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CAT Field-Test Item Calibration Sample Size: 
how Large is Large under the Rasch Model? 

Calibration Sample Size for CAT Field-Test Items 

Wei He 

Abstract-  This study was conducted in an attempt to provide 
guidelines for practitioners regarding the optimal minimum 
calibration sample size for pretest item estimation in the 
computerized adaptive test (CAT) under WINSTEPS when the 
fixed-person-parameter estimation method is applied to derive 
pretest item parameter estimates. The field-testing design 
discussed in this study is a form of seeding design commonly 
used in the large-scale CAT programs. Under such as seeding 
design, field-test (FT) items are stored in an FT item pool and 
a predetermined number of them are randomly chosen from 
the FT item pool and administered to each individual 
examinee. This study recommends focusing on the valid 
cases (VCs) that each item may end up with given a certain 
calibration sample size, when the FT response data are 
sparse, and introduces a simple strategy to identify the 
relationship between VCs and calibration sample size. From a 
practical viewpoint, when the minimum number of valid cases 
reaches 250, items parameters are recovered quite well 
across a wide range of the scale. Implications of the results 
are also discussed. 

 field-test item calibration, calibration sample 
size, computerized adaptive test, pretest item 
calibration, WINSTEPS. 

I. Introduction 

nlike conventional paper-and-pencil tests (PPT), 
computerized adaptive tests (CATs) operate on 
the availability of a large pool of calibrated items 

(Glas, 2010). In order for items to be calibrated, they 
need to go through a field-testing procedure which aims 
at assigning test items to examinees so that responses 
can be available for item parameter estimation (Gage, 
2009). In CAT, one popular field-testing procedure is to 
seed field-test (FT) items, also called pretest items, in 
among the operational items. Often, in a seeding 
design, FT items are stored in an FT item pool, and a 
predetermined number of them are randomly chosen 
from the FT item pool and administered to each 
individual examinee (Buyske, 1998). This seeding 
approach has several advantages, such as preserving 
the testing mode, obtaining response data in an efficient 
manner, and reducing the impact of motivation and 
representativeness concerns related to administration of 
pretest items to volunteers (Par shall, 1998). 
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Once responses to FT items are collected, 
items can be calibrated using an estimation method. 
Today, a number of software packages do this quite 
well. Examples are the joint maximum likelihood (JML) 
method implemented by WINSTEPS (Linacre, 2001) and 
the marginal maximum likelihood (MML) method using 
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1999). 
As a key issue in FT calibration is to make sure FT items 
are on the same scale as the operational items, a 
linking/scaling strategy needs to be considered as a 
part of the scope of the FT item calibration process. In 
general, any linking/scaling procedures available for PPT 
can be applied to CAT, and choice of a linking strategy 
can be predetermined for most CAT testing programs 
given such factors as FT strategy. Meng and Steinkamp 
(2009), comparing several pretest item linking designs 
for a live CAT program by using both simulated and 
empirical data, suggested that the fixed-person-
parameter (FP) estimation method outperforms both 
Fixed-item-parameter (FI) and Common-item linking with 
Stocking and Lord Transformation (CI) when pretest 
item response data are sparse. The FP method 
investigated by Meng and Steinkamp (2009) and in this 
study is commonly documented in the literature as 
Stocking’s A method (Stocking, 1988), in which pretest 
items are estimated by fixing the examinee’s final ability 
estimates. As examinees’ final abilities are on the same 
scale as the operational item parameter estimates, the 
FT items are automatically on the same scale as the 
operational items. This approach has been widely 
applied by programs administering CAT exams under 
the Rasch model to derive pretest item parameter 
estimates (Meng & Steinkamp, 2009).  

As each individual examinee typically responds 
only to a subset of FT items in an FT item pool, it is 
expected that FT item response data will be sparse—a 
challenge to the accuracy of CAT FT item parameter 
estimates (Ban et al., 2001).The sparseness rate may 
vary upon the proportion of the number of pretest items 
that an individual examinee is administered over the 
total pretest item pool size—the smaller the proportion, 
the higher the sparseness rate. What’s more, a 
phenomenon called restricted range of ability (Haynie & 
Way, 1995; Hsu, Thompson, & Chen, 1998; Stocking, 
1990) further complicates FT item calibration because 
item selection in CAT is customized to the examinee’s 

U 

  
  

  
 V

ol
um

e 
X
V
  

Is
su

e 
I 
 V

er
sio

n 
I 

  
  
 

  

65

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

© 2015   Global Journals Inc.  (US)

-

Keywords:

Ye
ar

20
15



abilities—high-ability examinees tend to get harder 
items and vice versa for low-ability examinees. If the 
examinees used for the calibration sample do not vary 
enough in ability, item calibration results will be 
adversely impacted (Stocking, 1990). Fortunately, the 
seeding design which administers FT items at random 
regardless of the provisional ability estimates largely 
alleviates this concern.   

