HAD
SHOWN EARLIER THAT THE POINT P USED TO DEFINE THE SLOPE IS
ARBITRARY (I.E., CAN BE ANY POINT ON THE LINE) AND WE HAD
DEFINED S TO BE ANOTHER ARBITRARY POINT ON THE LINE, THEN
THE CONCLUSIONS ABOVE CAN BE GENERALIZED INTO THE
FOLLOWING:

16 d) A Sample Response Exhibiting Deep Understanding of269

Slope270

A response representing deep understanding of slope (i.e., level-4 response) begins with the definition of the slope271
of a line:272

The key mathematical idea underlying this question is that the slope of a line can be calculated using any two273
points on the line (i.e., independence of any two distinct points on the line). So how can we help students learn274
this key idea? Before I use as shown in the picture, I would first review with students how the slope of a line is275
defined: given a line and assuming it slants upward (as the picture shows), let’s take a point P on the line, go 1276
unit horizontally to point R, then go upward (or vertically) and let the vertical line from R intersect the given277
line at point Q. Then the definition of slope is the length of segment QR (i.e., |QR|). To answer this question,278
students need to invoke their knowledge of similar triangle. This is an important step towards defining the slope279
precisely and completely, as the respondent points out: I would expect the following explanation from students:280
With the definition complete, the respondent adds complexity by posing the following question: ”Can we find281
another, more flexible way of finding the slope of a line, without having to measure 1 unit horizontally from a282
point on the line and then the vertical distance up?” This step builds on the previous step of defining the slope283
of the line but uses similar ideas (i.e., similar triangle), as shown below:284

To answer this question, let’s do the following: let P, Q, R be as before (i.285

17 e., P is any point on the line used to define the slope286

of the line) and now suppose we take any other point on287

the line, call it S. From S, draw a vertical line and let it288

meet the horizontal line PR at point T. So now look at the289

two triangles, ?PQR and ?PST. What can we say about290

them? Hopefully students would recognize that they are291

similar triangles; if not, I’d tell them but ask them to prove292

(explain) why the triangles are similar (by the angle-angle293

criterion: right angles formed by perpendicular lines and294

corresponding angles on parallel lines).295

After establishing the fact that , I would then ask: what can we say about the relationship between the sides of296
the triangles? One of the things I would expect students to mention would be:297

18 Hopefully they would recognize that, since |PR|=1, the left298

side of the equation is equal to line segment |QR|, which is299

the slope of the line. In other words:300

Of course, the respondent is very purposeful about why they are doing this exercise: From this exercise, I would301
hope students reached the following conclusions:302

1303

19 . The slope of the line can be calculated using points P304

(the point we used to define the slope) and S (any other305

point on the line). 2. We can calculate the slope of a line by306

dividing the length of the vertical line segment by the length307

of the horizontal line segment of . Because we had shown308

earlier that the point P used to define the slope is arbitrary309

(i.e., can be any point on the line) and we had defined S to310

be another arbitrary point on the line, then the conclusions311

above can be generalized into the following:312

1. The slope of the line can be calculated using any two distinct points, P and S, on the line.313
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20 We can calculate the slope of a line by dividing314

the length of the vertical line segment by the length of the horizontal line segment of . This purposefulness315
brings mathematical closure to students and we see how the respondent is very deliberate in scaffolding key ideas316
throughout the process. Having shown the underlying key ideas, the respondent then goes back to the original317
question (i.e., using P1, P2, P3, and P4) and has students work out the proof on their own:318

To319

21 reinforce these main ideas, I would have students work in320

groups or pairs to prove (using similar triangle properties)321

that the slope of the line calculated by (in the original graph322

above) is the same as the slope calculated by . Once they323

finish working in groups, I’d have a whole-class discussion324

and ask students to show how they did the proof. Below is325

an example of what I’d expect:326

Draw in the horizontal and vertical lines through points and let them intersect at points Q and R as shown below:327
We claim that the two triangles formed, ?P 1 P 2 Q and ? P 3 P 4 R, are similar. . Therefore, the slope can328

be calculated by any two distinct points on the line.329
Looking at this level-4 response overall, we see that the respondent is mindful of the purpose of each activity,330

focuses on the key ideas and scaffolds these key ideas in a coherent way, starting with the definition, using it as a331
basis for subsequent logical reasoning, and leading students from simple ideas to more complex ones, from specific332
examples to general cases. To what extent do the sampled students in our study exhibit such understanding?333
What does their current understanding of slope look like? We address these questions in the following sections.334

