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Abstract7

This study was conducted in an attempt to provide guidelines for practitioners regarding the8

optimal minimum calibration sample size for pretest item estimation in the computerized9

adaptive test (CAT) under WINSTEPS when the fixed-person-parameter estimation method10

is applied to derive pretest item parameter estimates. The field-testing design discussed in this11

study is a form of seeding design commonly used in the large-scale CAT programs. Under12

such as seeding design, field-test (FT) items are stored in an FT item pool and a13

predetermined number of them are randomly chosen from the FT item pool and administered14

to each individual examinee. This study recommends focusing on the valid cases (VCs) that15

each item may end up with given a certain calibration sample size, when the FT response data16

are sparse, and introduces a simple strategy to identify the relationship between VCs and17

calibration sample size. From a practical viewpoint, when the minimum number of valid cases18

reaches 250, items parameters are recovered quite well across a wide range of the scale.19

Implications of the results are also discussed.20

21

Index terms— field-test item calibration, calibration sample size, computerized adaptive test, pretest item22
calibration, WINSTEPS.23

1 Introduction24

nlike conventional paper-and-pencil tests (PPT), computerized adaptive tests (CATs) operate on the availability25
of a large pool of calibrated items ??Glas, 2010). In order for items to be calibrated, they need to go through26
a field-testing procedure which aims at assigning test items to examinees so that responses can be available27
for item parameter estimation ??Gage, 2009). In CAT, one popular field-testing procedure is to seed field-test28
(FT) items, also called pretest items, in among the operational items. Often, in a seeding design, FT items are29
stored in an FT item pool, and a predetermined number of them are randomly chosen from the FT item pool30
and administered to each individual examinee ??Buyske, 1998). This seeding approach has several advantages,31
such as preserving the testing mode, obtaining response data in an efficient manner, and reducing the impact of32
motivation and representativeness concerns related to administration of pretest items to volunteers (Par shall,33
1998).34
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Once responses to FT items are collected, items can be calibrated using an estimation method. Today, a36

number of software packages do this quite well. Examples are the joint maximum likelihood (JML) method37
implemented by WINSTEPS (Linacre, 2001) and the marginal maximum likelihood (MML) method using38
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1999). As a key issue in FT calibration is to make sure39
FT items are on the same scale as the operational items, a linking/scaling strategy needs to be considered as a40
part of the scope of the FT item calibration process. In general, any linking/scaling procedures available for PPT41
can be applied to CAT, and choice of a linking strategy can be predetermined for most CAT testing programs42
given such factors as FT strategy. Meng and Steinkamp (2009), comparing several pretest item linking designs for43
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4 B) ITEM POOL CHARACTERISTICS I. SCOREABLEITEM POOL

a live CAT program by using both simulated and empirical data, suggested that the fixed-personparameter (FP)44
estimation method outperforms both Fixed-item-parameter (FI) and Common-item linking with Stocking and45
Lord Transformation (CI) when pretest item response data are sparse. The FP method investigated by Meng and46
Steinkamp (2009) and in this study is commonly documented in the literature as Stocking’s A method (Stocking,47
1988), in which pretest items are estimated by fixing the examinee’s final ability estimates. As examinees’ final48
abilities are on the same scale as the operational item parameter estimates, the FT items are automatically on49
the same scale as the operational items. This approach has been widely applied by programs administering CAT50
exams under the Rasch model to derive pretest item parameter estimates (Meng & Steinkamp, 2009).51

As each individual examinee typically responds only to a subset of FT items in an FT item pool, it is expected52
that FT item response data will be sparse-a challenge to the accuracy of CAT FT item parameter estimates53
(Ban et al., 2001).The sparseness rate may vary upon the proportion of the number of pretest items that an54
individual examinee is administered over the total pretest item pool size-the smaller the proportion, the higher55
the sparseness rate. What’s more, a phenomenon called restricted range of ability (Haynie & Way, 1995;Hsu,56
Thompson, & Chen, 1998; Stocking, 1990) further complicates FT item calibration because item selection in57
CAT is customized to the examinee’s abilities-high-ability examinees tend to get harder items and vice versa58
for low-ability examinees. If the examinees used for the calibration sample do not vary enough in ability, item59
calibration results will be adversely impacted (Stocking, 1990). Fortunately, the seeding design which administers60
FT items at random regardless of the provisional ability estimates largely alleviates this concern.61

