

CrossRef DOI of original article:

1 Food and Cash Crop Productivities and Poverty Reduction in 2 Ghana

3 Boahen Atta Oppong¹, Edward Ebo Onumah², Ramatu Mahama Al-Hassan³ and
4 Akwasi Mensah-Bonsu⁴

5 ¹ University of Ghana

6 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

7 **Abstract**

8 Food and cash crop productivities growth provide food and improve smallholder farmers?
9 income to reduce poverty. Crop farmers poverty rate is disaggregated into food and cash crop
10 type but beyond 2006 the poverty rate is not disaggregated which is addressed by this study.
11 Food and cash crops have different growth paths and unequal pathways towards poverty. The
12 paper estimates the poverty rates among food and cash crop farmers and examines their
13 productivities effect on poverty.
14

15

16 **Index terms**— crop productivity, poverty, wellbeing.

17 **1 INTRODUCTION**

18 The economy of Ghana consists of three main subsectors of agriculture, services and manufacturing which provide
19 employment opportunities. The average shares of GDP by agriculture, service and industry were 26%, 52% and
20 22% between 2006 and 2016 (GSS 2017) and 18.5%, 47.2%, and 34.2% in 2019 (GSS 2022). Poverty reduction
21 requires significant income growth from economic growth; however, inclusive growth is the main channel for
22 poverty reduction (Fosu, 2016). About 47% of total agricultural land area is cultivated mostly by smallholder
23 rain-fed farming, using rudimentary technologies whilst 3.5% is irrigated. Small holder farming accounts for 80%
24 of total agricultural production in Ghana. Food crops are "crops that are intended entirely or primarily for home
25 consumption whereas cash crops are defined as crops that are intended entirely or primarily for market (Govereh
26 & Jayne 2003). Food crops include cereals (e.g., maize and rice), roots and tubers (e.g., yam and cassava) and
27 legumes (e.g., cowpea and groundnuts). Fruits (e.g., avocado and mango) and vegetables (e.g., tomatoes and
28 peppers) and industrial cash crops (e.g., cocoa, rubber, kola, coffee, and oil-palm) are important crops for export
29 revenue (MOFA 2016).

30 Productivity is defined as output per unit input which is used to indicate the performance of crop production
31 (Coelli et al., 2005). Agricultural output grows by improved weather conditions, conventional inputs, and enabled
32 by rural infrastructure, institutional factors and policy frameworks (Thirtle et al., 2003; Reimers & Klason 2013).
33 According to the World Bank (2000), "poverty is pronounced deprivation in wellbeing" where well-being can be
34 measured by an individual's possession of income, health, nutrition, education, assets, housing, and certain rights,
35 such as freedom of speech. It is also a lack of opportunities, powerlessness, and vulnerability. Poverty rate in
36 Sub-Saharan Africa was high at about 40% and moderate at 18% in South Asia in 2015 (Roser & Ortiz-Ospina,
37 2018; Fosu 2016). Non-income poverty measures of enrolment rates in senior-secondary schools and tertiary
38 education and the quality of learning in both basic and post-basic education are low in poor countries (Molini &
39 Paci, 2015). By the national poverty line of Ghana, the poverty rate in 1991 of 53% decreased to 21% in 2012 but
40 increased to 23.4% in 2016/17 (GSS, 2018). Similarly, in Uganda poverty reduced from 25% in 2009 to 21% in
41 2013 and geographical disparities characterised this poverty reduction (Ssewanyana, & Kasirye, 2014). Poverty
42 rates by employment type showed that poverty among farmers reduced from 45% in 2005 to 39.2% in 2013; the
43 rural population in the agricultural employment sector have the highest poverty incidence. Nationally, the Gini
44 coefficient of 41.9% in 2005 increased slightly to 42.3% in 2013 ??GSS, 2014).

45 Poverty is mainly caused by inadequate income or resources for an optimum consumption of commodities and
46 services which consequently show symptoms of malnourishment and lack of assets (Sen, 1999; Stern & Rogers,
47 2005; Tebaldi and Mohan 2010). The agricultural sector of Ghana, which is led by smallholder farmers is
48 burdened with low productivity due to low technology adoption and poor soils, weak infrastructure, low market
49 access, high transaction costs and climatic shocks (ACDI/VOCA 2012). Improved agricultural productivity
50 through innovative technologies that support sustainable development is an important channel that aids in
51 poverty reduction and increased food and nutrition security (Al-Hassan and Diao 2007). Improving agricultural
52 productivity is related to Sustainable Development Goal 8 to promote sustained, inclusive and sustainable
53 economic growth, full and productive employment and decent work for all poverty and hunger reduction.