22 IV.335

23 Findings336

We first present some quantitative data to show the distribution of students’ rating scores. We then describe the337
patterns emerged in their responses to demonstrate the characteristics of their understanding of slope. As shown338
in Table 3, close to two-thirds of the students scored 1 whereas the rest scored 2 or 3 and none scored 4. This339
means that the majority of the students’ understanding of slope was inaccurate, fragmented, and incomplete,340
lacking precision, coherence, and purposefulness (i.e., scoring 1). Those who scored 3 took Mathematics of the341
Secondary School Curriculum, a 3-semester course sequence designed to teach grades 6-12 content to math majors342
interested in pursuing teaching as a career. Content analysis of students’ responses revealed several key patterns343
with regards to their understanding of slope. We describe these patterns and discuss insights derived from them344
in the following sections.345

24 b) Defining Slope Formulaically as Consistent with the K-12346

Textbooks (Rise over Run)347

As mentioned in the previous section, the frequency distribution of students’ responses shows that only a handful348
of students scored at the level 3 while the rest at levels 1 and 2 and no one at level 4 (the highest level).349
Regardless of their scoring levels, all of the students in the study sample exhibit one qualitative characteristic in350
their responses which is to define slope formulaically in one way or another, consistent with how slope is defined351
in the K-12 textbooks (i.e., rise over run) as shown in the following example:352

Students’ responses such as this example show how deeply entrenched students’ K-12 learning is. It signals353
the tendency of these STEM majors to resort to what they have learned as K-12 students to teach the concept354
as they were taught themselves.355

Further examinations of some students’ responses reveal a bit of ambiguity on their part as to what rise over356
run really means. For instance, one student said slope is ”how much a graph goes in the xaxis and how far a357
graph goes on the y-axis”; another student stated, ”I would explain that the slope is the change between two358
points. This ”rise” of the ”run” that happens to get from one point to another”; and a third student described,359
”The slope of a line is just the ratio of the change in the y-values to the change in x values”. It is not clear what360
it means for a graph to go both in xaxis and y-axis. And it is not accurate to say slope moves point A to point B361
(how and where) or slope is change in the y-values to the change in x-values (which y’s and x’s). The inaccuracy362
in these responses suggests that students are not making a connection between a linear equation and its graph363
(i.e., the graph of a linear equation is a collection of all points of ordered pairs (x, y) that satisfy the linear364
equation). To some extent, this finding is not surprising, since the graph of a linear equation is not defined for365
them when they first learned the topic as K-12 students. Without connecting a linear equation with its graph,366
students will not be able to see the connections between: (1) how slope of a line is defined (using their language,367
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25 E) HOW DID THOSE SCORED 3’S COMPARE TO THOSE SCORED 1’S
OR 2’S?

how much ’rise’ given 1-unit ’run’ in the Cartesian plane), ( ??) the formula used to calculate the slope using368
two distinctive points on the line, and (3) why the calculation does not depend on which two distinctive points369
one uses (i.e., they will always give the same answer). The scenario asked for the proof that the slope of the line370
can be calculated using any two distinctive points on the line. The majority of the responses (scores 1 and 2)371
took what needs to be proven as given as shown in this typical example:372

The reasoning process goes that since the slope is constant, the formula using the two pairs of points shown373
to calculate slope will be the same. Slight variation to this sample response is that some students referenced m,374
as demonstrated in this example:375

As shown in the above example, the student reasoned that using P1 and P2 will give slope m1 and using P3376
and P4 will give slope m2. Since the four points are on the same line, m1 must be equal to m2. But what the377
question is asking for is why the slope is the same and why ANY two distinctive points will give the same answer.378

Some students conflate demonstrating with a few examples with proofing, as shown in this example:379
It is a good pedagogical practice to use exploration and draw tentative hypothesis based on a few examples.380