One practice that alleviates the effects of sparseness of response data on item parameter estimation accuracy62
is increasing calibration sample size so that only when an item has been administered to a sufficient number of63
test-takers are its parameters estimated. However, the literature on CAT does not seem to provide a general64
guideline about how large a calibration sample size needs to be to be deemed sufficient. In the absence of specific65
recommendations for CAT, it may be helpful to consult equivalent guidelines for PPT. For example, Wright and66
Stone (1979) recommended using a sample size of approximately 200 when item parameters are calibrated under67
the Rasch model. Hambleton, Swamina than, and Rogers (1991) suggested that sample sizes of at least 1,000,68
500, and 300 are needed to accurately estimate the item parameters of the three-, two-, and oneparameter item69
response models respectively. In a situation in which CAT FT item response data are sparse and sparseness rates70
vary as the result of different factors, such as the one discussed above, more studies are needed. What’s more, in71
light of the fact that the Rasch model is widely used in the large-scale statewide assessments (e.g., The Delaware72
Comprehensive Assessment System, The Oregon’s Assessment of Knowledge & Skills) delivered in the form of73
CAT, this issue merits a thorough investigation.74

For this study, CAT pretest items were randomly selected out of a pretest item pool for administration and75
calibrated under the Rasch model (Rasch, 1960) by using the WINSTEPS and FP linking method. Specifically,76
this study endeavored to achieve three goals: 1) introducing a simple strategy to identify the calibration sample77
size; 2) examining how different calibration sample sizes affect pretest item parameter estimate accuracy; and 3)78
making recommendations regarding the minimal calibration sample needed to achieve reasonable item parameter79
estimate accuracy.80

2 II.81

3 Method and Research Design82

A Monte Carlo simulation study was conducted to address the above research questions. selection and content83
balancing, which involved balancing the content of items administered to match a pre-specified desired percentage84
of content categories. To control the item exposure rate, one out of a set of items that could provide the85
most information at the current ability estimate was randomly administered to the examinee. The Bayesian86
estimation method (Owen, 1973) was used initially, with a prior having a certain mean and standard deviation.87
The maximum likelihood estimation (MLE) method took over when both correct and incorrect responses were88
available. To pass the test, examinees needed to answer a minimum of 60 items, with content constraints placed89
on the set of the items. When 95% of the confidence interval around the candidate’s current ability did not90
encompass the cut score, then the pass/fail decision was returned to the candidate. When the confidence interval91
included the cut score, candidates continued to take the test with the same content constraints until the current92
ability estimate was over or below the 95% confidence interval on the cut score or a maximum test length of 25093
items was reached.94

Field test items, seeded into the operational test, were selected for administration at slots randomly decided95
regardless of provisional ability estimate and content balancing. Each examinee was administered 15 pretest96
items, and they were randomly chosen out of 150 pretest items. Responses to field test items were not scored.97

4 b) Item Pool Characteristics i. Scoreableitem pool98

The scoreable item pool used in this study was simulated by mimicking the distribution of a real item pool used99
by a large-scale computerized adaptive test. The simulated item pool contained 1602 Rasch items distributed100
in eight content strands with a mean of -0.266 and a standard deviation of 1.76. By ”scoreable”, it means the101
responses to these items were counted toward the final ability estimates. Table 1 and Figure ?? present the102
descriptive statistics and distribution of item difficulties of this scoreable item pool.103
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The FT item pool consisted of 150 items randomly selected from the scoreable item pool described above. As104
mentioned previously, the response data for the FT items was sparse because only a subset of items was selected105
out of the FT item pool. Although randomly assigning FT items to examinees could theoretically ensure that106
FT items-regardless of their difficulty levels-get a similar level of exposure, it was observed that some items were107
exposed considerably more than others. Thus, the calibration sample size used in this study was decided by the108
minimum number of valid cases (denoted as VCs hereafter) that each field test item needed to contain.109