One practice that alleviates the effects of 
sparseness of response data on item parameter 
estimation accuracy is increasing calibration sample 
size so that only when an item has been administered to 
a sufficient number of test-takers are its parameters 
estimated. However, the literature on CAT does not 
seem to provide a general guideline about how large a 
calibration sample size needs to be to be deemed 
sufficient. In the absence of specific recommendations 
for CAT, it may be helpful to consult equivalent 
guidelines for PPT. For example, Wright and Stone 
(1979) recommended using a sample size of 
approximately 200 when item parameters are calibrated 
under the Rasch model. Hambleton, Swamina than, and 
Rogers (1991) suggested that sample sizes of at least 
1,000, 500, and 300 are needed to accurately estimate 
the item parameters of the three-, two-, and one-
parameter item response models respectively. In a 
situation in which CAT FT item response data are sparse 
and sparseness rates vary as the result of different 
factors, such as the one discussed above, more studies 
are needed. What’s more, in light of the fact that the 
Rasch model is widely used in the large-scale statewide 
assessments (e.g., The Delaware Comprehensive 
Assessment System, The Oregon’s Assessment of 
Knowledge & Skills) delivered in the form of CAT, this 
issue merits a thorough investigation.  

For this study, CAT pretest items were randomly 
selected out of a pretest item pool for administration 
and calibrated under the Rasch model (Rasch, 1960) by 
using the WINSTEPS and FP linking method. 
Specifically, this study endeavored to achieve three 
goals: 1) introducing a simple strategy to identify the 
calibration sample size; 2) examining how different 
calibration sample sizes affect pretest item parameter 
estimate accuracy; and 3) making recommendations 
regarding the minimal calibration sample needed to 
achieve reasonable item parameter estimate accuracy.  

II. Method and Research Design 

A Monte Carlo simulation study was conducted 
to address the above research questions. 

 
 
 
 
 
 

  

 

selection and content balancing, which involved 
balancing the content of items administered to match a 
pre-specified desired percentage of content categories. 
To control the item exposure rate, one out of a set of 
items that could provide the most information at the 
current ability estimate was randomly administered to 
the examinee. The Bayesian estimation method (Owen, 
1973) was used initially, with a prior having a certain 
mean and standard

 

deviation. The maximum likelihood 
estimation (MLE) method took over when both correct 
and incorrect responses were available. To pass the 
test, examinees needed to answer a minimum of 60 
items, with content constraints placed on the set of the 
items. When

 

95% of the confidence interval around the 
candidate’s current ability did not encompass the cut 
score, then the pass/fail decision was returned to the 
candidate. When the confidence interval included the 
cut score, candidates continued to take the test with the 
same content constraints until the current ability 
estimate was over or below the 95% confidence interval 
on the cut score or a maximum test length of 250 items 
was reached. 

 

Field test items, seeded into the operational 
test, were selected for administration at slots randomly 
decided regardless of provisional ability estimate and 
content balancing. Each examinee was administered 15 
pretest items, and they were randomly chosen out of 
150 pretest items. Responses to field test items were not 
scored. 

 

b)

 

Item Pool Characteristics

 

i.

 

Scoreableitem pool

 

The scoreable item pool used in this study was 
simulated by mimicking the distribution of a real item 
pool used by a large-scale computerized adaptive test. 
The simulated item pool contained 1602 Rasch

 

items 
distributed in eight content strands with a mean of -
0.266 and a standard deviation of 1.76. By “scoreable”, 
it means the responses to these items were counted 
toward the final ability estimates. Table 1 and Figure 1 
present the descriptive statistics and distribution of item 
difficulties of this scoreable item pool. 

