

‘Analysis of Residents’ usage of Household Materials and Vulnerability to Indoor Pollution in Ogbomoso, Nigeria

Abolade Olajoke¹ and Olajoke Abolade²

¹ Ladoke Akintola University of Technology Ogbomoso Nigeria

Received: 6 December 2013 Accepted: 3 January 2014 Published: 15 January 2014

7 Abstract

The paper investigates the residents' level of usage on sources and vulnerability of urban residents to indoor pollution in Ogbomoso. It utilized multistage method of sampling to distribute a total of three hundred and seventy three (373) structured questionnaires to residents in the selected forty eight localities. Likert scale rating was employed to examine resident's perception on the impacts of indoor air pollution. Resident Usage Index (RUI) and Residents Perceived Effect index (RPEI) with scale rating ranging from Not agreed (2), Partially Agreed (3), Agreed (4), Very much agreed (5) were developed to ascertain rating value placed by each resident. The average weight for each variable was computed. The findings reveals, highest index value of 2.30usage in perfume, germicides (2.61) insecticides (2.29) building materials (2.71) asbestos, lanterns (2.38), charcoal (2.20). The high perceived usage suggests most frequently used household materials that constitute indoor air pollution in the study area. The general effect from use of household materials varies from sneezing eye irritation, dizziness headache among others. Continuous usage and exposure to such household materials will undoubtedly cause major damage to organs of the vulnerable group if appropriate action are not put in place. The paper therefore, recommends use of local household material that are less free of pollutant and cleaner fuel should be made available by concerned Government. Also awareness programme to sensitize populace on associated danger of exposure to household materials that are prone to generate indoor pollution should be adopted.

Index terms—

1 Introduction

30 a) Background to the Study he connection between the use of a building either as a workplace or as a dwelling
31 place and the appearance, in certain cases, of discomfort and symptoms of illness is a fact attributable to indoor
32 air pollution ??WHO, 200, EPA, 1987). Indoor air pollution (IAQ) is a phenomenon recognized to be a major
33 health problem worldwide because more than 3 billion people around the globe depend on solid fuel ??WHO,
34 2007). The use of solid fuel within indoor environment for purposes including cooking and heating among others
35 has been known to produce noxious fumes which are injurious to human health (Bruce 2005; ??ttati, 2005; ??HO,
36 2007; ??EC, 1999; ??PA, 1987). This pollution largely affects a considerable number of dwellers, mostly women
37 and children, because it has been established that they spend between 58 and 78% of their time in an indoor
38 environment (Hoffman, 2003). These problems have been worsened with the construction of buildings that are
39 poorly ventilated and badly aerated such that the circulation of fresh air is marred. Consequently, buildings with
40 inadequate natural ventilation present risks of exposure to severe air-borne diseases and infection.

41 Indoor air pollution however, is not limited to use of biomass fuels. Other sources include particles from
42 household materials (synthetic carpets and furniture, paints, asbestos), pesticides, insecticides, air fresheners

4 LITERATURE REVIEW

43 (naphthalene ball) domestics appliances, and cosmetics products (body spray, perfumes anti aspirant) among
44 others (Adigun et al 2011). Unknown to many dwellers, exposure to and inhalation of these fumes and dangerous
45 gases from workplaces, homes and other indoor environments have been responsible for severe health cases such
46 as respiratory infections (WHO, 1997), chronic lung diseases such as asthma and bronchitis, lung cancer, nose
47 and throat irritation, and still-birth (Ayars, 1997), eye disorder, conjunctivitis, blindness and low birth weight
48 ??Traynors et. al., 1985), low ventilation rates (Menzies et al., 1993) and physiological discomfort among others
49 (Tawari and Abowei, 2012).

50 Though outdoor air pollution poses severe health risks most of which are linked with the urban environment,
51 yet, some of the highest concentrations of risks have occurred in indoor environment especially in most Sub-
52 Saharan African countries like Nigeria (Oguntoke et. al., 2010;Theuri, 2009 and ??PA, 2003). ??mith and Mac
53 (2009) also opined that the devastating effects of air pollution in the indoor environment are more flagrant than
54 the outdoor environment owing to the length of stay in the former.

55 The World Resource Institute (WRI) in 1998 established that threats to human well-being are constantly
56 being generated from two categories of human-environment interactions. Firstly, lack of development; owing to
57 man's inability to maximize natural and environmental resources sustainably.

58 2 T

59 Secondly, through threats produced when the byproducts of resource exploration and transformation are not
60 manageably rid of in a manner that will forestall its negativities.