To identify how different calibration sample sizes yielded different VCs, a simulation study was conducted110
first, in which pretest item selection procedure (i.e., random selection) was mimicked using the pretest item111
pool only. Specifically, the predetermined number of FT items was administered to target examinee populations112
of different sizes, and then the number of VCs that each pretest item contained was counted given a specific113
calibration sample. The simulation results revealed that, to make sure that each field test item contained at least114
1000, 500, 250, 120, 60, or 30 responses respectively, the calibration sample sizes had to reach 11000, 6000, 3000,115
1500, 850, or 470 correspondingly. In other words, given that 15 items were selected out of a 150-item FT pool,116
the approximate ratio between calibration sample size and VC was between 10 and 12. Table 3 indicates the117
relationship between calibration sample size and VCs for each FT item. 1. The pre-specified number (denoted118
as N) of examinees under ”Calibration Sample Size” in Table 3 was randomly drawn out of the distribution with119
the mean of -.029 and the standard deviationof.4852. This distribution mimicked the target examinees’ ability120
distribution for a largescale CAT program. Each examinee was administered 15 FT items randomly drawn out of121
the FT item pool. This step yielded a sparse person-byitem response dataset of size N*150. 2. The computerized122
adaptive testing algorithm described under the CAT Model section was run to get an estimated ability for each123
of N examinees. This step yielded N ability estimates. 3. WINSTEPS was used to calibrate the FT items under124
default settings by fixing the estimated abilities obtained in 2). 4. Steps 1), 2), and 3) were replicated 100 times,125
resulting in 100 sets of item parameter estimates.126

5 e) Analysis127

The analysis for each field test item was focused on its calibration accuracy and precision, measured by bias,128
absolute bias (Abias), and mean squared error (MSE). Following are the equations used to compute the above129
statistics. Let k=1,2,?,100 replications and j= 1,2, ?,100 items. and denote the item difficulty parameter, i.e.,130
true item difficulty parameter and item difficulty parameter estimate respectively:? Bias 100 / ) ( ) ( 100 1 ? ?131
? ? ? ? ? = ? = k j kj j b b Bias Eq[1] ? Abias 100 / | ) ( | ) ( 100 1 ? ? ? ? ? ? ? = ? = k j kj j b b Abias Eq132
[2] ? MSE 100 / ) ( ) ( 100 1 2 ? ? ? ? ? ? ? = ? = k j kj j b b MSE Eq [3] III.133

6 Results134

The FP method is criticized for introducing errors in calibrating the FT items because it treats ability estimates135
as true abilities to maintain the scales of subsequent item pools (Ban et al., 2001), but estimated abilities may136
be different from true abilities. To ensure this is not a concern in the current study, true and estimated abilities137
were reported in Table 4. What’s more, average bias, average MSE, and correlation coefficient between estimated138
and true abilities ( ) were also computed and presented in Table 5. These statistics indicate that examinees’139
abilities were recovered very well with almost unbiased average ability estimates and low estimation errors. The140
average test length was 107 items. The procedures used for field test item calibration were described as follows.141
For each calibration sample size, the calibration procedure remained the same. One hundred replications were142
run for each calibration sample size.143

Year 2015 For some items, when the calibration sample size was small, there were some runs failing to yield144
valid item parameter estimates due to perfect scores, i.e., all of the responses to a certain item are either correct145
or incorrect. In the case of perfect scores, WINSTEPS can still report the item parameter estimates, but with146
very substantial standard errors. Thus, this study did not count a run as valid if the run involved estimating147
perfect scores.148