 

  

The FT item pool consisted of 150 items 
randomly selected from the scoreable item pool 
described above. Table 2 and Figure 2 present the 
descriptive statistics and distribution of item difficulties 
of this FT item pool. These FT items spanned a wide 
range of the ability scale. 
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a) CAT Model
The CAT model employed in this study 

mimicked a large-scale operational CAT program. The 
item response model used was the Rasch model. The 
item selection algorithm involved maximum information 

ii. FT item pool
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Table 1 :  Descriptive Statistics for the Scoreable Items 

 Total 
Number Mean 

Std. Deviation Minimum Maximum 

b 1602 -0.266 1.760 -4.418 3.301 

 

Figure 1 :  Scoreable item difficulty distribution 

Table 2 :  Descriptive Statistics for the Field Test Items 

 Total 
Number

 
Mean

 Std. 
Deviation

 
Minimum

 
Maximum

 

b
 

150
 

-0.340
 

1.817
 

-4
 

3.19
 

 

Figure 2 :  Field item difficulty distribution 

c) Determine Calibration Sample Size 
As mentioned previously, the response data for 

the FT items was sparse because only a subset of items 

was selected out of the FT item pool. Although randomly 
assigning FT items to examinees could theoretically 
ensure that FT items—regardless of their difficulty 
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levels—get a similar level of exposure, it was observed 
that some items were exposed considerably more than 
others. Thus, the calibration sample size used in this 
study was decided by the minimum number of valid 
cases (denoted as VCs hereafter) that each field test 
item needed to contain.  

To identify how different calibration sample 
sizes yielded different VCs, a simulation study was 
conducted first, in which pretest item selection 
procedure (i.e., random selection) was mimicked using 
the pretest item pool only. Specifically, the 
predetermined number of FT items was administered to 
target examinee populations of different sizes, and then 

the number of VCs that each pretest item contained was 
counted given a specific calibration sample. The 
simulation results revealed that, to make sure that each 
field test item contained at least 1000, 500, 250, 120, 60, 
or 30 responses respectively, the calibration sample 
sizes had to reach 11000, 6000, 3000, 1500, 850, or 470 
correspondingly. In other words, given that 15 items 
were selected out of a 150-item FT pool, the 
approximate ratio between calibration sample size and 
VC was between 10 and 12. Table 3 indicates the 
relationship between calibration sample size and VCs 
for each FT item.  

Table 3 :  Relationship Between Calibration Sample Size and Minimum Number of Valid Cases (VC) Per Item 

Calibration Sample Size
 

11000
 

6000
 

3000
 

1500
 

850
 

470
 

VC
 

1000
 

500
 

250
 

120
 

60
 

30
 

  

 

1.
 

The pre-specified number (denoted as N) of 
examinees under “Calibration Sample Size” in Table 
3 was randomly drawn out of the distribution with 
the mean of -.029 and the standard 
deviationof.4852. This distribution mimicked the 
target examinees’ ability distribution for a large-
scale CAT program. Each examinee was 
administered 15 FT items randomly drawn out of the 
FT item pool. This step yielded a sparse person-by-
item response dataset of size N*150.

 

2.
 

The computerized adaptive testing algorithm 
described under the CAT Model section was run to 

get an estimated ability for each of N examinees. 
This step yielded N ability estimates. 

 

3.

 

WINSTEPS was used to calibrate the FT items under 
default settings by fixing the estimated abilities 
obtained in 2).  

 

4.

 

Steps 1), 2), and 3) were replicated

 

100 times, 
resulting in 100 sets of item parameter estimates. 

 

e)

 

Analysis

 

The analysis for each field test item was 
focused on its calibration accuracy and precision, 
measured by bias, absolute bias (Abias), and mean 
squared error (MSE).  Following are the equations used 
to compute the above statistics. Let k=1,2,…,100 
replications and  j= 1,2, …,100 items.  and denote the 
item difficulty parameter, i.e., true item difficulty 
parameter and item difficulty parameter estimate 
respectively:

 

• Bias 100/)ˆ()(
100

1








−= ∑

=k
jkjj bbBias Eq[1] 

• Abias 100/|)ˆ(|)(
100

1








−= ∑

=k
jkjj bbAbias Eq [2] 

• MSE                                   100/)ˆ()(
100

1

2 







−= ∑

=k
jkjj bbMSE Eq [3] 

III. Results 

The FP method is criticized for introducing 
errors in calibrating the FT items because it treats ability 
estimates as true abilities to maintain the scales of 
subsequent item pools (Ban et al., 2001), but estimated 
abilities may be different from true abilities. To ensure 
this is not a concern in the current study, true and 

estimated abilities were reported in Table 4. What’s 
more, average bias, average MSE, and correlation 
coefficient between estimated and true abilities ( ) were 
also computed and presented in Table 5. These 
statistics indicate that examinees’ abilities were 
recovered very well with almost unbiased average ability 
estimates and low estimation errors. The average test 
length was 107 items. 
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d) FT Item Calibration Procedure
The procedures used for field test item 

calibration were described as follows. For each 
calibration sample size, the calibration procedure 
remained the same. One hundred replications were run 
for each calibration sample size. 
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Table 4 :  Descriptive Statistics for the True (θ ) and Estimated ( θ̂ ) Abilities 