54 Christiaensen et al. (??011) found employment of poor people in agriculture and the linkage of agriculture
55 with other sectors of the economy leads to poverty reduction. Agricultural productivity pathways to poverty
56 reduction are through the effect of income from higher output; lower food prices and multiplier effects on rural
57 economic growth (Grewal et al., 2012; ??resciani & Valdes, 2007). A related study found significant negative
58 relationships between household's intensity of cash crop production and food security due to increasing food prices
59 and competing activities for land use. The adverse relationship between cash crop production and household
60 food security observed calls for caution; results suggest that positive relationships cannot be assumed, and that
61 further empirical evidence is needed to better understand these tradeoffs (Anderman, et al. 2014). Food and
62 cash crops have different production systems and synergistic effects or trade offs on farm households' livelihoods
63 (Govere and Jayne 2003). Crop farmers' poverty rate has not been disaggregated into food and cash crop types
64 and their role on poverty reduction have not been assessed. This study therefore assesses the effect of food and
65 cash crop productivities on poverty. The next section presents the methodology of the study, which entails the
66 data and method of analysis, followed by the results and discussion and lastly conclusion.

67 **2 II.**

68 **3 METHODOLOGY a) Conceptual Framework**

69 The conceptual framework adapted for this study shows four pathways out of poverty, namely raising agricultural
70 labor productivity, labor reallocation to rural non-farm activities, migration to reallocate labour to urban
71 activities, and transfer of rural tax reduction or income transfers, price support and input subsidies (Schneider
72 & Gugerty 2011). Food crops provide food and income while cash crops provide income for farm households
73 towards poverty reduction (Figure 1). Food and cash crops have varied growth paths and unequal pathways
74 for poverty reduction (Diao & Dorosh, 2007). The sub-sectors are distinct by agro ecological conditions, policy,
75 markets and special role towards alleviating poverty. Food crops pathway for poverty reduction is broad-based
76 mainly through supply of food for household consumption and sale of surplus food through domestic and regional
77 market (Al-Hassan & Poulton 2009; Khan and Verma, 2018; Diao & Hazell, 2004). Cash crops are high value
78 crops and provide mainly income in well-structured domestic and export markets (Diao & Hazell, 2004; ??ill &
79 Viner, 2014).

80 **4 Theoretical Framework**

81 The household economic model provides the theoretical basis of this analysis. The indirect utility function of
82 a rural household is given by $U = \max_{\{x, l\}} \{U(x, l)\}$, where x is labour income to purchase commodities and services for
83 optimum satisfaction and l is price of crop j (Ravallion, 1996; Minten & Barrett 2008). The study assumes the
84 labour income, y is decomposed into farm and non-farm labour income as defined in equation (1).
$$y = \alpha A l + \beta w n \quad (1)$$

85 where, A is productivity of the underlying technology, α is the production function, l is farm labour supply, n is non-farm labour supply,
86 w is the wage rate for unskilled labour and E is the given agroecological conditions.

87 Labour income y specified in equation (1) is totally differentiated to give equation (2):
$$\frac{\partial y}{\partial A} = \alpha l + \beta w \quad (2)$$

88 Equation 2 is simplified as:
$$\alpha l + \beta w = \alpha A l + \beta w \quad (3)$$

89 $\alpha A l + \beta w$ is given by $\alpha A l + \beta w$.

90 **5 ?? ??**

91 **6 α ???" α ???"**

92 where α is the price elasticity with respect to productivity.

93 Higher crop productivity growth would increase crop output greater than the decline in crop prices to increase
94 crop income and thereby reduce poverty (Nicholas & Snyder, 2008; Minten & Barrett 2008).

100 7 a) Estimation of Poverty Rate

101 The Foster-Greer-Thorbecke (1984) (FGT) poverty index is used to estimate the poverty headcount ratio, poverty
102 gap and poverty severity among crop farmers. The measure uses consumption expenditure which is more reliable
103 to obtain from households and more stable than income of farmers. The FGT measures are given as: The
104 food and cash crops productivities are measured as output value per hectare of land and is estimated by the
105 instruments of cost of chemical and intermediate inputs in equation (8). Crop productivity is expected to be
106 endogenous due to possible correlation with the error term, which is corrected by the instruments found to be
107 related to the crop productivity but unrelated to the error term. Poverty measures , poverty headcount ratio,
108 Poit Poverty gap, P1it and Poverty severity, P2it are regressed on the estimated crop productivity (?? 1, ,),
109 household size (?? 2 ,), distance to water source(?? 3 ,), years of education (?? 4 ,), days of ill-health (?? 5
110 ,), livestock and remittance income (?? 6 ,), in equation (9)(10)(11). Deaton (1985) suggests creating cohorts,
111 based on some pre-determined characteristics that are time invariant, can substitute for panel data. and have
112 cohort means that generate consistent and efficient estimates (Guillerm 2017).?? 0 = ?? ?? ? Poverty headcount
113 ratio (5) ?? 1 = 1 ?? ? [(?? ? ??) ?? ?] 1 ?? ??=1 ? Poverty gap (6) ?? 2 = 1 ?? ? [(?? ? ??) ?? ?] 2 ??
114 ??=1 ? Poverty severity(7Stage 1: ??????? ?? 1???? = ?? 0 +?? 1 ???????? 1???? + ?? 2 ???????? 2???? (8)
115 Stage 2: ? ?? 0???? 1???? 0???? ? = ?? 0 + ?? 1 ??????? 1???? + ? ?? ? ? ??????? 6 ?? =2 ?? ????? + ?? ???
116 (9) ??? 1 = ?? 0 + ?? 1 ??????? 1???? + ? ?? ? ? ??????? 6 ?? =2 + ?? ??? (10) ??? 2 = ?? 0 + ??
117 1 ??????? 1???? + ? ?? ? ? ??????? 6 ?? =2 + ?? ???
118 IV.

