

# 1 Study on the Status Quo and Problems of 3D Printed Buildings 2 in China

3 Liang Feng<sup>1</sup>

4 <sup>1</sup> Hunan University

5 *Received: 6 December 2013 Accepted: 5 January 2014 Published: 15 January 2014*

6

---

## 7 **Abstract**

8 By describing the rapid development of 3D printed buildings in China and specifying the  
9 necessary changes in 3D printing materials, especially commercial concrete, this article  
10 summarizes the advantages of 3D printed buildings and analyzes their problems to be settled.

11

---

12 **Index terms**— china, 3D printing, buildings and commercial concrete.

## 13 **1 Introduction**

14 s the technology of 3D printing is significantly changing various industries at increasingly higher speeds, China's  
15 construction industry also faces a big change. In many countries around the world, technical companies are  
16 competitively developing 3D printed buildings and have made rich achievements. The same goes for China.  
17 Especially in the recent two years, 3D printed buildings in China have been developed rapidly and vigorously.  
18 As early as in 2013, the China 3D Printing Technology Industry Alliance predicted that the size of China's 3D  
19 printing market would reach 10 billion yuan by 2016, with a year-on-year growth of 100%. This involves both  
20 considerable achievements and problems to be resolved, which are illustrated in the following paragraphs. Before  
21 reviewing examples, let's have a look at the principles of 3D printed buildings.

## 2 II.

22 Principles of 3D Printed Buildings 3D printing is based on digital model files. 3D printers and common printers  
23 have almost the same principles and only differ in printing materials. Common printers have ink and paper as  
24 their printing materials, while 3D printers can be loaded with different "printing materials", such as ceramic,  
25 plastic, metal, sand, cement, etc., which are, literally, raw materials. After connection with a computer, a 3D  
26 printer can break down any three-dimensional model designed by the computer into several layers of flat slices,  
27 and by using laser beams or hot-melt nozzles, deposit and bind these materials layer by layer, thus building  
28 a whole object ultimately. In the technology of 3D printing, fused deposition modeling (FDM) or patternless  
29 casting manufacturing (PCM) is generally used in construction.

30 Author ?: Guangzhou Air Force Engineering Quality Supervision Station, 510071, P.R.C. e-mail:  
31 liangfeng03@tsinghua.org.cn Author ?: Selection and Cultivation Office of Hunan University, Changsha, 410082,  
32 P.R.C.

33 The principle of FDM is described as follows: heat and fuse the thermal-plastic polymer material into wire,  
34 squeeze the wire out of a nozzle like squeezing toothpaste, and then deposit on a molding surface for modeling. The  
35 equipment covers different application areas from quickly-built conceptual models to slowlybuilt high-precision  
36 models. The principle of PCM is described as follows: convert a computer-aided design (CAD) model to a casting  
37 CAD model, obtain the 2D profile information by computer slicing, and then generate the control information  
38 based on the slice information. In modeling, the first nozzle sprays a binding agent on each layer of molding sand  
39 laid down, and the second nozzle sprays a catalyst along the same path. The two substances have a cross-linking  
40 reaction to solidify the molding sand layer by layer for deposition modeling. The features of this process include:  
41 short manufacturing time, no wood pattern required, integrated modeling, and manufacturable casting molds  
42 with free form surfaces and curves. At present, there have been many successful cases in the attempts for 3D  
43

### 3 III.

---

44 printed buildings in various countries around the world. The development status of China's 3D printed buildings  
45 is illustrated in the following paragraphs.

46 In April 2014, China's Shanghai WinSun Decoration Design Engineering Co., Ltd. printed and built ten  
47 houses, as shown in Figure 1, within one day, by using a super 3D printer that is 150 meters long, 10 meters wide  
48 and 6 meters deep, as well as a kind of special "ink", i.e., a concrete material reinforced with special fiberglass,  
49 whose strength and service life are both much greater than those of common reinforced concrete. The construction  
50 cost was only 30,000 yuan a day, and part of construction material was made from recycled waste. The principle  
51 is described as follows: print each layer of house framing members first, and then mount them on site manually.  
52 The material used for printing framing members was a mix of high-quality cement, recycled construction waste  
53 and industrial waste, all of which were reinforced with fiberglass. This material could solidify quickly after being  
54 squeezed out, so that the printer might keep working. In the computer software, some space had been reserved for  
55 pipelines and windows. These parts were mounted after these houses were fixed in position. The project manager  
56 said that the internal structure of 3D printed houses may be optimized in accordance with acoustic, mechanical  
57 and other principles according to the requirements while saving materials. For example, their hollow walls can  
58 greatly reduce their own weight, be filled with any heat-insulating material, and have freely-designed structures,  
59 so that the problems in the bearing structure of walls are resolved once and for all. Hence, the strength and  
60 firmness of these buildings, including bridges, simple workshops, theatres, hotels and residential houses, are in  
61 accordance with or even higher than national construction standards.