 
Mean 

Std. 
Deviation Maximum Minimum 

θ  -0.003 0.505 1.528 0.010 

θ̂  0.021 0.568 1.836 -1.853 

Table 5 :  Overall Summary Statistics for Measurement Accuracy and Precision 

 

 

For some items, when the calibration sample 
size was small, there were some runs failing to yield 
valid item parameter estimates due to perfect scores, 
i.e., all of the responses to a certain item are either 
correct or incorrect. In the case of perfect scores, 
WINSTEPS can still report the item parameter estimates, 
but with very substantial standard errors. Thus, this 
study did not count a run as valid if the run involved 
estimating perfect scores. 

 

Figure 3 demonstrates the relationship between 
the number of runs yielding no available item parameter 

estimates and the item difficulty parameter. Clearly, the 
situation in which item parameter estimates were 
unavailable was more likely to occur with those items at 
the tails of the scale, in particular, easy items. Increasing 
the calibration sample size seemed to minimize the 
occurrence of the above situation. For example, when 
the calibration sample size was 470, item parameter 
estimates failed to be reported for 43 items in certain 
runs. However, only 6 items encountered the same 
problem when the calibration sample size was 1500.

 

Figure 3 :  Relationship between the numbers of runs yielding unavailable item parameter estimates and item 
difficulty

 

                                     

Note . N represents calibration sample size 
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Bias. The magnitudes of the bias produced by 
different calibration sample sizes are plotted against true 
item difficulty parameter in Figure 4. In general, these 
plots indicate that easy items tend to be underestimated 
and vice versa for hard items. With the increase of VCs 
for each item, we can see that the magnitude of the bias 
became less pronounced. From the practical viewpoint, 
when a calibration sample size allowed VCs to reach 

250, the bias for item parameter estimates was 
negligible for items with log its between -3 and 3. When 
a calibration sample allowed VCs to reach 1,000, item 
parameter estimates were almost unbiased. Table 6 
also provides summary statistics about the absolute 
bias of item parameter estimates given by different VCs. 
Clearly, absolute bias also decreased with the increase 
of calibration sample size.
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 Figure 4 : 

 

Bias for the item parameter estimate 

Note. N represents calibration sample size.

 Table 6 :

  

Maximum, Minimum, Mean, and Standard Deviation of the Abias of Item Parameter Estimates

 
VC/Calibration sample

 

Maximum

 

Minimum

 

Mean

 

Std. 
Deviation

 30/470

 

.472

 

.000

 

.069

 

.071

 60/850

 

.196

 

.001

 

.062

 

.057

 120/1500

 

.192

 

.000

 

.047

 

.044

 250/3000

 

.100

 

.000

 

.035

 

.028

 500/6000

 

.083

 

.000

 

.031

 

.022

 1000/11000

 

.069

 

.001

 

.026

 

.017

 
 
Wright and Douglas (1977) proposed a simple 

bias correction method that can be used to remove the 
bias in an item parameter estimate using the JML 
method. In WINSTEPS, this method is implemented by a 
command called STBIAS, which involves multiplying the 
item parameter estimate by the correction factor (L-1)/L, 
where L is the test length. By default, STBIAS is not 
invoked in WINSTEPS unless it is set as Y. Wang and 
Chen (2005) reported that STBIAS can significantly 
reduce the magnitudes of the bias in item parameter 
estimation. To examine how the magnitude of bias was 

slightly improve item parameter estimates by yielding a 
slightly lower average absolute bias and reducing the 
spread of item parameter estimates. Figure 5 compares 
the average bias for item parameter estimates when 
STBIAS is and is not used. 
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corrected by STBIAS for sparse response data like that 
in this study, item estimation was conducted by 
implementing STBIAS, and the magnitude of the bias in 
the item parameter estimate when STBIAS was not used 
was compared with that when STBIAS was used. The 
results, illustrated in Table 7, indicate that STBIAS can 
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Figure 5 :  A comparison of bias for the item parameter estimate when using and not using STBIAS

 

Mean Squared Error (MSE).    MSEs for item 
parameter estimates exhibited very similar patterns to 
those for bias. Specifically, both easy and hard items 
tend to be associated with larger errors than items in the 
middle of the scale, particularly when calibration sample 
size yielded VCs lower than 250. When VC reached 250 
and beyond, it is clear that the magnitudes of MSEs 
were negligible even for items with difficulty

 

value 
beyond 3 log

 

it in absolute value.