But it is not good to equate demonstrating with a few examples with what proof means. How do we know that381
all points beyond the few examples will work in the same way? This is the focus question that we expect K-12382
students to be able to show through proof. Consequently we expect future mathematics teachers to be able to do383
the proof themselves as well. A few students mentioned similar triangle in their responses but were vague about384
why the concept of similar triangle is relevant in this context. For instance, one student mentioned that, ”first I385
would make sure students understand the concept of similarity of triangles and then from this non-vertical line,386
construct a relationship of slopes and triangles, and that the idea of slopes is basically an idea that follows from387
similar triangles and the ratios of their hypotenuse”. It was not clear what this student meant by ”constructing a388
relationship of slopes and triangles”. On the other hand, the term ”slopes” suggests there are more than one slopes389
(of the non-vertical line). Also it is incorrect to say that, ”slopes?are ratios of their hypotenuse”. Examples like390
this call into question whether students really know why similar triangle concept is the key to understanding the391
independence of points when calculating the slope of a line using two distinctive points on the line. Furthermore,392
the responses showed inaccuracy (ratio of their hypotenuse).393

A few students explained why similar triangles are relevant, but even these students relied on slope=m=rise394
over run, showing on the graph which line segment is rise and which is run, and then jumping directly to rise/run395
(line segment) is the same due to similar triangles, as demonstrated by this example.396

There were some inaccuracy here because similar triangles only tell us |P 4 B|/|P 2 A|=|P 3 B|/|P 1 A|. There397
were interim steps that are needed in order to go from |P 4 B|/|P 2 A|=|P 3 B|/|P 1 A| to |P 4 B|/|P 3 B|=|P 2398
A|/|P 1 A| (which happens to be the slope or ’rise/run” as the student wrote). It seems the student knew what399
the final answer would be but did not show the process of how one could get to the final answer.400

In addition to inaccurately articulating the ratios of which pairs of lines were equivalent to each other, other401
inaccuracies included locating the position of a point incorrectly in the Cartesian plane using the two coordinates402
(i.e., x-coordinate and y-coordinate) or calculating the length of a segment of a line using the coordinates. In403
the following example, parallel and perpendicular lines from the points given (i.e., P 1, P 2, P 3, and P 4 ) were404
drawn to form two right triangles; however, the points at which the lines intersect were wrongly defined. In the405
above graph, the position of points V and R defined by x and y coordinates should be V(X 4 , Y 3 ) and R(X406
2, Y 1 ) respectively, and not V(X 3 , Y 4 ) and R(X 1, Y 2 ) as the student stated. And the length of the line407
segment |P 1 R| should be |X 1 |-|X 2 | and not X 2 -X 1 straight out according to this student (a few others did408
the same). It seems students who did this were trying to get at the slope formula (m= Y 2 -Y 1 / X 2 -X 1 ). But409
the reasoning for why |X 1 |-|X 2 | is equivalent to X 2 -X 1 is missing. This calls into question whether students410
really understood the connection between linear equation and its graph and other mathematical concepts such411
as absolute values.412

25 e) How Did Those Scored 3’s Compare to Those Scored 1’s413

or 2’s?414

Though none of the students in the study sample scored 4’s and only about half a dozen students scored 3’s,415
there is distinctive variation in the quality of their understanding. Specifically, those who scored 3’s all referenced416
similar triangles where none of the 1’s and 2’s did. Furthermore, all but one of these study participants (i.e., those417
scoring 3’s) showed the reasoning process of why similar triangle is important in understanding the independence418
of points used to calculate slope. In contrast, those scoring 1’s and 2’s mostly invoked the formula of slope419
calculation and engaged in circular reasoning. In general, attempts to emphasize the key mathematical idea, its420
rationale, the logical progression of mathematical concepts, and the connectedness among different mathematical421
concepts, procedures, and ideas are fairly consistent among the highest scoring respondents (i.e., those scored 3’s)422
but notably absent among the lowest scoring respondents (those scored 1’s). In addition, attention to scaffolding423
ideas in a systematic and coherent way is present in some responses that scored 3’s but missing in responses424
that scored 1’s or 2’s. Interestingly, participants who scored 3’s were the ones that had taken the math course425
sequence that deals with mathematical tops at secondary level.426

[Note: Even among those who scored 3’s, there was a lack of inaccuracy here and there. For instance,427
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missidentification of which ratios of pairs of legs were equivalent to each other in similar right triangles is428
common. In addition, all of them defined slope formulaically.]429