119 8 Results and Discussion

120 9 a) Summary Statistics of model explanatory variables

121 Crop income per hectare of land increased and consumption expenditure on food and non-food items is lower
122 among poor farmers than non-poor farmers which increased to reduce poverty between 2005 and 2013. Crop
123 productivity (kg/ha) reduced for non-poor farmers and increased for poor farmers between 2005 and 2013. Table
124 II shows that years of education of household head fell by 14% for non-poor farmers and 8% by poor farmers.
125 Years of education is important to use the inputs to obtain optimum output. The study further reveals remittance
126 income increased highly by 260% for non-poor farmers and by 205% for poor farmers to support household income
127 for consumption, which is relevant in contributing towards poverty reduction. Additional income from livestock
128 sales increased by 220% for non-poor farmers but reduced by 52% for poor farmer, which can have a dampening
129 effect on consumption expenditure to increase poverty. Household size is higher among poor farmers than nonpoor
130 farmers and increased slightly between 2005 and 2013. Distance to water source has reduced significantly between
131 2005 and 2013 and does not differ significantly between the poor and non-poor. Days of ill health is high and
132 does not differ between the poor and non-poor.

133 Volume XXII Issue VI Version I 50 () III). Cash crop output increased lower than food crop, farm size reduced
134 slightly, and the productivities output/income per hectare increased higher than food crops to reduce poverty
135 between 2005 and 2013. Cash crop output value increased by 330% more than food crop output value which
136 increased by 190% towards poverty reduction between 2005 and 2013. Cash crop yield growth is supported by
137 the well organised value chains which offer technical assistance on production and readily available markets for
138 outputs and inputs (Diao & Hazell 2004).

139 10 d) Source of Income

140 The study shows major source of income for poor farmers is agriculture and major source of income for non-poor
141 farmers is wage and non-farm income sources towards poverty reduction. Poor farmers spent more income on food
142 than on non-food items in the consumption bundle. Non-food expenditures include those expenditures on health,
143 education, transportation, clothing, recreation, remittances among others. Total expenditure for poor farmers
144 increased by 14%: food expenditure increased by 30% and non-food expenditure increased by 14% between 2005
145 and 2013 (Table V). The Ghana Statistical Service requires ?1314.4 minimum food and nonfood expenditure
146 per year to become non-poor (GSS 2014). VI). Cash crop sub-sector reduces poverty through significant output
147 value growth by participating in export market for relatively low number of farmers than the food crop sub-sector
148 which engages more farmers (Broeck et. al, 2017). A 1% growth in food crop productivity reduces the probability
149 of being poor in terms of the elasticity of poverty headcount ratio, poverty gap, and poverty severity by -0.19%,
150 -0.41%, -and -0.81% which are negative but inelastic. The effects are however lower Volume XXII Issue VI Version
151 I 52 () than that due to cash crop productivity (Table VII). The conduit of food crop productivity towards poverty
152 reduction is mainly by the provision of food and crop income from the productivity growth. Food crop diversity
153 increases by 10% to provide food and income to decrease the probability of a household being in poverty by
154 18% in Ethiopia (Michler & Josephson 2017; Iheke & Nwaru 2013). In addition to crop productivity, growth in
155 years of education, livestock income and remittances are important for poverty reduction. However, livestock
156 income does not affect poverty gap and severity. Remittance receipts by households contribute to stabilizing
157 consumption in developing countries (Mondal & Khanam 2016). Education develops the numeracy and literacy
158 skills to increase income and manage consumption effectively and efficiently (Coppola & Laurea 2016; Leshoro &

