

1 Source Identification and Distribution of Toxic Trace Metals in 2 Respirable Dust (PM 10) in Brasscity of India

3 Anamika Tripathi¹ and Atul Kumar²

4 ¹ Hindu College

5 Received: 11 December 2013 Accepted: 31 December 2013 Published: 15 January 2014

6

7 **Abstract**

8 This study assessed the concentration of PM10 and trace metals at six sites with different
9 land uses during the period of one year. Metals concentrations of PM10 were analyzed using
10 ICP-OES. Highest concentrations of PM10 were recorded in winter and lower in monsoon at all
11 the study sites. The concentrations of trace metals in PM10 were observed in the following
12 order: Zn > Fe > Cu > Al > Pb > Cr > Mn > Cd > Ni. Overall concentration of PM10 and
13 heavy metals was found highest at industrial sites than the vehicular, commercial and
14 residential sites shows the greater contribution of industrial and combustion process.
15 Univariate (correlation study) and Multivariate statistical analysis were adopted including;
16 factor analysis and enrichment factor analysis to identify the sources and their contribution to
17 PM10. The major source of airborne trace metals identified were brassware industries, illegal
18 e-waste burning automobile emissions and combustion processes.

19

20 **Index terms**— respirable dust, trace metals, principal component analysis, enrichment factor analysis,
21 industrial activities, e-waste burning, automobile emissions.

22 **1 Introduction**

23 Atmospheric particular matter is considered as a prime pollutant of concern for urban cities, not only because
24 of the adverse health effects, but also for the reducing atmospheric visibility (Grieken & Delalieux, 2004; Quinn
25 et al., 2005). On a Global scale, particular matter (PM) also influences directly and/or indirectly the Earth's
26 radiation energy balance, and can subsequently impact on global climate change ??IPCC, 2001). Atmospheric
27 particulates are reported to affect ecosystems (Niyogi et al., 2004) and materials adversely. A number of studies
28 have been undertaken focusing on the characteristics of aerosols in megacities of the world including Beijing
29 , Colombo, Oxford, Amsterdam, Athena, Jeddah etc. (Sun et al., 2004; ??eneviratne et al., 2011; Wojas and
30 Almquist, 2007; Vallius 2005; Chaloulakou et al., 2003; Khodeir et al., 2012).

31 PM 10 particles (the fraction of particulates in air of very small size (<10?m) are of major current concern, as
32 they are small enough to penetrate deep into the lungs and so potentially pose significant health risks (Begum
33 et al., 2004; Artinano et al., 2007; Guttikunda et al., 2014). The results of the long -term studies confirm that the
34 adverse health effects are mainly due to microns in diameter, PM 10 (Schwartz et al., 1996). The particulate may
35 include a broad range of chemical species, ranging from metals to organic and inorganic compounds (Tsai and
36 Cheng, 2004; Park and Kim, 2005). Among the inorganic compounds, most important ones are the trace metals,
37 which are emitted by various natural and anthropogenic sources such as crustal materials, road dust, construction
38 activities, motor vehicles, coal and oil combustion, incineration and industrial metallurgical process (Quiterio et
39 al., 2004; Shah et al., 2006; Park et al., 2008; Shah and Shaheen, 2010; Cheng et al., 2011). Industrial metallurgical
40 process is regarded as one of the most important anthropogenic trace metal emission sources (Zheng et al., 2010)
41 and produce the largest emissions of trace metals as As, Mn, Co, Cd, Cu, Ni and Zn ??Vassilakos et al., 2006;
42 Van et al., 2014).