26 f) What Do We Observe Comparing Students’430

Responses to the Level-4 Response? Several key differences emerged when we compare these STEM majors’431
responses to the level-4 one. First, all respondents defined slope formulaically as rise over run using two points432
on the line (or symbolically as y2-y1/x2-x1). Defining slope in this way in our view creates several conceptual433
difficulties for learners. To begin with, how do we know any two points will work? Secondly, what does it434
really mean slope is change in y with unit change in x (where in the formula did unit come into play)? Thirdly,435
what is the connection between the algebraic expression of slope and its graphical/geometric representation? In436
contrast, the level-4 response defines the slope by directly using the graph of the linear equation and shows on437
the graph what it means slope is the rise of y over 1-unit x and that this definition of slope is independent of the438
point one chooses. Once the definition of slope is complete, the response builds on the definition and scaffolds439
students through a purposeful and coherent process to derive the key ideas that slope of a line can be calculated440
using any two distinct points, for example P and S, on the line and that we can calculate the slope of a line by441
dividing the length of the vertical line segment by the length of the horizontal line segment of (see Figure 1).442
This purposefulness brings mathematical closure to students. Second, a majority of respondents took what needs443
to be proven as given and engaged in circular reasoning. In other words, instead of proving that the slope of a444
line can be calculated using any two distinctive points on the line, they started with the premise that the slope445
is constant and therefore the formula definition of slope using the two pairs of points shown on the graph is the446
same. A few considered using a good pedagogical practice of exploration (i.e., try a few points and observe);447
however, they conflated demonstration through a few examples with mathematical proof. In other words, there448
are infinite numbers of points on a line, how do we know beyond the sampled points, the rest will work the same449
way as the sampled ones? Finally, we observed inaccuracies in terms of articulating the ratios of which pairs of450
lines were equivalent to each other in similar triangles, locating the position of a point correctly in the Cartesian451
plane using the two coordinates (i.e., x-coordinate and ycoordinate), or calculating the length of a segment of452
the horizontal (or vertical) line using the coordinates. These inaccuracies left us wonder if the difficulties were453
caused by not having the opportunity to learn the connection between linear equation and its graph or by a lack454
of understanding of what the meaning of a line is (i.e., definition of a line).455

These weaknesses in responses showed holes in these STEM majors’ conceptual understanding of slope and456
of the connection between linear equation and its graph. These students were STEM majors at one of the457
research universities. They represent the strongest pool of candidates for future mathematics teachers. Even458
these students struggled with proving that the slope of a line can be calculated by using any two distinctive459
points on the line. It is important to emphasize that our intention is not to criticize their lack of conceptual460
understanding of slope. Rather our results signal how important it is to lay a strong foundation of mathematics461
topics at K-12 level, because that is where future mathematics teachers learn topics that they will teach one day462
(given the current mathematics education system). We will discuss this issue further in the conclusion section.463

V.464

27 Summary and Discussion465

The concept of slope occupies a significant part of the early algebra curriculum and has wide applications in466
real world problems (e.g., studying the relationship between supply/demand and price of goods in economics)467
and is foundational for studying more advanced mathematical topics such as functions. Despite its importance,468
extensive research has documented difficulties both pre-service teacher candidates and in-service teachers had469
encountered in terms of understanding the concept of slope. This situation is likely to be exacerbated with the470
implementation of CCMS, because the new standards approach the slope concept in significantly different ways.471
One question naturally arises is how prepared pre-service teachers are in terms of meeting the expectation of472
CCMS. Our study investigates this question among a group of undergraduate STEM majors who are enrolled473
in an experimental teacher preparation program in one of the research universities. Though our study sample474
is relatively small and restricted to undergraduate STEM majors who selfselected themselves into the Cal Teach475
courses at one research university, key insights derived from studying these participants are nonetheless significant.476
These undergraduates represent some of the strongest candidates for the teaching force. Studying the nature of477
their mathematical understanding of slope according to the CCMS is important in and of itself.478

We found that the STEM majors in our study sample do not possess the deep understanding of the slope479
concept. Specifically, among the study participants, most of them scored 1’s and only a small number of480
participants scored 3. This suggests that even though these STEM majors might be strong in their disciplinary481
knowledge, they do not necessarily have the depth of understanding of slope in order to teach at the level that482
is required by the new CCMS.483

Furthermore, the small number of participants who scored 3’s are math majors who were taking Mathematics484
of the Secondary School Curriculum, a 3semester course sequence designed to teach grades 6-12 content to math485
majors interested in pursuing teaching as a career. The principles underlying this course sequence reflect and486
are consistent with CCMS’s emphasis on reasoning and conceptual understanding. Non-math majors or math487
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majors who were not taking Mathematics of the Secondary School Curriculum mostly scored 1’s or 1’s and 2’s488
and none scored 3’s. These results signal the importance of explicitly teaching future math teachers the content489
knowledge that they will be teaching to their students down the road.490