61 Against this background , the problems of indoor air pollution becomes of great concern in this paper because
62 those affected are less aware, illequipped and ill prepared for the menace and there are little or no provisions
63 (facility-wise) in their communities to help cope with the impact. Consequently, the level of vulnerability and
64 susceptibility to the scourges are pronounced (Akande and Owoyemi, 2008;Hoffman, 2003). An observable level
65 of variations in what is experienced across geographical space as cited in existing literature have some cultural,
66 demographic and environmental undertone among other things ??ISOCAP, 2008). The need to investigate
67 empirically, the resident's knowledge on sources and associated negativities of indoor air pollutant as well as the
68 vulnerability of urban residents in a medium sized city is of both scientific and practical importance and therefore
69 the major purview of this paper.

70 3 II.

71 4 Literature Review

72 Indoor Air pollution has often been described as an urban problem globally. As dangerous as polluted outdoor
73 air can be to human health, indoor air pollution actually poses a greater health risk on a global level. About 2.8
74 million deaths per year results from breathing elevated levels of indoor smoke from dirty fuel. Although, many
75 people associate air pollution with outdoor urban environment, some of the highest concentrations actually occur
76 in rural areas (Sinton and Weller, 2003;Mac, 2009 andTheuri, 2009).

77 The greatest threat of indoor air pollution occurs in the developing countries of the world, where some 3.5
78 billion people mostly in rural areas continue to rely on traditional fuel for cooking and heating. According to a
79 World Bank Report, indoor air pollution in developing countries is designated as one of the four most critical
80 global environmental problems (Carter, 1998 andMac, 2009). Burning biomass fuel indoor is a major source
81 of large amounts of smoke and other pollutants in the confined space of the home, thereby providing a perfect
82 avenue for human exposure. Liquid and gaseous fuels such as kerosene and bottled gas, although not completely
83 pollution free, are many times, less polluting than unprocessed solid fuels.

84 Indoor air pollution can be traced to prehistoric times when humans first moved to temperate climates and
85 it became necessary to construct shelters and use fire inside them for cooking, warmth and light. Fire led
86 to exposure to high levels of pollution, as evidenced by the soot found in prehistoric caves (Albalak, 1997).
87 Approximately, half the world's population and up to 90% of rural households in developing countries today, still
88 rely on unprocessed biomass fuels in the form of wood, dung and crop residues (World Resources , 1998). These
89 are typically burnt indoors in open fires or poorly functioning stoves. As a result, there are high levels of air
90 pollution, to which women, especially those responsible for cooking, and their young children, are most heavily
91 exposed. However, in developed countries, modernization has been accompanied by a shift from biomass fuels
92 such as wood to petroleum products and electricity ; while in developing countries, households often continue to
93 use simple biomass fuels, despite the fact that, cleaner and more sophisticated fuels are available, ??Smith,1987).

94 Although the proportion of global energy derived from biomass fuels fell from 50% in 1900 to around 13% in
95 2000, there is evidence that their use is now increasing among the poor (Albalak, 1997).

96 Poverty is one of the main barriers to the adoption of cleaner fuels. The slow pace of development in many
97 countries suggests that biomass fuels will continue to be used by the poor for many decades. Biomass fuel is any
98 material derived from plants or animals which is deliberately burnt by humans and wood is the most common
99 example, but the use of animal dung and crop residues is also widespread (De Koning et al, 1985). China,
100 South Africa and some other countries also use coal extensively for domestic needs and despite the significance
101 of exposure to indoor air pollution and the increased risk of acute respiratory infections in childhood, the health

102 effects have been somewhat neglected by the research community, donors and policy-makers ??Smith, 1997 and
103 ??hen et al,1990).

104 In general, the types of fuel used become cleaner and more convenient, efficient and costly as people move
105 up the energy ladder (Smith, 1994). Animal dung, on the lowest rung of the ladder, is succeeded by crop
106 residues, wood, charcoal, kerosene, gas and electricity; thus, people tend to move up the ladder as socio-economic
107 conditions improve. Other sources of indoor air pollution in developing countries include smoke from nearby
108 houses, the burning of forests, agricultural land, household waste and the use of kerosene lamps (Smith, 1994;and
109 McCracken and Smith, 1998) as well as industrial and vehicle emissions. Also, indoor air pollution in the form of
110 environmental tobacco smoke can be expected to increase in developing countries. It is worth noting that fires in
111 open hearths and the smoke associated with them often, have considerable practical value, for instance in insect
112 control, lighting, the drying of food, fuel, and the flavouring of foods ??Smith,1997).

113 5 III.