43 Airborne particulate matter with elevated metals may have a serious impact on human health which mostly
44 includes respiratory disease, lung cancer, heart disease and damage to other organs (Magas et al., 2007; Liu et

7 A) PM 10 CONCENTRATIONS

45 al., 2009;Mavroidis and Chaloulakou, 2010). Within the European programme for monitoring and evaluation of
46 the long -range transmission of air pollutants (EMEP), measurements of PM 10 and heavy metals, are highly
47 toxic species have been introduced. These observations are influencing the environmental legislative authorities
48 all over the world to update and modify their air quality standards ??WHO, 2006; ??uropean Commission, 2004;
49 ??SEPA, 2008). The recommended guidelines for maximum PM 10 concentrations are 50 μgm^{-3} (24-h average)
50 where as 20 μgm^{-3} for the annual average concentration.

51 Moradabad, the 'Brass city of India' is the second most populated city of state Uttar Pradesh and the most
52 significant commercial centre of Northern India. More than 80 % of the total production of brass souvenirs and
53 utensils of India is from Moradabad region alone. It is one of the largest producing and exporting center of
54 brass-wares in India. The growth of the city over the last thirty years has been rapid and (Pathak et al., 2008)
55 and illegal e-waste burning units in dense residential areas (Figure ??) while mobile source of pollution includes
56 all forms of transportation. Vehicle fuels used in Moradabad are mainly unleaded gasoline and diesel although
57 some lead is still permissible. Pollution assessment in this area is important since air quality has a major influence
58 on workers of the industries and inhabitants living around the area.

59 The objective of the study was to assess air quality and to identify the main source by multivariate receptor
60 modeling (PCA), enrichment factor (EF) calculation and analysis of meteorological effects. Anthropogenic
61 enrichment of trace metals in atmospheric particulates were also envisaged along with the comparative evaluation
62 of the estimated metal levels with those reported from other areas around the world. The results could be used
63 as the baseline data for analysis of health risk due to inhalation of respirable dust (PM 10), and to provide
64 scientific evidence for setting up an air pollution control.

65 2 II.

66 3 Material and Methods

67 4 c) Analytical Technique

68 Before and after the sampling procedure, filters were kept for 48 h in desiccators in an environmentally conditioned
69 room with a RH of 45 \pm 5% and a temperature of 20 \pm 2 $^{\circ}\text{C}$ before being weighed by a microbalance (Sartorius
70 BP160P). The difference in initial and final weight (gravimetric analysis) of the filter paper gave the total quantity
71 of PM 10 collected over the 24 hours period. The values of PM 10 were reported in μgm^{-3} . For analysis of
72 metallic elements, total 72 square of 1 \times 1 ins diameter (6 locations + 1 control/blank) of the fiber filter paper
73 covered by particulates digested with nitric acid and perchloric acid in a ratio 1:3 on a 140 0 $^{\circ}\text{C}$ hot plate till
74 white fumes arose. Residues were then redissolved by 0.1M hydrochloric acid and the content was filtered through
75 Whatman Filter no. 42 and finally made-up to 25 mL by double distilled water. The filtrate of each sample
76 was examined for the concentrations of heavy metals by using Inductively Coupled Plasma-Optical Emission
77 Spectrometer (ICP-OES; Spectro Analytical Instruments, West Midlands, UK) collected for each site at Metal
78 Handicraft Service Centre, Peetal Nagari, Moradabad (Ministry of Textiles, Govt. of India). To get the final
79 concentration results of the blank samples are subtracted from the exposed samples. For each of the metals the
80 concentration of metals in the samples is then multiplied by the sample volume (i.e. 25 mL) to get the mass
81 of each metal. These values are subsequently divided by corresponding total volume of sampled air to get the
82 concentration of metals in the sampled air.

83 5 d) Data Analysis Techniques

84 Obtained data were processed for statistical analysis including univariate and multivariate methods. Basic
85 statistical parameters such as mean and standard deviation are computed along with correlation analysis, while
86 multivariate statistics in terms of Principal Component Analysis (PCA) as given by Lee and Hieu, 2011 .
87 Calculation of Enrichment Factors (EFs) was also performed using the SPSS version 16.0 statistical software. a
88 flow rate of 1.0-1.5 m^3/min and the monitoring of III.