In addition to these quantitative results, qualitative analysis of the characteristics of study participants’491
understanding of slope concept revealed holes in their conceptual understanding of slope and of the connection492
between linear equation and its graph. These students were STEM majors at one of the research universities.493
Even these students struggled with proving that the slope of a line can be calculated by using any two distinctive494
points on the line.495

Taken together, these findings have important implications for the content training of future math teachers in496
the era of CCMS in order to increase the quality of the teaching force in terms of their content preparation. Our497
focus on STEM majors is significant, because they represent the strongest pool of future mathematics teachers.498
In both research and practice, a college major in mathematics is used to signal a candidate’s content knowledge499
for teaching K-12 students, assuming that mathematics majors have the deep understanding of the K-12 topics500
to teach well at that level. This assumption is manifested to some extent in the recent efforts at recruiting501
undergraduate STEM majors into teaching through programs such as 100k10 in New York, UTeach in Texas,502
and UTeach replication sites across the country.503

What has not been brought to the forefront is the fact that the content focus of typical college mathematics504
courses serves a different purpose from content needed for teaching at the K-12 level (Askey, 1999;Wu, 2011a).505
Consequently the most direct resource for mathematics teachers, whether math major or not, to learn what506
they are supposed to teach is the mathematics they learned as K-12 students as shown in our study of their507
understanding of slope. Interestingly, one of the strongest oppositions to states adopting CCMS is the push508
against the federal government shoveling down a set of national standards onto local states. What these opponents509
failed to realize is the fact that there has been a de facto national mathematics curriculum at work, which is510
regarded as textbook school mathematics (TSM) (Wu, 2011c(Wu, , 2011d;;2015). TSM lacks the mathematical511
rigor, focus, and coherence that CCMS calls for. It is therefore reasonable to assume that students who went512
through TSM will not be adequately prepared to teach mathematics at the level that CCMS calls for, as supported513
by the findings of this study.514

Our study is set within a broader investigation of STEM majors’ mathematical content understanding of three515
critical early algebra topics (Newton & Poon, 2015). The findings on students’ understanding of slope mirror516
those from the broader study. In closing, we would like to discuss the broader implications of our Subject matter517
knowledge plays a central role in teaching (Ball, Hill, & Bass, 2005;Buchmann, 1984). In both research and518
practice, a college major in mathematics is used to signal a candidate’s content knowledge for teaching K-12519
students, assuming that math majors have the deep understanding of the K-12 topics to teach well at that level.520
What has not been brought to the forefront is the fact that the content focus of typical college mathematics courses521
serves a different purpose from content needed for teaching at the K-12 level (Askey, 1999;Wu, 2011a). Though522
efforts at recruiting undergraduate STEM majors to improve the quality of the teaching force in mathematics523
are commendable, we need to provide recruits with explicit content training of mathematics topics that they524
are expected to teach at the K-12 level. Otherwise, STEM majors will resort to the way they were taught as525
K-12 students when they become teachers one day. For example, the UC Berkeley Department of Mathematics526
is one of the few that offer courses specifically focusing on grades 6-12 content for mathematics majors who are527
interested in pursuing teaching as a career. We need policies that promote college mathematics departments’528
involvement in the training of future mathematics teachers.529

On the other hand, the fact that even mathematics majors who had gone through the course sequence in530
our study sample did not achieve a level-4 score signals the need for a synergistic training between content and531
pedagogy, and how the two (i.e., content and pedagogy) can become alive in the context of real world teaching532
and learning. As we emphasized earlier, our level-4 response was written to exemplify the three characteristics533
of content understanding and the level of standards (i.e., what level-4 could look like) is primarily based on534
normative and theoretical metric. We did, however, bring our own extensive teaching or research experiences535
of actual classroom instruction in K-12 classrooms when writing the level-4 response (e.g., how to scaffold ideas536
from simple to complex; from a specific example to a general case, etc. as opposed to just demonstrating our537
own ability to prove). In contrast, our study sample has limited exposures to real world K-12 classroom teaching538
and learning. The fact that programs such as UTeach emphasizes the integration of content and pedagogy539
on the one hand, and the integration of university learning and K-12 classroom placement on the other hand,540
points to a promising way to train future mathematics teachers. We need empirical studies to validate what we541
conceptualize as a level-4 response (e.g., do those who scored highest do better in terms of classroom practices542
and student learning than those who do not?) and to investigate how content, pedagogy, and actual classroom543
practice come together to impact students’ mathematical learning (e.g., studying the relationship between the544
qualify of program implementation and its impact). Our findings also have implications for using teachers’545
college mathematics coursework as a proxy measure of their content knowledge as many empirical studies have546
done. Empirical studies on the relationship between teachers’ college mathematics coursework and their students’547
mathematical performance have yielded mixed results. One possible explanation might be that having advanced548
mathematical knowledge at college level does not necessarily equate having deep understanding of K-12 content,549
which is necessary in order to translate this deep understanding into effective classroom practices in terms of550
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engaging K-12 students around substantive mathematics. Therefore, instead of using proxy measures such as551
college mathematics coursework, directly measuring teachers’ understanding of K-12 content they teach may552
help to produce consistent results on the relationship between teacher mathematical knowledge and students’553
achievement.554