11 CONCLUSIONS

159 Leshoro 2013; Nowak & Kijek 2016). The poverty elasticity estimates for household size are all positive suggesting
160 that larger households are more likely to be poor. The response is also elastic for poverty headcount ratio which
161 increases poverty highly to affect wellbeing of farmers. Household size can erode the benefits of crop productivity
162 growth towards poverty reduction due to the larger effect it exerts on poverty (Tekla et al., 2019). Increase in
163 days of ill health reduces probability of being poor by poverty headcount ratio, poverty gap and poverty severity
164 by -0.09%, -0.06% and -0.11%. Days sick can positively influence consumption for speedy recovery towards
165 poverty reduction but higher days sick will reduce consumption to increase poverty. Cho et al. (2016) found
166 household head's physical, and mental disabilities were associated with higher likelihood of being food insecure.
167 An increase of distance to water source elicits an increase poverty headcount ratio but does not affect poverty
168 gap and poverty severity. Longer distance to fetch water increases poverty incidence because of longer time spent
169 to fetch water to retard household productivity. The study finds cash crop productivity increases by 1% reduces
170 poverty headcount ratio, poverty gap, poverty severity, by -0.28%, -0.44%, -0.88% respectively. Poverty elasticity
171 in response to productivity growth in cash crop production, is negative for all poverty indicators (Table IX). The
172 elasticity values are higher than those estimated for food crop productivity growth in Table ??VII). Cash crops
173 mainly provide income to support household consumption bundles. Cocoa productivity growth increased income
174 to support household consumption expenditure growth towards poverty reduction in Ghana (Danso-Abbeam, &
175 Baiyegunhi, 2018). Cash crops revenue increase per capita expenditure towards poverty reduction in Vietnam
176 (Cuong, 2009). The effect of an increase in household size on poverty is positive and significant for all poverty
177 indicators. Balagtasa et al. (2014) found an additional family member in rural Bangladesh slightly increased the
178 probability of falling into poverty. A related study revealed an increase in variance of household dependence ratio
179 decreases variance in consumption expenditure by 0.14 standard deviation which negatively affects consumption
180 to increase poverty (Dzanku, 2015b). Table IX shows a reduction in all poverty indicators with respect to an
181 increase in years of education. Additional years of education promote household management of resources to
182 positively influence consumption. Thirtle & Piesse (2007), found education increases productivity in farm and
183 non-farm sector. Educated farmers search for new information and use new technologies efficiently to increase
184 productivity towards poverty reduction.

185 The study further reveals positive poverty elasticity with respect to increase in distance to water sources
186 because of the constraints introduced on consumption due to longer time and effort to access water, and loss of
187 productive hours. Access to livestock income growth by 1% reduces probability of poverty headcount ratio by
188 0.12% due to use of additional income to increase consumption. Katagame et al. (2017) found that pigs contribute
189 toward household income to reduce poverty among farmers' in Mimika. Remittance income is associated with
190 poverty reduction through its effect on food consumption expenditure. A 1% increase in remittance income
191 negatively reduces food insecurity in rural Mali by 0.11% to provide adequate and nutritious diet for households
192 (Generoso 2015).

193 11 Conclusions

194 Food and cash crop productivities increase to provide food and income to reduce poverty. Crop farmers poverty
195 rate is disaggregated into food and cash crops which have different growth paths and unequal pathways toward
196 poverty reduction and their role on poverty reduction is assessed differently in this study. Food crops such as
197 maize, rice, millet, cassava, etc mainly supply household food staples and cash crops such as cocoa, rubber, oil
198 palm, cotton, etc. provide income towards poverty reduction. The study finds poor farmers mainly depend on
199 agriculture and food and cash crops productivities grow to provide food and income to increase consumption
200 expenditures mainly on food among poor farmers to reduce poverty. Non-poor farmers spend higher on food
201 and non-food items which include health, education, transportation, clothing, and remittances, etc to reduce
202 poverty. Food crop farmers have higher poverty rates than cash crop farmers and food and cash crops have
203 considerable importance towards poverty reduction between 2005 and 2013. Food and cash crop productivities
204 growth reduce poverty moderately which is inelastic and efforts made to support farmers with resources and
205 skills to increase productivity of food and cash crops will count towards poverty reduction. The farmers should
206 benefit from improved crop varieties, production methods, due to low use of recommended agronomic practices,
207 capacity building, and market access towards productivity growth to provide food and income to reduce poverty.