114 6 Research and Methods

115 Structured questionnaire was employed to obtain information relating to morphology and environmental
116 characteristics of the study area from residents in various residential densities. This information include:
117 perception of residents on level of usage of sources of indoor air pollutants, and impacts of indoor air pollution
118 particularly on the vulnerable group.

119 The whole of Ogbomoso Township constitute the sample frame for this research. This comprises of two
120 local government areas (Ogbomoso North and Ogbomoso South). The local government areas form the hub
121 of development of the city with dense heterogeneous population characteristics in terms of income, education
122 background, tribe, and types of building among others. The city is observed to be a medium developing urban
123 centre with unprecedented growth both in population and spatial extent (Adeboyejo and Abolade, 2006). The
124 growth of the city has been undoubtedly attributed to its educational function which has attracted new generation
125 banks and establishment of new hospitals. It is also recognized to be the second largest indigenous city in Oyo
126 State after Ibadan; this further enhances its selection for the research.

127 Multistage method of sampling shall be employed for collection of primary information for this study. Using
128 the existing spatial structure of the city, both stratified and systematic random sampling technique was employed.
129 The inventory of localities from the twenty wards of both LGAs, their residential densities and population figures
130 was sourced from National Population Commission (2006). The localities in the twenty (20) recognizable wards
131 within the study area was identified by residential densities (high, medium and low) using ratio 3:2:1 in that
132 order in consonance with Adeboyejo (2002); Afon (2005); and ??ingleton et.al. (1989).

133 Forty eight (48) localities stratified into high, medium and low residential densities was randomly selected and
134 systematically sampled for questionnaire administration. The first resident was picked at random and subsequent
135 ones at an interval of two (2) buildings apart. A total number of three hundred and seventy three (373) structured
136 questionnaires was administered to the residents in the selected localities. This represents 0.1% of the projected
137 population for 2013. To examine resident's perception of the impacts of indoor air pollution on their health,
138 certain indices shall be developed. These include: Awareness Index (i.e. IIEA) to examine its level of awareness
139 on its associated impacts within the indoor environment. This was measured through Likert scale rating from
140 Not agreed (0), Agreed (3), Very much agreed (5). The average weight for each variable shall be computed as
141 individual index required for the study.

142 IV.

143 7 Discussion of Findings a) Residents' Perception on Usage of 144 Household Materials and Indoor Air Pollution

145 Likert scale rating was employed to ascertain the frequency of the use of house materials that generate indoor
146 air pollution in the area. The responses of the respondents' were rated into four classes respectively to calculate
147 Residents' Usage Index (RUI). Thirty four identified variables were examined to determine the frequency of
148 residents' usage of materials that generates indoor air pollution. Each of the variables will be rated in respect
149 to Likert Scale (1961) as either "very frequent", "frequent", "not frequent", "none", to indicate the level of
150 respondents' usage and each of the rating was assigned a weight value of 4,3,2, and 1 respectively in decreasing
151 order of relevance.

152 Resident Usage Index (RUI) was each variable, was calculated, the weight value was summed up and divided
153 by the total number of the respondents. The usage weight value (UWV) was obtained by adding the products of
154 the numbers of responses in each of the identified variables and the weight attached to each rating. The mean of
155 RUI distribution was derived by dividing the total UWV by total number of questionnaire. The deviation about
156 the mean was calculated. The standard deviation (S.D) and variance of the distribution were also calculated to
157 measure how they are scattered around the mean as illustrated in The use of" perfume" as cosmetics have the
158 highest index value of (2.30) compared to other categories. This implies that it is the most frequently used in the
159 study area that contributes to indoor pollution. This is probably because larger proportions of the respondents
160 are female and they use perfume to expel body odour. This is followed sequentially by the use of "perfumed

11 G) USAGE OF HOUSEHOLD EQUIPMENTS

161 cream" (2.18), and use of Deodorants (1.90). The use of "roll on" is the least used among the identified variables
162 under deodorants (1.60). The RUI distribution recorded a variance of 0.2024 and the standard variation of 0.22.
163 The coefficient was 18.33% (table 1). c) Usage of Cleaning Agents Among the variables employed to examine
164 level of usage of cleaning agents, "germicides" has the highest index value of (2.61) as shown in Table1, which
165 implies that it is the most frequently used household materials that constitute indoor air pollution in the study
166 area. Most respondents use it because it helps in the prevention of germs especially in toilets and bathrooms. It
167 is followed by the use of "bleach" (2.00). Harpic is the least used among the identified variables ??1.76). This
168 is because harpic is only common with the high income earners and those with high education standard. who
169 use modern toilet as against those with low socioeconomic status. The excess use of such materials will lead to
170 respiratory disorder and sometimes skin irritation most especially when it comes in contact with skin. The RUI
171 distribution recorded a variance of 0.3841 and the standard variation of 0.31. The coefficient was 19.38%.