Figure 3 demonstrates the relationship between the number of runs yielding no available item parameter149
estimates and the item difficulty parameter. Clearly, the situation in which item parameter estimates were150
unavailable was more likely to occur with those items at the tails of the scale, in particular, easy items. Increasing151
the calibration sample size seemed to minimize the occurrence of the above situation. For example, when the152
calibration sample size was 470, item parameter estimates failed to be reported for 43 items in certain runs.153
However, only 6 items encountered the same problem when the calibration sample size was 1500. Bias. The154
magnitudes of the bias produced by different calibration sample sizes are plotted against true item difficulty155
parameter in Figure ??. In general, these plots indicate that easy items tend to be underestimated and vice versa156
for hard items. With the increase of VCs for each item, we can see that the magnitude of the bias became less157
pronounced. From the practical viewpoint, when a calibration sample size allowed VCs to reach 250, the bias158
for item parameter estimates was negligible for items with log its between -3 and 3. When a calibration sample159
allowed VCs to reach 1,000, item parameter estimates were almost unbiased. Table 6 also provides summary160
statistics about the absolute bias of item parameter estimates given by different VCs. Clearly, absolute bias161
also decreased with the increase of calibration sample size. Wright and Douglas (1977) proposed a simple bias162
correction method that can be used to remove the bias in an item parameter estimate using the JML method.163
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7 DISCUSSION AND CONCLUSIONS

In WINSTEPS, this method is implemented by a command called STBIAS, which involves multiplying the item164
parameter estimate by the correction factor (L-1)/L, where L is the test length. By default, STBIAS is not165
invoked in WINSTEPS unless it is set as Y. Wang and Chen (2005) reported that STBIAS can significantly166
reduce the magnitudes of the bias in item parameter estimation. To examine how the magnitude of bias was167
slightly improve item parameter estimates by yielding a slightly lower average absolute bias and reducing the168
spread of item parameter estimates. Figure 5 compares the average bias for item parameter estimates when169
STBIAS is and is not used. corrected by STBIAS for sparse response data like that in this study, item estimation170
was conducted by implementing STBIAS, and the magnitude of the bias in the item parameter estimate when171
STBIAS was not used was compared with that when STBIAS was used. The results, illustrated in MSEs for item172
parameter estimates exhibited very similar patterns to those for bias. Specifically, both easy and hard items tend173
to be associated with larger errors than items in the middle of the scale, particularly when calibration sample174
size yielded VCs lower than 250. When VC reached 250 and beyond, it is clear that the magnitudes of MSEs175
were negligible even for items with difficulty value beyond 3 log it in absolute value. Figure 6176

7 Discussion and Conclusions177

As mentioned previously, pretest item response data tend to be sparse under a seeding design in which only a178
subset of items is selected for administration in the CAT. Additionally, as FT items are likely to be exposed179
at different rates-some items receive more administrations than others, the question arises as to how large the180
calibration sample size needs to be so that item parameters are estimated accurately. This study was conducted181
in an attempt to provide practitioners certain guidelines about the optimal minimum calibration sample size for182
CAT pretest item estimation under WINSTEPS when the fixed-personparameter estimation method is applied183
to derive pretest item parameter estimates.184

Under such a design, as demonstrated, different calibration sample sizes lead to different average VCs given185
the ratio being fixed between the number of FT items administered to each examinee and the total FT item pool186
size. As expected, the larger the calibration sample size is, the larger the numbers of VCs are, and thus the better187
items are calibrated. This study recommends that, when the FT response data are sparse, focus should be placed188
on the valid cases that each item may end up with given a certain calibration sample size. As the methodology189
introduced in this study indicates, the relationship between VCs and calibration sample size can be very easily190
identified simply by simulating the operational FT item selection procedure using the FT item pool only. From a191
practical viewpoint, when the minimum number of valid cases reaches 250, item parameters are recovered quite192
well across a wide range of the scale. This number seems to be in agreement with, though slightly higher than,193
what Wright and Stone (1979) recommended-a sample size of approximately 200 for a paper-and-pencil test.194

Clearly, the ratio between the number of FT items administered to each examinee and the total FT item pool195
size plays a key role in deciding the calibration sample size. The smaller the ratio is, the smaller the calibration196
sample size is needed. Collecting responses from a large sample may not be an issue for largevolume testing197
programs, but may be so for smallvolume ones. Thus, to help item throughput, it is recommended to keep this198
ratio to a low number given the use of the same field-testing and calibration procedure.199