208 Volume XXII Issue VI Version I 56 ()

Figure 1: Figure 1 :

Figure 2:

11 CONCLUSIONS

I

Variables	Definition	Measurement	Apriori sign
?? 0????	Poverty headcount ratio	Dummy 1=poor 0=non-poor	
?? 1????	Poverty gap	Consumption expenditure	
?? 2????	Poverty severity	Consumption expenditure	
?? 1	Crop productivity	Output Value? /Ha	-
?? 2	Household size	Household members	-/+
?? 3	Years of education	Years of education	-
?? 4	Distance to water source	Distance Km	-/+
?? 5	Days of ill-health	Number of days of inactivity	-/+
?? 6	Remittance income	Cedis	+
?? 7	Livestock income	Cedis	+
?? 1	Cost of chemical inputs (IV)	Cedis	+
?? 2	Cost of intermediate inputs (IV)	Cedis	+

Source: Authors Construction, 2018

c) The Data

Figure 3: Table I :

II

Variable Description	Mean		Mean		Mean	
	Poor	Non-Poor	Poor	Difference	Non-Poor	Difference
	2005	2005	2013	2013	2013	2013
Consumption per Adult	727.50	2502.36	1774.85***	832.15	3083.84	2251.69***
Crop productivity kg/ha	636.30	954.30	318.00**	720.27	874.92	154.65***
Revenue cedi/ha	177.93	283.76	105.82***	682.97	894.46	211.49***
Price cedi/kg	1.01	1.18	.17	1.36	1.64	0.28**
Chemical Cost (GHS)	20.94	54.66	33.71***	172.00	259.59	87.59***
Seed & Labour Cost (GHS)	27.43	82.98	55.55***	73.20	164.68	91.47***
Intermediate Input Cost	10.42	22.93	12.51***	77.87	127.92	50.05**
Household Head Age	47.54	47.11	-.43	49.26	47.94	-1.32***
Years of Education	7.61	8.69	1.07***	6.97	8.56	1.58***
Remittances Income	28.68	59.69	31.00***	87.35	214.96	127.61***
Livestock Income (GHS)	48.35	29.78	-	23.39	95.98	72.58*
			16.24**			
Household Size Number	6.06	3.68	-	6.44	4.40	-2.04***
			2.38***			
Distance to water source km	2.9	2.3	0.6	.42	.36	-
						0.069***
Days of ill health	5.64	6.49	.84*	6.31	6.17	-.13

Figure 4: Table II :

III

Agro Ecological Zone	Mean Output(kg)	Farm size (ha)		Output (kg/ha)		Productivity (/?/ha)			
		2005	2013	2005	2013	2005	2013	2005	2013
Food Crop	1169.5	1529.3	2.61	2.30		851.35	949.06	245.19	188.80
Cash crops	740.9	806.3	2.82	2.36		390.27	450.64	264.51	147.8
All Crops	1284.1	1603.6	3.32	3.35		763.81	811.59	257.28	806.82

Figure 5: Table III :

11 CONCLUSIONS

IV

Inputs	Yes	Percentage	No	Percentage	Total ??	
Fertilizer	3346	40.01	5016	59.99	8362	
Seed	1519	18.17	6843	81.83	8362	
Labour	4306	51.49	4056	48.51	8362	
Renting Equipment	1331	15.92	7031	84.08	8362	

[Note: Source: *Ghana living standards survey, round 6*]

Figure 6: Table IV :

V

	Mean	2005/06	Mean	2012/13
Expenditure Poor Non-Poor Difference				
Food	397.78	339.94	12.14 ***	516.96
Non-food	275.19	272.84	97.71***	314.52
Total	727.77	7497.07	69.81***	831.47

Source: Authors' estimated output, 2018

f) Poverty Levels by Crop Type

Food crop producers of major food crops such as maize, rice, millet, cassava, and plantain poverty rate declined from 59% in 2005 to 39% in 2013. Cash crop producers of major crops such as cocoa, cashew, rubber, and cotton poverty rate declined from 44%, in

2005 to 24% in 2013, lower than food highlighted in (Table

Figure 7: Table V :

VI

Crop Categories	P1			P2			P3			Consumption (?)	Population (number)	
	2005	2013	2005	2013	2005	2013	2005	2013	2005		2013	2013
Food Crops	59	39	27	15	16	7.4	1432.14	2172.39			2,771	7,454
Cash Crops	44		24.4	16	7.4	8.5	3.2	1796.82	2638.11		736	2,331
All Crops	57	37	25	14	14	6.8	1486.16	2244.07			2,957	8,352

Source: Authors estimated output, GLSS 5 & 6

[Note: g) Effect of Food Crop Productivity on Poverty]

Figure 8: Table VI :

VII

Variables	Poverty	Poverty Gap	Poverty Severity
Headcount			
Output value	-0.192*** (0.0211)	-0.405*** (0.0419)	-0.810*** (0.0837)
Household size	1.333*** (0.0464)	0.317*** (0.0293)	0.634*** (0.0585)
Education years	-0.378*** (0.0252)	-0.0980*** (0.0168)	-0.196*** (0.0336)
Dayssick	-0.0949** (0.0412)	-0.0564** (0.0263)	-0.113** (0.0525)
Distance water	0.0803*** (0.0131)	0.0146 (0.00896)	0.0292 (0.0179)
Livestock income	-0.159*** (0.0104)	0.0120 (0.00832)	0.0240 (0.0166)
Remittance income	-0.0333*** (0.0102)	-0.0181*** (0.00667)	-0.0361*** (0.0133)
Forest		0.0889 (0.0826)	0.178 (0.165)
Savannah		0.455*** (0.0794)	0.911*** (0.159)
Constant		0.121 (0.238)	0.242 (0.476)