172 8 d) Usage of Odour Expeller

173 The usage of odour expeller was also examined as one of the categories of household materials liable to generate
174 indoor pollution. Among the variables identified, in the use of air fresheners which recorded the highest usage
175 index value of (2.30) as shown in Table 1. This implies that it is most frequently used household materials
176 that constitute indoor air pollution in the study area. This is followed by the use of naphthalene having (1.97).
177 Incense is least used among the identified variables under odour expellants (1.79). The excess use of all these
178 materials has serious health implications. The RUI distribution recorded a variance of 0.1338 and the standard
179 variation of 0.18. The coefficient was 11.11%.

180 9 e) Usage of Insecticides and Rodenticides

181 The use of insecticides like mobil, raid among others, has the highest index value of (2.29). The incidence of high
182 index value is premised on the poor hygienic and unsanitary nature of most houses and other environment which
183 allows for infestation of insects like mosquitoes, cockroaches and flies. Consequently, the need for insecticides of
184 various grades and types is necessitated. On the other hand some household have employed the use of mosquito
185 coils which has index value of 2.23 and mosquito repellent leaf RUI (1.79.) where available because it is cost
186 free and less harmful. Similarly rodenticides have been put in use to control; the breeding of rodents and other
187 pests. Rodenticides use had an index value of 2.14 as indicated in table 1. The Residents Usage Index with a
188 mean value of 2.11 has a standard variation value of 0.33 and corresponding coefficient of variation of 15.64%.
189 The exposure of humans to such materials like insecticides without adequate ventilation in building will lead to
190 several respiratory problems, which will undoubtedly lead to irritation of the lung.

191 10 f) Usage of Fuels and Lightening Materials

192 The use of kerosene, lanterns, charcoal and generators all have high RUI index values of 2.57, 2.38, 2.20, and
193 2.15 respectively which imply that they are frequently used in the study area. All these are however sources of
194 noxious indoor pollutants. Others like candle, firewood and sawdust have a relatively low RUI value (1.75) when
195 compared with the mean value. Exposure of eyes and nose to cooking fuels can generate oxides of carbon, which
196 often results to eyes and lung problems. The RUI distribution recorded a variance of 1.127 and the standard
197 variation of 0.22. The coefficient was 12.87.

198 11 g) Usage of Household Equipments

199 Among other variables employed for measurement for household equipments, use radio has the highest index value
200 of (3.09). It is followed sequentially by the use of "electric iron" having (3.00), the use of television (2.97), the use
201 of standing fan (2.71), and the use of refrigerator (2.57). The use of "air conditioner" has the least RUI value of
202 1.78. This is because it can only be afforded by the high income earners. The high usage of household equipment
203 like radio television, use of electric iron will increase indoor temperature and sometimes emit waves that may
204 likely heat up the body, this consequently leads to damage of cells in the body. The RUI distribution recorded
205 a variance of 1.214 and the standard variation of 0.42. The coefficient was 15.79 h) Usage of Building Materials
206 Among variables examined under the use of building materials "asbestos" as building material have the highest
207 index value of (2.71). It is the most frequently used household materials that constitute indoor air pollution in
208 the study area. It is followed sequentially by the use of paints having (2.49). The use of POP is the least among
209 the identified variables in the use of building material with ??1.36). The least proportion recorded for POP is
210 expected because it is highly expensive when compared with other roofing materials like asbestos or modern roof;
211 consequently it is mostly used by affluent or rich people. Exposure to particles from asbestos and POP can results
212 to cancer of the lung. The RUI distribution recorded a variance of 0.0783 and the standard variation of 0.020.
213 The coefficient was 6.39%. ?? summarizes responses of residents and their vulnerability to various ailments from
214 the use of selected household materials. The results of analysis reveals that use of Odour expeller such as air
215 fresheners, incense and naphthalene by residents in the study area causes discomfort such as sneezing (47.0%) and
216 eye irritation (35.3%) problems The same pattern of ailment was observed for fuel and lightning materials like
217 charcoal, firewood, saw dust, kerosene, generators, naked fire lamps, lantern and others where larger proportion
218 of residents also experience sneezing (47.8%) and eye irritation (43.9%). Similarly the responses on effect of