Unlike what is reported in Wang and Chen (2006) in which biases of item parameter estimates are significantly200
corrected by the STBIAS command especially in the extreme situations, the STBIAS command only slightly201
improved estimate accuracy in the current study. A close look at the results revealed that L was defined as202
150 (i.e., the total number of the items in the item pool) rather than the actual number of items (i.e., 15203
items) administered to each examinee when STBIAS was set as Y. Clearly, if L is a large number, (L-1)/L204
tends to approach unity, thus playing a weaker role in bias correction. Therefore, given the situation in which205
a large calibration sample is unaffordable and STBIAS is in need to improve item estimate accuracy, it is not206
recommended to administer items out of a large FT item pool. This recommendation is tied up with keeping a207
reasonable ratio as discussed above.208

As mentioned in the Results section, the FP method has the potential to introduce errors in calibrating the209
FT items especially when ability estimates are inaccurate. The CAT model mimicked in this study is a pass/fail210
classification test, implying that ability estimates near the cut score may be fairly inaccurate and thus provide211
a poor linking. This does not seem to be a concern in this study, as Table 5 indicates that ability estimates are212
recovered quite well. The fact that the average test length (i.e., 107 items) is considerably long plays a key role.213
However, it is anticipated that poor ability estimates may produce a poor linking, thus challenging the results214
in this study. Future research should be conducted along this line to examine how ability estimates affect item215
parameter estimate accuracy in such a seeding FT item design in the CAT.216

Investigation into item parameter estimation accuracy was conducted in this study by considering calibration217
sample size as the only affecting factor. In reality, such factors as FT item position or calibration sample218
distribution also exert impacts. Future research should look at how these factors interact with each other to219
affect estimate accuracy. Additionally, item calibration was conducted by using only one linking design and220
estimation method. Adding different linking designs and estimation methods, in conjunction with the factors221
mentioned above, also merits further research.222
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Figure 3:
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Figure 4: Figure 3 :
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7 DISCUSSION AND CONCLUSIONS

2

and Figure 2 present the
descriptive statistics and distribution of item difficulties
of this FT item pool. These FT items spanned a wide
range of the ability scale.

Figure 6: Table 2

1

Total Number Mean Std. Deviation Minimum Maximum
b 1602 -0.266 1.760 -4.418 3.301

[Note: Figure 1 : Scoreable item difficulty distribution]

Figure 7: Table 1 :

2

Total Std.
Number Mean Deviation Minimum Maximum

b 150 -0.340 1.817 -4 3.19

Figure 8: Table 2 :

3

Calibration Sample Size 11000 6000 3000 1500 850 470
VC 1000 500 250 120 60 30

Figure 9: Table 3 :

4

Std.
Mean Deviation Maximum Minimum

? -0.003 0.505 1.528 0.010
? ? 0.021 0.568 1.836 -1.853

Figure 10: Table 4 :

5

Figure 11: Table 5 :
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6

Std.
VC/Calibration sample Maximum Minimum Mean Deviation
30/470 .472 .000 .069 .071
60/850 .196 .001 .062 .057
120/1500 .192 .000 .047 .044
250/3000 .100 .000 .035 .028
500/6000 .083 .000 .031 .022
1000/11000 .069 .001 .026 .017

Figure 12: Table 6 :

7

Year 2015

Figure 13: Table 7 ,

7

Estimates
VC Mean STBIAS=N STBIAS=Y STBIAS=N STBIAS=Y STBIAS=N STBIAS=Y STBIAS=N STBIAS=Y Std. Deviation Max Min
30 0.069 0.065 0.071 0.074 0.493 0.493 0.000 0.000
60 0.062 0.053 0.057 0.050 0.177 0.205 0.000 0.000
120 0.047 0.039 0.044 0.037 0.172 0.205 0.000 0.000
250 0.035 0.028 0.028 0.022 0.081 0.156 0.000 0.000
500 0.031 0.023 0.022 0.015 0.062 0.075 0.000 0.000
1000 0.026 0.019 0.017 0.012 0.051 0.051 0.000 0.000 Year 2015
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Note. N represents calibration sample size Global
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[Note: © 2015 Global Journals Inc. (US) -]

Figure 14: Table 7 :
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