Finally, our study findings could have potential implications for the professional development of inservice555
teachers in order to teach CCMS. Since most teachers did not have the opportunities to learn the content556
knowledge they need to teach from their college mathematics courses, they typically resort to the way they were557
taught as K-12 students (Adams & Krockover, 1997;Lortie, 1975). To improve the quality of teachers’ content558
understanding according to CCMS, we need inservice professional development activities that focus explicitly on559
the content knowledge they are teaching and at the level of rigor that is required by CCMS. 1

Figure 1:
560

1© 2015 Global Journals Inc. (US) -
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Figure 9:

Figure 10:

a) Previous Research, State Standards, and Textbooks
The conceptualization of slope in various
research studies shares some similarities. Common
definitions of slope include geometric ratio, algebraic
ratio, physical property, functional property, parametric
coefficient, trigonometricconception,calculus
conception, and real world representations (Moore-
Russo, Conner, & Rugg, 2011; Stump, 1999). While
comprehensive, these definitions can potentially pose
difficulties for the purpose of teaching and learning
because not only is the list long, but it is not clear from
existing literature how these different categories are
related to one another (i.e., mathematical coherence),
for what purposes (i.e., purposefulness), and under
what context to use which definition (i.e.,
connectedness).

Figure 11:

e) Our Framework of Mathematical Content
Understanding

Year 2015
( H )

[Note: Pre-]

Figure 12: Service Stem Majors’ Understanding of Slope According to Common Core Mathe-
matics Standards: An Exploratory Study
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1

CharacteristicsDescriptions Link to Other Scholars’ Ideas
Precision-Be explicit about precise definitions (e.g., use -Wu (2010a, 2011a, 2011b): precision;

definitions as a basis for logical reasoning); definition; reasoning
-Pay attention to precise statements (e.g., present -Ball (1990): possessing correct knowledge of
mathematical ideas clearly) concepts and procedures; understanding the

nature of mathematical knowledge and
mathematics as a field (e.g., what establishes
the validity of an answer?)

Coherence- Demonstrate interconnectedness of -Wu (2010a, 2011a, 2011b): coherence;
mathematical ideas (e.g., show the algebraic and purposefulness
geometric representations of a mathematical -Ball (1990): knowing the connections among
concept and idea, where appropriate); mathematical ideas
-Show logical/sequential progression of -Ma (1999): connectedness;multiple
mathematical ideas (e.g., show a deliberate effort representations; longitudinal coherence
at scaffolding mathematical ideas from simple to -Schoenfeld & Kilpatrick (2008): breadth; depth
complex, specific to general)

Purposefulness-Emphasize key or big mathematical ideas; -Wu (2010a, 2011a, 2011b): purposefulness;
-Provide rationale for why key mathematical ideas reasoning
are relevant to the teaching of a particular -Ball (1990): understanding the underlying
mathematical topic at hand principles and meanings

-Ma (1999): basic ideas
-Schoenfeld & Kilpatrick (2008): breadth

Figure 13: Table 1 :

2

Levels Descriptions
1-little
understanding

Figure 14: Table 2 :

a) Frequency Distribution of Students’ Scores
Table 3 displays the frequency distribution of
students’ scores.
Year 2015
( H )

Figure 15: Pre-Service Stem Majors’ Understanding of Slope According to Common Core
Mathematics Standards: An Exploratory Study
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3

Levels of Content Understanding Percentage
1: little understanding 65%
2: instrumental understanding 12%
3: transitional understanding 23%
4: relational understanding 0%

Figure 16: Table 3 :
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