219 building materials (asbestos, pop plywood among others) and cleaning reagents like bleach, happic etc reveals
220 that most residents experience sneezing, eye irritation, dizziness while some reported symptoms of headache.
221 On the contrary, the ailments experienced from the use of insecticides and rodenticide differs slightly from the
222 pattern recorded for other household materials. It is equally revealed from result of analysis in Table ?? that
223 use of insecticides causes sneezing (40.5%), dizziness (33.0%), breathing problems(31.4%) while use of electrical
224 equipments like radio often cause headache (23.2%) compared to proportion of other aliments experienced by
225 residents. This is expected because of the high noise level mostly produced when the instrument its put to use.
226 Generally, the ailment experienced by use of household materials liable to cause indoor pollution varies from
227 sneezing, eye irritation, dizziness headache and breathing problems. The symptoms of sneezing associated with
228 most household materials is established in literature that nasal irritation and neurological damage is associated
229 with the use of asbestos ceilings.

230 Further analysis reveals that the proportion of ailment among residential density varies and decreases from
231 brazillian, flat compound and flat residential unit. The distribution of diseases among different building type
232 is an indication of building characteristics vis a vis design pattern type of sources of household materials and
233 socioeconomic characteristics of residents. j) Residents' Perception on the Level of Exposure of Household
234 Members to Indoor Air Pollution Analysis on household members' vulnerability to indoor air pollution in the
235 study area, was analyzed using the Likhert scale. Four level of perception were used to rate respondents' level
236 of agreement on selected household members' exposure to indoor air pollution. They include "Strongly agree",
237 "Agree", "Strongly disagree" and "Disagree" with the ratings being from 4 to 1 in order of agreement. Residents'
238 responses to these were rated numerically to calculate Residents' Agreement Index (RA g I). Four basic household
239 members were identified (namely fathers, mothers, male and female children). These was cross matched to derive
240 seven different suppositions on which respondent's level of agreement can be queried and rated using the Likhert
241 scale. Resident's Agreement Index (RA g I) of each supposition and the calculated weight value (WV) of each was
242 summed up to get the Total Weighted Value (TWV). This was divided by the total number of the respondents.
243 Calculated Weighted Value (WV) was derived by adding the products of the numbers of responses for each
244 supposition was and the weight attached to each rating. $TWV = \text{Total Weight Value} = (WV \times \text{rating})$ 0 0.5 1
245 shows the respondents' level of agreement on which household members are most susceptible to indoor pollution.
246 A critical examination of the result of analysis reveals low Agreement index (RA g I) of 1.85 for response "on male
247 children are more exposed to indoor air pollution than the female". This implies that majority of the sampled
248 population do not agree that male children are more exposed to indoor air pollution compared to the female.
249 This explains why the supposition that female children are more exposed to indoor air pollution has a very high
250 (RA g I) of 2.72. The same trend is shown in the third supposition with majority not agreeing that fathers (RA
251 g I of 1.81) are more exposed than mothers but agreeing that mothers are the ones really exposed with a very
252 high RA g I value of 2.97. Moreover, the table further suggests that parents (RA g I of 2.28) are more exposed
253 to indoor air pollution than children (RA g I of 2.21) in the study area. Conclusively and deducing from the (RA
254 g I) values in order of decreasing magnitude, the most susceptible to indoor air pollution within the residential
255 environment are mothers with the highest RA g I value of 2.97. Next are the female children with (RA g I) of
256 2.72. This certainly owes to the fact that girls whether directly or indirectly share the mother's duty in the home.
257 Then the male children are next to the female in susceptibility with RA g I value 1.85 while the fathers are the
258 least affected probably because they are less involved with household chores. The distribution of of calculated
259 RPI is illustrated in Figure 2, where majority of RPI values fluctuate above the mean. This implies they were
260 highly perceived by residents as vulnerable group to indoor pollution V.

261 **12 Recommendation and Conclusion**

262 The paper has established that usage of most household materials that are liable to generate pollution is mostly
263 used by residents. Continuous usage and exposure to such household materials will undoubtedly cause major
264 damage to organs of the vulnerable group if appropriate action are not put in place. The paper therefore,
265 recommends use of local household material that are less free of pollutant and cleaner fuel should be made
266 available by concerned government. Also proper awareness programme should be carried out to sensitize populace
267 on associated danger on exposure to household materials the are prone to generate indoor pollution.