Source: Authors estimated output

Figure 9: Table VII :

VIII

h)

Poverty Measure	Statement of Hypothesis	Test Statistic	Year 2022
Headcount Ratio	H0: Random effects model Ha: Fixed effects model	12.05 (0.09)	53
Poverty Gap	H0: Random effects model Ha: Fixed effects model	9.02 (0.25)	Volume XXII Issue VI Version I) E (
Poverty Severity	H0 : Random effects model Ha : Fixed effects model	9.02 (0.25)	Global Journal of Human Social Science - Decision Rule Reject Null

© 2022 Global Journals

Figure 10: Table VIII :

11 CONCLUSIONS

IX

Variables	Poverty Headcount Ratio	Poverty Gap	Poverty Severity
Outputvalueha	-0.283*** (0.0382)	-0.440*** (0.136)	-0.879*** (0.272)
Household size	1.473*** (0.105)	0.527*** (0.0834)	1.053*** (0.167)
Education years	-0.447*** (0.0549)	-0.131*** (0.0446)	-0.263*** (0.0892)
Dayssick	-0.0233 (0.0842)	-0.0767 (0.0715)	-0.153 (0.143)
Diswater source	0.120*** (0.0317)	0.0307 (0.0277)	0.0615 (0.0554)
Livestockincome	-0.119*** (0.0241)	0.00321 (0.0190)	0.00642 (0.0381)
Remittance	-0.0792*** (0.0220)	-0.0678*** (0.0186)	-0.136*** (0.0371)
Forest		0.250 (0.247)	0.501 (0.495)
Savannah		0.104 (0.226)	0.208 (0.451)
Constant		-0.146 (0.722)	-0.292 (1.444)

Source: Estimation Result, 2018

Figure 11: Table IX :

X

V.
54
Volume XXII Issue VI
Version I
)
(

Poverty Measure	Statement of Hypothesis	Test Statistic	Decision Rule
Headcount Ratio H0: Random effects model	Ha: Fixed effects model	18.56 (0.01)	Reject Null
Poverty Gap	H0: Random effects model	2.49 (0.92)	Do not Reject Null
Poverty Severity	Ha: Fixed effects model H0 : Random effects model	2.49 (0.92)	Do not Reject Null
	Ha : Fixed effects model		

Figure 12: Table X :

209 [Springer] , Dordrecht Springer .

210 [Bank ()] , World Bank . 2000. 2000-2001. Washington, DC: World Bank. (World Development Report)

211 [GSS ()] , <http://www.statsghana.gov.gh/docfiles/GDP/GDP2017> GSS 2017. (Ghana Statistical Service Provisional 2016 Annual Gross Domestic Product)

213 [Schneider and Gugerty ()] 'Agricultural productivity and poverty reduction: Linkages and pathways'. K Schneider , M K Gugerty . *Libraries Test Journal* 2011. 1 (1) p. .

215 [Minten and Barrett ()] 'Agricultural technology, productivity, and poverty in Madagascar'. B Minten , C B Barrett . *World Development* 2008. 36 (5) p. .

217 [Al-Hassan and Poulton ()] *Agriculture and Social Protection in Ghana Futures Agricultures FAC Working Paper No*, R Al-Hassan , C Poulton . 2009.

219 [Mofa ()] *Agriculture in Ghana: Facts and Figures (2016)* Ministry of Food and Agriculture Statistics, Mofa . 2016. 2017. (Research and Information Directorate (SRID))

221 [Coelli et al. ()] *An introduction to efficiency and productivity analysis*, T J Coelli , D S P Rao , C J O'donnell , G E Battese . 2005. Springer Science & Business Media.

223 [Bresciani ()] 'Beyond food production: the role of agriculture in poverty reduction'. F Bresciani . *Food & Agriculture Org. Economic and Social Development Dept & Valdés, A. (ed.)* 2007. 2007. p. .

225 [Govereh ()] 'Cash cropping and food crop productivity: synergies or trade-offs?'. J Govereh , JayneT S . *Agricultural Economics* 2003. 2003. 28 p. .

227 [Diao and Dorosh ()] 'Demand constraints on agricultural growth in East and Southern Africa: A general equilibrium analysis'. X Diao , P Dorosh . *Development Policy Review* 2007. 25 (3) p. .

229 [Sen ()] *Development As Freedom*, Amartya Sen . 1999. Oxford: Oxford University Press.