 

Figure 6 portrays the 
MSEs yielded by different calibration samples.
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VC Mean Std. Deviation Max Min
STBIAS=N STBIAS=Y STBIAS=N STBIAS=Y STBIAS=N STBIAS=Y STBIAS=N STBIAS=Y

Table 7 :  A Comparison of Maximum, Minimum, Mean, and Standard Deviation of the Abias of Item Parameter 
Estimates

Note. N represents calibration sample size
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Figure 6 :   Mean squared error of item parameter estimate 

Note. N represents calibration sample size 

IV. Discussion and Conclusions 

As mentioned previously, pretest item response 
data tend to be sparse under a seeding design in which 
only a subset of items is selected for administration in 
the CAT. Additionally, as FT items are likely to be 
exposed at different rates—some items receive more 
administrations than others, the question arises as to 
how large the calibration sample size needs to be so 
that item parameters are estimated accurately. This 
study was conducted in an attempt to provide 
practitioners certain guidelines about the optimal 
minimum calibration sample size for CAT pretest item 
estimation under WINSTEPS when the fixed-person-
parameter estimation method is applied to derive 
pretest item parameter estimates. 

Under such a design, as demonstrated, 
different calibration sample sizes lead to different 
average VCs given the ratio being fixed between the 
number of FT items administered to each examinee and 
the total FT item pool size. As expected, the larger the 
calibration sample size is, the larger the numbers of VCs 
are, and thus the better items are calibrated. This study 
recommends that, when the FT response data are 
sparse, focus should be placed on the valid cases that 
each item may end up with given a certain calibration 
sample size. As the methodology introduced in this 
study indicates, the relationship between VCs and 
calibration sample size can be very easily identified 
simply by simulating the operational FT item selection 
procedure using the FT item pool only. From a practical 
viewpoint, when the minimum number of valid cases 

reaches 250, item parameters are recovered quite well 
across a wide range of the scale. This number seems to 
be in agreement with, though slightly higher than, what 
Wright and Stone (1979) recommended—a sample size 
of approximately 200 for a paper-and-pencil test. 

Clearly, the ratio between the number of FT 
items administered to each examinee and the total FT 
item pool size plays a key role in deciding the calibration 
sample size. The smaller the ratio is, the smaller the 
calibration sample size is needed. Collecting responses 
from a large sample may not be an issue for large-
volume testing programs, but may be so for small-
volume ones. Thus, to help item throughput, it is 
recommended to keep this ratio to a low number given 
the use of the same field-testing and calibration 
procedure. 

Unlike what is reported in Wang and Chen 
(2006) in which biases of item parameter estimates are 
significantly corrected by the STBIAS command 
especially in the extreme situations, the STBIAS 
command only slightly improved estimate accuracy in 
the current study. A close look at the results revealed 
that L was defined as 150 (i.e., the total number of the 
items in the item pool) rather than the actual number of 
items (i.e., 15 items) administered to each examinee 
when STBIAS was set as Y. Clearly, if L is a large 
number, (L-1)/L tends to approach unity, thus playing a 
weaker role in bias correction. Therefore, given the 
situation in which a large calibration sample is 
unaffordable and STBIAS is in need to improve item 
estimate accuracy, it is not recommended to administer 
items out of a large FT item pool. This recommendation 
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is tied up with keeping a reasonable ratio as discussed 
above. 

As mentioned in the Results section, the FP 
method has the potential to introduce errors in 
calibrating the FT items especially when ability estimates 
are inaccurate. The CAT model mimicked in this study is 
a pass/fail classification test, implying that ability 
estimates near the cut score may be fairly inaccurate 
and thus provide a poor linking. This does not seem to 
be a concern in this study, as Table 5 indicates that 
ability estimates are recovered quite well. The fact that 
the average test length (i.e., 107 items) is considerably 
long plays a key role. However, it is anticipated that poor 
ability estimates may produce a poor linking, thus 
challenging the results in this study. Future research 
should be conducted along this line to examine how 
ability estimates affect item parameter estimate 
accuracy in such a seeding FT item design in the CAT.  

Investigation into item parameter estimation 
accuracy was conducted in this study by considering 
calibration sample size as the only affecting factor. In 
reality, such factors as FT item position or calibration 
sample distribution also exert impacts. Future research 
should look at how these factors interact with each other 
to affect estimate accuracy. Additionally, item calibration 
was conducted by using only one linking design and 
estimation method. Adding different linking designs and 
estimation methods, in conjunction with the factors 
mentioned above, also merits further research.  
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