Figure 1:

Figure 2: Figure1:

1

Household Materials	4	Respondents	Opinion 3	2	1	NR	AWV	RAI	(A-A)	(A-A)
Perfume	78	76	83		123	360	829	2.30	-0.3	0.00
Perfumed cream	100	85	55		120	360	785	2.18	-0.18	0.03
Deodorants	34	72	70		184	360	676	1.90	0.1	0.01
Roll on	35	51	72		202	360	567	1.60	0.4	0.10
Germicides	113	89	61		97	360	938	2.61	-0.49	0.24
Bleach	32	89	86		153	360	720	2.00	0.12	0.01
Harpic	42	56	77		185	360	633	1.76	0.36	0.11
Air Fresheners	90	67	65		136	360	827	2.30	-0.28	0.07
Naphthalene	50	70	60		180	360	710	1.97	0.05	0.00
Incense	47	51	43		219	360	646	1.79	0.23	0.03
Insecticides	45	129	71		115	360	824	2.29	-0.18	0.03
Mosquito coil	62	92	74		132	360	804	2.23	-0.12	0.01
Rodenticides	55	87	72		146	360	771	2.14	-0.03	0.00
Mosquito Repellant leaf	36	70	36		218	360	644	1.79	0.32	0.10
Rechargeable Lantern	144	93	38		85	360	1016	2.82	-0.66	0.41
Kerosene	111	91	49		109	360	924	2.57	-0.41	0.16
Lantern	88	96	41		135	360	857	2.38	-0.22	0.04
Charcoal	67	87	56		150	360	791	2.20	-0.04	0.00
Generator	94	93	41		132	360	775	2.15	0.01	0.00
Candle	43	69	48		199	360	674	1.87	0.29	0.08
Firewood	60	48	33		219	360	669	1.86	0.3	0.09
Naked Fire	42	61	40		217	360	648	1.80	0.36	0.11
Saw Dust	50	39	43		228	360	631	1.75	0.41	0.16
Radio	172	107	23		59	360	1114	3.09	-0.43	0.18
Electric Iron	157	108	32		63	360	1079	3.00	-0.34	0.11
Television	177	75	29		79	360	1070	2.97	-0.31	0.09
Standing Fan	131	85	51		93	360	974	2.71	-0.05	0.00
Refrigerator	135	63	35		127	360	926	2.57	0.09	0.00
Coal Iron	102	94	37		125	360	889	2.47	0.19	0.03
Air conditioner	62	36	23		239	360	641	1.78	0.88	0.77
Asbestos	141	80	31		108	360	974	2.71	0.02	0.00
Painting	108	87	39		126	360	897	2.49	-0.3	0.09
Furniture	106	89	45		12	360	793	2.20	-0.01	0.00

Figure 3: Table 1 :

	Frequency	Percentage
Odour Expellers		
Dizziness	85	25.0%
Eye Irritation	120	35.3%
Sneezing	160	47.0%
Head Ache	74	21.8%
Breathing problems	66	19.4%
Fuel and Lightening materials		
Dizziness	73	21.7%
Eye Irritation	148	43.9%
Sneezing	161	47.8%
Head Ache	82	24.3%
Breathing problems	100	29.7%
Building Materials	24	7.1%
Dizziness		(
Eye Irritation	62	18.2%
Sneezing	88	25.9%
Head Ache	42	12.4%
Breathing problems	35	10.3%
Insecticides/Rodenticides		
Dizziness	78	23.1%
Eye Irritation	62	18.3%
Sneezing	137	40.5%
Head Ache	61	18.0%
Breathing problems	89	26.3%
Cosmetics		
Dizziness	114	33.0%
Eye Irritation	111	32.1%
Sneezing	142	41.1%
Head Ache	42	15.7%
Breathing problems	106	31.4%
Cleaning Reagents		
Dizziness	104	30.9%
Eye Irritation	101	29.7%
Sneezing	123	36.2%
Head Ache	56	16.5%
Breathing problems	52	15.3%
Electrical Equipment	Frequency	Percentage
Dizziness	43	12.7%
Eye Irritation	68	20.1%
Sneezing	59	17.4%
Head Ache	79	23.2%
Breathing problems	41	12.0%

[Note: Source: Authors' Field Survey(2014)]

Figure 4: Table 3 :

4

Vulnerable Group	WV for Respondents' Level of Agreement				NR	TWVRPI	Remark	
	4	3	2	1				
Male children are more exposed than female children	88	135	108	125	246	456	1.85	Low
Female children are more exposed than male children	348	225	24	72	246	669	2.72	Very High
Mothers are more exposed than fathers	560	297	22	70	320	949	2.97	Very High
Fathers are more exposed than mothers	120	174	102	176	315	572	1.81	Low
Children are more exposed than parents	276	240	36	150	317	702	2.21	High
Parents are more exposed than children	228	297	78	123	318	726	2.28	High
All are equally exposed	340	156	110	148	340	754	2.21	High

Source: Authors' Field Survey, (2014)

Figure 5: Table 4 :

268 [Biomass Fuel Combustion and Health. Bulletin of the World Health Organization] , *Biomass Fuel Combustion*
269 and Health. *Bulletin of the World Health Organization* 63 p. .