230 [Balagtas et al. ()] 'Did the commodity price spike increase rural poverty? Evidence from a long-run panel in Bangladesh'. J V Balagtas , H Bhandari , E R Cabrera , S Mohanty , M Hossain . *Agricultural Economics* 2014. 45 (3) p. .

233 [Khan and Verma ()] 'Diversifying cropping systems with aromatic crops for better productivity and profitability in subtropical north Indian plains'. K Khan , R K Verma . *Industrial Crops and Products* 2018. 115 p. .

235 [Coppola and Di Laurea ()] 'Dynamics of persistent poverty in Italy at the beginning of the crisis'. L Coppola , D Di Laurea . *Genus* 2016. 72 (1) p. 3.

237 [Diao and Hazell ()] 'Exploring market opportunities for African smallholders'. X Diao , P Hazell . *International Food Policy Research Institute (IFPRI)*, 2004.

239 [Cho et al. (2016)] 'Food Insecurity and Types of Disability'. S Cho , A Ishdorj , C Gregory . *2016 Annual Meeting*, (San Antonio, Texas) 2016. February 6-9, 2016.

241 [Ghana Living Standards Survey Rounds 7 Ghana Statistical Service] *Ghana Living Standards Survey Rounds 7* Ghana Statistical Service,

243 [Acdi/Voca (2012)] *Ghana-Agriculture Development and Value Chain Enhancement (ADVANCE) Project*, Acdi/Voca . <http://www.acdivoca.org/site/ID/ghanaADVANCE> 2012. retrieved October 1, 2019.

245 [Roser and Ortiz-Ospina ()] *Global Extreme Poverty*, M Roser , E Ortiz-Ospina . <https://ourworldin>. <https://ourworldindata.org/extreme-poverty> 2018. (Published online at OurWorldInData.org. Retrieved from)

248 [Broeck et al. ()] 'Global value chains, large-scale farming, and poverty: Long-term effects in Senegal'. Broeck , G Van Den , J Swinnen , M Maertens . *Food policy* 2017. 66 p. .

250 [Stern et al. ()] *Growth and empowerment. Making development happen*, N Stern , J J Dethier , F H Rogers . 2005. Cambridge: The Massachusetts Institute of Technology Press.

252 [Fosu ()] 'Growth, inequality, and poverty reduction in developing countries: recent global evidence'. A K Fosu . *Research in Economics* 2016. 71 (2) p. .

254 [Dzanku ()] 'Household welfare effects of agricultural productivity: A multidimensional perspective from Ghana'. F M Dzanku . *The Journal of Development Studies* 2015a. 51 (9) p. .

256 [Generoso ()] 'How do rainfall variability, food security and remittances interact? The case of rural Mali'. R Generoso . *Ghana Statistical Service (2022)* *Ghana Statistical Service* *Ghana Statistical Services*. (*statsghana.gov.gh*), 2015. 114 p. .

259 [Leshoro and Leshoro ()] 'Impacts of literacy rate and human development indices on agricultural production in South Africa'. S Leshoro , T L Leshoro . *Agricultural Economics/Zemedelska Ekonomika* 2013. (11) p. 59.

261 [Katagame et al. ()] *Income Contribution of Pig Livestock toward Poverty Reduction and Factors Influencing Pig Farming in Mimika Papua IOSR Journal of Agriculture and Veterinary Science*, A Katagame , Z Fanani , B Nugroho , A . ISSN: 2319-2372. 2017. 10 p. .

11 CONCLUSIONS

264 [Iheke and Nwaru ()] 'Innovation Adoption, Farm Productivity and Poverty Status of Rural Smallholder Farm
265 Households'. O R Iheke , J C Nwaru . *the 4th International Conference of the African Association of*
266 *Agricultural Economists*, (South-East, Nigeria; Hammamet, Tunisia) 2013. (Invited paper presented at)

267 [Tebaldi and Mohan ()] 'Institutions and Poverty'. E Tebaldi , R Mohan . *The Journal of Development Studies*
268 2010. 46 p. .

269 [Thirtle and Piesse ()] 'Irrigation and Drainage: The journal of the International Commission on Irrigation and
270 Drainage'. C Thirtle , J Piesse . *Asia and Latin America* 2007. 56 (2-3) p. . (Governance, agricultural
271 productivity and poverty reduction in Africa)

272 [Ravallion ()] 'Issues in Measuring and Modeling Poverty. The World Bank . *Policy* 1996.

273 [Hill and Vigneri ()] 'Mainstreaming gender sensitivity in cash crop market supply chains'. R V Hill , M Vigneri
274 . *Gender in agriculture*, 2014. p. .

275 [Cuong ()] 'Measuring the impact of cash crops on household expenditure and poverty in rural Vietnam'. N V
276 Cuong . *Asia-Pacific Development Journal* 2009. 16 (2) p. .