62 In 2014 World 3D Printing Technology Industry Conference and Exhibition, Qingdao Unique Technology Co.,  
63 Ltd. rolled out the largest 3D printer in the world, as of Heaven as its prototype. As estimated, the printing job  
64 will be finished in half a year. Qingdao Unique's 3D building printer has both a one-step modeling process and a  
65 shorter printing cycle. Most importantly, this large printer, looking cumbersome though, has very sophisticated  
66 techniques. By using the technology of FDM, it may deposit and stack the half-melt printing material, layer by  
67 layer, on a base ground, and construct the prototype directly from the software data. With a millimeter-level  
68 printing precision, it is a qualitative leap for the traditional construction industry, which has a centimeter-level  
69 calculation precision. For this time, the new material developed by Qingdao Unique in combination with the 3D  
70 building printer is a kind of glass reinforced plastic, which is a light, solid, anticorrosion, anti-aging, waterproof  
71 and insulating composite material. More importantly, it may greatly reduce energy consumption and pollutant  
72 emission during the production and application process. There are also many other examples, but due to the  
73 limitation of length, this article doesn't mention them.

### 74 3 III.

#### 75 The Key of 3D Printed Buildings -Changes in Materials of Commercial Concrete

76 3D printing is a technology of additive manufacturing. Printing of any object is possible only if the problem of  
77 materials is resolved. Based on the same technology, 3D printed houses only have larger equipment and different  
78 materials. Hence, the "ink" for printing is the key of 3D printed buildings. Although there are many types of  
79 "ink" available for printing of 3D shown in Figure ???. The length, width and height of the printer independently  
80 developed by Qingdao Unique are all 12 meters. On June 19 when the conference opened, the printer started  
81 printing a classic Chinese architecture, i.e., a  $7 \times 7$  square building with the Temple buildings, commercial concrete  
82 is still the relatively stable and most frequently used material for 3D printed buildings. In order to match this new  
83 technology, however, it must be adapted. Since commercial concrete still dominates the market, our discussion  
84 Firstly, based on the two current forms of 3D printed buildings mentioned above, i.e., "one-step modeling" and  
85 "assembling", we suppose the commercial concrete available for 3D printed buildings may be developed in two  
86 different ways. Similar with the current method, "one-step modeled" buildings will be built in the following way:  
87 the concrete used for 3D printing is produced in a blender, transported to the construction site and then sprayed  
88 out from many printing heads of a large 3D printer. After printing layer by layer, a building will "grow up"  
89 like a large plant. Just like a prefabrication factory at present, "assembled" buildings are built in the following  
90 way: a designed house model is broken down into several modules, and different types of modules are produced  
91 by a large 3D printer and transported to the construction site for quick assembly. Quicker than the traditional  
92 prefabrication process, this process will help realize modularized construction of buildings, which is far more  
93 complicated than the current way for prefabrication of parts.

94 Secondly, the raw materials, the mix-proportion design concept and the production & supply mode of  
95 commercial concrete used in 3D printed buildings all have changed.

96 The raw materials of commercial concrete will become more extensive. For example, the cementing material  
97 may be made from special cement, resin or magnesia cement; the coarse/fine aggregate has to comply with higher  
98 requirements for quality to meet the demands of 3D printing, for which a new crushing technique may be used to  
99 produce a new material different from traditional ones; the additive may be changed in essence, and its function  
100 and mechanism in the concrete system will also be wholly different from those at present. In order to meet the  
101 demands of 3D printing, the concrete must have better rheological behavior and be capable of solidifying quickly  
102 in the air. Meanwhile, the maximal diameter of aggregate grains will become smaller to ensure these grains have  
103 nearly round shapes. In addition, the problem of how to perfectly bind all layers together should be resolved, for  
104 which a new additive is to be used.

105 In terms of mix-proportion design, a new theory may be used to serve as the supporting basis. Since the

106 concrete used for 3D printing is different from the traditional concrete, there are significant changes in its  
107 functions. This cannot be achieved by simply changing the water-cement ratio or the sand ratio. Instead, its  
108 hardenability and contractibility have to be changed in essence. The current theories for concrete strength,  
109 design methods from a new perspective and to build new calculation models, hardening models and service life  
110 prediction models.