270 [Geneva 27] , Switzerland Geneva 27 .

271 [Koning et al. ()] , De Koning , H W Smith , K Last , J . 1985.

272 [Smith ()] 'Air Pollution and the Energy Ladder in Asian'. K Smith . *Cities. Energy* 1994. 19 p. .

273 [Sinton and Weller ()] *Air Pollution Challenges in Rural China*, J Sinton , R Weller . www.wilsoncenter.org
274 2003.

275 [Tawari and Abowei ()] 'Air Pollution in the Niger Delta Area of Nigeria in'. C Tawari , J F N Abowei .
276 *International Journal of Fisheries and Aquatic Sciences* 2012. 2012. 1 (2) p. .

277 [Ajimotokan et al. ()] H Ajimotokan , L Oloyede , M E Ismail . <http://www.sciencepub.net/new-york,>
278 sciencepub@gmail.com *Influence of Indoor Environment on Health and Productivity New York Science*
279 *Journal*, 2009. 2.

280 [An Introduction to Indoor Air Quality (IQA) Environmental Protection Agency (EPA) ()] 'An Introduction to
281 Indoor Air Quality (IQA)'. www.epagov/iaqfolmade.html *Environmental Protection Agency (EPA)* 2003.

282 [Adeboyejo and Olajoke (2006)] 'Analysis of Changes in Ogbomoso City'. A T Adeboyejo , Abolade Olajoke .
283 *Journal of Nigerian Institute of Town Planners*, 2006. Nov. 2006. p. .

284 [Singleton ()] *Approaches to Social Research*, . R Singleton . 1989. New York: Oxford University Press. p. .

285 [Goldstein et al. ()] 'Assessment of Human Exposure to Nitrogen, Carbon-monoxide and Respirable Particles in
286 New York Inner-city residences'. I F Goldstein , L R Andrews , D Hartel . *Journal of Atmosph. Environment*
287 1988. 22 p. .

288 [Akande and Owoyemi ()] 'Awareness and Attitude to Social and Health Hazards from Generator Use in Ayigba'.
289 T M Akande , J O Owoyemi . *Nigeria. Medwell Journal. Research Journal of Medical Sciences* 2008. 2 (4) p.
290 .

291 [Smith ()] *Bio-fuels, Air Pollution, and Health: a Global Review: Plenum*, K Smith . 1987. New York.

292 [Ayars (ed.) ()] *Biological Agent and Indoor Air Pollution in Badana*, G H Ayars . E.J. and Montanaro, A. (ed.)
293 1997. New York: Marcel Dekker. p. . (Indoor Air Pollution and Health)

294 [Carter ()] 'Cities and Health In: Environment Matters. An Annual Review of the Cerqueiro M.C et al (1990)'.
295 B Carter . *Review of Infectious Diseases* 1998. 12 p. . (: A Matched Case-Control Study)

296 [Albalak ()] *Cultural Practices and Exposure to Particles Pollution from Indoor Biomass Cooking: Effects on*
297 *Respiratory Health and Nutritional Status Among the Aymara Indians of the*, R Albalak . 1997.

298 [Adigun et al. ()] 'Death by Breath: Case of Indoor Pollution in Akure Nigeria'. F O Adigun , Abolade , E Akeju
299 . *Issues in the Built Environment of Nigeria: Obafemi Awolowo University Press Ile Ife Nigeria pp*, O A
300 Inafon, O Aina (ed.) 2011. p. .

301 [Hoffman (2003)] *Effect of Indoor Environmental Quality on Occupants Perception of Performance*
302 www.un.ase.ro/no_9/1.pdf p6. Date Accessed, S Hoffman . www.isocap.net/data/casestudies/1131.pdf
303 p6. Date Accessed, S Hoffman . 2003. December, 2011. 19. 2008. Accessed December, 2011. ISOCAP Congress. (The Planning
304 Implications of Urban Sprawl in Akure)

305 [Effects of Indoor Combustion www.epa.gov/iaq/folmade.html date accessed (1987)] *Effects of Indoor Combustion*
306 www.epa.gov/iaq/folmade.html date accessed, 1987. December 2011. (Environmental Protection Agency
307 (EPA))

308 [Mccracken ()] 'Emissions and Efficiency of improved Wood Burning CookStoves in Highland Guatemala'. J
309 Mccracken , SmithK . *Environment International* 1998. 24 p. .