277 [Nicholson and Snyder ()] *Microeconomic theory. Basic Principles and Extensions Tenth Edition*, W Nicholson
278 , C Snyder . 2008. Thomson South-Western, Canada.

279 [Deaton ()] 'Panel Data from Time-Series of Cross-Section'. A Deaton . *Journal of Econometrics* 1985. 30 p. .

280 [Katchova ()] *Panel Data Models Econometric Academy*, A Katchova . <https://sites.google.com/site/econometricsacademy/econometrics-models/panel-data-models> 2013.

282 [Al-Hassan and Diao ()] *Policy Options and Public Investment Implications Regional Disparities in Ghana*
283 *Development Strategy Governance Division International Food Policy*, R Al-Hassan , M Diao , X . 2007.
284 (Research Institute IFPRI Discussion Paper No. 00693)

285 [Poverty profile in Ghana] Ghana Statistical Service () 'Poverty profile in Ghana'. *Ghana Statistical Service*,
286 (Accra) 2014. 2005-2013.

287 [Molini and Paci ()] *Poverty Reduction in Ghana-Progress and Challenges*, V Molini , P Paci . 2015.

288 [Gss ()] *Poverty Trends in Ghana*, Gss . 2018. 2005-2017.

289 [Guillerm ()] 'Pseudo-panel methods and an example of application to Household Wealth data'. M Guillerm .
290 10.24187/ecostat.2017.491d.1908. *Economie et Statistique/Economics and Statistics*, 2017. p. .

291 [Reimers and Klasen ()] 'Revisiting the role of education for agricultural productivity'. M Reimers , S Klasen .
292 *American Journal of Agricultural Economics* 2013. 95 (1) p. .

293 [Crown et al. ()] 'Some cautions on the use of instrumental variables estimators in outcomes research: how bias
294 in instrumental variables estimators is affected by instrument strength, instrument contamination, and sample
295 size'. W H Crown , H J Henk , D J Vanness . *Value in Health* 2011. 14 (8) p. .

296 [Teko et al. ()] 'Status and determinants of poverty and income inequality in pastoral and agro-pastoral
297 communities: Household-based evidence from Afar Regional State'. A M Teko , G T Woldu , Z Fre . *Ethiopia.*
298 *World Development Perspectives* 2019. p. 100123.

299 [Anderman et al. ()] 'Synergies and tradeoffs between cash crop production and food security: a case study in
300 rural Ghana'. T L Anderman , R Remans , S A Wood . 10.1007/s12571-014-0360-6. <https://doi.org/10.1007/s12571-014-0360-6> *Food Sec* 2014. 6 p. .

302 [Christiaensen et al. ()] 'The (evolving) role of agriculture in poverty reduction-An empirical perspective'. L
303 Christiaensen , L Demery , J Kuhl . *Journal of development economics* 2011. 96 (2) p. .

304 [Grewal et al. ()] 'The contribution of agricultural growth to reduction'. B Grewal , H Grunfeld , P Sheehan .
305 *Australian Centre for International Agricultural Research* 2012. ACIAR.

306 [Nowak and Kijek ()] 'The effect of human capital on labour productivity of farms in Poland'. A Nowak , T Kijek
307 . *Studies in Agricultural Economics* 2016. 118 (1) p. .

308 [Thirtle et al. ()] 'The impact of research led agricultural productivity growth on poverty reduction in Africa,
309 and Latin America'. C Thirtle , L Lin , J Piesse . *World Development* 2003. 31 (12) p. .

310 [Mondal and Khanam ()] *The impacts of international migrants' remittances on household consumption volatility*
311 *in developing countries*, R K Mondal , R Khanam . 2016.

312 [Michler and Josephson ()] 'To specialize or diversify: agricultural diversity and poverty dynamics in Ethiopia'.
313 J D Michler , A L Josephson . *World Development* 2017. 89 p. .

314 [Dzanku et al. ()] 'Transient rural livelihoods and poverty in Ghana'. F M Dzanku , J Foster , J Greer , E
315 Thorbecke . *Econometrica: journal of the econometric society* 2015b. 1984. 40 p. . (Journal of Rural Studies)

316 [Ssewanyana and Kasirye ()] 'Uganda's Progress Towards Poverty Reduction during the last Decade'. S Sse-
317 wanyana , I Kasirye . *Is the Gap Between Leading and Lagging Areas Widening or Narrowing*, 2014. 2002/3-
318 2012/13.

319 [Danso-Abbeam and Baiyegunhi ()] 'Welfare impact of pesticides management practices among smallholder
320 cocoa farmers in Ghana'. G Danso-Abbeam , L J Baiyegunhi . *Technology in Society* 2018. 54 p. .