111 There are also big changes in concrete production and supply. Since 3D printers work without interruption,  
112 the production of concrete will continue in the whole process of 3D printing. All tasks will run continuously  
113 and be finished once and for all within a cycle, and even the blending system may be changed. Alternatively,  
114 the blending task may be done in the blending and transportation vehicle. Since the production system has  
115 higher requirements for measurement accuracy and uniformity of concrete blending, the conditions for entry into  
116 the industry of commercial concrete are stricter. To produce qualified products, many technicians who have  
117 undergone longterm, professional training are required.

118 IV.

## 119 4 Advantages of 3D Printed Buildings

120 Based on the description and analysis above, we know that 3D printed buildings, compared to traditional  
121 buildings, have very obvious advantages, which mainly include: 1. High speed -10+ times quicker than the  
122 traditional construction technology. 2. Low cost -Patternless and not so many construction workers required.  
123 Moreover, the structure may be optimized to save materials, thus greatly reducing cement demands, significantly  
124 decreasing the energy consumption in construction and improving the production efficiency. 3. Low carbon,  
125 green and environment friendly -Printing materials may be collected from local sources, and the construction  
126 waste, industrial waste and gangue may be recycled for use. After technical treatment, processing and separation,  
127 they may be converted into the raw materials of 3D printed buildings, so as to reuse the construction waste in  
128 buildings and to greatly reduce the waste. 4. It is very easy to print the high-cost curved buildings that are hard  
129 to build in other ways. Thus, architects may have an open mind and make breakthroughs in the design process.  
130 Meanwhile, this helps realize the integration of architecture and arts. 5. Concrete buildings will have higher  
131 strength, lower weight and better earthquake resistance. 6. At present, the technology of 3D printing cannot be  
132 used to build larger buildings, to a wide extent. The widely-seen high-rise buildings cannot be printed. Instead,  
133 they can only be assembled with printed focuses on how it should be upgraded in the application of 3D printing.

134 durability, hydration and other aspects are no longer applicable to the demands. In order to achieve higher  
135 strength, longer durability, better blending capacity, quicker hardening speed and higher hardenability, it is  
136 necessary to discover new theories and mix-proportion parts. Hence, 3D printed buildings may change the  
137 development trend of the construction industry, and more assembled buildings will emerge.

138 V.

### 139 Problems to be Settled for 3D Printed Buildings

140 3D printing has many advantages that traditional construction methods don't have, but based on the current  
141 conditions, the physical buildings built by 3D printing still have the following problems to be settled.

142 Firstly, 3D printing brings a revolution in architectural design. Traditionally, buildings are designed to meet  
143 the requirements for functions and construction processes. However, the design of 3D printing is totally different.  
144 Most of 3D printed buildings are made of special concrete, instead of reinforcing steel or stone. Thus, the features  
145 of materials should be taken into consideration in the design process. Since nozzles, three-dimensional nozzles in  
146 particular, are used to transfer materials in 3D printing construction, the design should comply with the features  
147 of pressure and mechanical modeling. Besides, such problems as comfort, safety and compliance with relevant  
148 construction standards should also be taken care of. Hence, existing architectural design systems cannot be used  
149 directly, and a system of architectural design principles that comply with the requirements of 3D printing must  
150 be rebuilt.

151 Secondly, the technology of 3D printing forms a trend of integration of such industries as engineering  
152 construction, infrastructure and manufacturing, in terms of construction equipment. Constructing a building  
153 is just like producing a product in a manufacturing enterprise. A 3D printer is similar with the existing "robot",  
154 which integrates automatic machines and construction machines for printing of buildings. Hence, precision and  
155 automation have to be ensured, which is a big challenge for China's manufacturing industry, especially for the  
156 manufacturing industry of large machine tools.

157 Lastly, 3D printing also has high requirements for construction materials. Since 3D printing has a high speed,  
158 the materials have to solidify very quickly. Traditional construction materials fail to meet this need, and a special  
159 R&D job is required to be done.

160 The technology of 3D printing for buildings has a bright future. The paragraphs above only give some  
161 assumptions. In order to make real breakthroughs in the key technology, to realize large-scale production in  
162 practice, and to change the traditional construction industry and the industry of commercial concrete in essence,  
163 the technology of 3D printing still has a long way to go. There is no doubt that 3D printed buildings will be new  
164 landmarks in the future world. In April 2014, Wang Shi, founder of Vanke Group, the leader in China's changes  
165 have been made in the world. Nowadays, skyscrapers, cross-sea bridges, tunnels and underground railways can  
166 be seen everywhere. We have a reason to believe that the upcoming era of 3D buildings will inevitably bring  
167 more unexpected changes to the world.



Figure 1: Figure 1 :



Figure 2: -

#### **4 ADVANTAGES OF 3D PRINTED BUILDINGS**

---