310 [Health and Environment in Sustainable Development: Five years after the Earth Summit WHO ()] 'Health
311 and Environment in Sustainable Development: Five years after the Earth Summit'. WHO 1997. p. 87.

312 [Smith ()] *Health impacts of household fuel-wood use in developing countries*, K R Smith . <http://www.fao.org/docrep> 2009.

313 [Ideriah et al. ()] T J K Ideriah , S O Herbert , B J Ideriah . *Indoor Air Pollution Study*, (Maragua Area, Kenya;
314 Onne, Nigeria) 1987. 2007. 2 p. . (Research Journal of Applied Sciences)

315 [Ezttati ()] *Indoor Air Pollution and Health in Developing Countries Lancet*, M Ezttati . 2005. p. .

316 [Oguntoke et al. ()] 'Indoor Air Pollution and Health Risks among Rural Dwellers in Odeda Area'. O Oguntoke
317 , B O Opeolu , N Babatunde . *South-Western Nigeria in Ethiopian Journal of Environmental Studies and*
318 *Management* 2010. 2010. 3 (2) .

319 [Mac ()] *Indoor Air Pollution Create Problems for Rural Areas*, Mac . <http://www.lifeofearth.org> 2009.

320 [Traynor et al. ()] *Indoor Air Pollution due to Emissions from wood-burning stoves*, G W Traynor , M Hamilton
321 , M Marbury , E Wanner . LBL-17854. 1985.

12 RECOMMENDATION AND CONCLUSION

323 [Smith et al. ()] *Indoor Air Pollution from Household Use of Solid Fuels*, K R Smith , S Mehta ,
324 R Fenz . <http://ehs.sph.berkeley.edu/krsmith/Publications/Chapt%2018%20IAP%20from%20Solid%20Fuels.pdf> 2003. 2009. (accessed 17th May)

326 [ChenB ()] 'Indoor Air Pollution in Developing Countries'. ChenB . *World Health Statistics Quarterly* 1990. 43
327 p. .

328 [Bruce and Perez-Padilla ()] 'Indoor air pollution in developing countries: a major environmental and public
329 health challenge'. N Bruce , R Perez-Padilla , Albalak , R . *Bulletin of the World Health Organization* 2000.
330 78 p. .

331 [Smith ()] 'Indoor Air Pollution in Developing Countries: Recommendations for Research'. K Smith . *Indoor Air*
332 2002. 12 p. .

333 [Indoor Air Pollution: National Burden of Disease Estimates Publications of the World Health Organization can be obtained from
334 'Indoor Air Pollution: National Burden of Disease Estimates Publications of the World Health Organization
335 can be obtained from'. WHO 2007. WHO Press. p. 1211.

336 [Bruce ()] 'Reducing the Health Impacts of Biomass Fuel use in poor Countries: Do the Health Services Have
337 Role?'. N Bruce . *African Journal Respir Med* 2005. p. .

338 [Afon ()] *Solid Waste Management in Selected Cities Of Oyo State, Nigeria An Unpublished PhD Thesis Submitted
339 to the Department Of Urban and Regional Planning OAU Ile Ife, A O Afon* . 2005.

340 [World Energy and Council ()] *The challenge of rural energy poverty in developing countries*, World Energy ,
341 Council . 1999. World Energy Council, London.

342 [Menzies and Temblyn ()] 'The Effect of Varying Levels of Outdoor-air Supply on the Symptoms of Sick Building
343 Syndrome'. R Menzies , R Temblyn . *New England Journal Medicine* 1993. 328 (12) p. .

344 [Theuri ()] D Theuri . <http://www.itdg.org> *Rural Energy, Stove and Indoor Air Quality: The Kenya
345 Experience*, 2009.

346 [Adeboyejo (2002)] 'Urban Residential Density and Adolescent Sexuality and Reproductive Health in Oyo State'.
347 Onyeneroru Adeboyejo . *Nigeria. A Report Submitted to the Union of African Poulation Studies* 2002. June
348 2002.

349 [WHO Guidelines for Indoor Air Quality: Selected Pollutants. WHO Regional Office for Europe WHO (2010)]
350 'WHO Guidelines for Indoor Air Quality: Selected Pollutants. WHO Regional Office for Europe'.
351 http://www.euro.who.int/_data/assets/pdf_file/0009/128169/e94535 WHO 2010. Accessed
352 28 th January, 2011.

353 [World Resources 1998-99. A Guide to the Global ()] *World Resources 1998-99. A Guide to the Global*, 1998.
354 World Resources Institute