89 6 Results and Discussion

90 7 a) PM 10 concentrations

91 The site-to-site seasonal comparison of PM 10 mass concentration is statistically presented in Table ???. The range
92 of mass concentrations varied considerably over time from 71 to 181 μgm^{-3} at Buddhi Vihar (SI, Residential)
93 from 45 to 238 μgm^{-3} at Buddh Bazar (SII, Commercial), from 61 to 213 μgm^{-3} at Kapoor Company (SIII,
94 Traffic density), from 54 to 174 μgm^{-3} at PTC (SIV, Residential), from 109 To 244 μgm^{-3} at Peetal Nagari
95 (SV, Industrial) from 99 to 213 μgm^{-3} at Mughalpura (SVI, Industrial and illegal e-waste burning) and all the
96 monthly mean values are found more than the recommended concentration of NAAQS (60 μgm^{-3}) except SII
97 (45 μgm^{-3}) and SIV (54 μgm^{-3}) in the month of July and August respectively but all the values are high than
98 the recommended concentration of WHO for PM 10 (20 μgm^{-3}) at all the study area (WHO, 2006). The annual
99 average concentrations at each location were 124 \pm 43, 137 \pm 59 and 131 \pm 49, 118 \pm 45, 193 \pm 43, 182 \pm 39 μgm^{-3}
100 respectively. The lowest concentration was found at PTC (SIV) the residential area which surrounds by greenery

101 and the highest concentration was found at industrial area of Peetal Nagari characterized by industrial activity
102 and soil dust.

103 The annual average values obtained from Peetal Nagari (SV) and Mughalpura (SVI) were higher than the
104 USEPA recommended annual PM 10 ambient air quality standard, i.e. 150 μgm^{-3} (USEPA, 1999). However
105 the value at the Buddhi Vihar (SI), Buddh Bazar (SII), Kapoor Company (SIII) and PTC (SIV) is lower than
106 the USEPA PM 10 standard. The higher PM 10 concentrations at site Peetal Nagari and Mughalpura may
107 reflect a significant contribution of anthropogenic sources compared to the other sites. High ambient PM 10 mass
108 concentration peaks occurred at industrial sites, suggesting that contribution of stationary industrial emission
109 were more important than the contribution of mobile sources even in areas with heavy traffic (Chen et al.,
110 2008; Roy et al., 2012).

111 A seasonal variation was found as higher concentrations for PM 10 occurred in winter period (November-
112 February) at all the study area than those of summer (March-June) which could possibly be attributed to the
113 higher traffic density and combustion of fossil fuel for heating during winters as well as prevailed meteorological
114 conditions (Table ??). The winter months are relatively calm than other months thereby causing slow dispersion
115 of pollutants generated and helps in buildup of pollutants in vicinity of the pollutant sources. Lower average
116 mixing height in winter season results in less volume of troposphere available for mixing and hence higher
117 PM 10 concentrations. The low temperature during winters lead to more energy consumption for industrial
118 purpose resulting in emitting more emission of primary PM from the industrial sources (Lee & Hieu, 2011).
119 Almost at all the sampling sites the concentration of PM 10 was found lowest (Table ??) in monsoon season
120 (July-October) which usually has large amounts of precipitation and high relative humidity (Table ??). These
121 meteorological conditions such as increased rainfall and humidity during the monsoon period can greatly decrease
122 PM concentrations in ambient air via rainout or washout mechanism (Pillai et al., 2002; Glavas et al., 2008).

123 Summer months (March-June) shows comparatively lower values than the winter may be due to high wind
124 speed, causing dispersal of pollutants. Thus the difference in PM concentrations between the three seasons can
125 be explained by the difference in weather pattern or meteorological conditions for each specific season.

126 Moradabad's PM levels were compared with those in different urban locations across Europe and Asia (Table
127 3). The average concentration of PM 10 i.e. 148 μgm^{-3} was recorded during this study which was significantly
128 higher than the other studies of the world. It is near about the concentration found in Hyderabad i.e. 135 μgm^{-3}
129 (Sun et al., 2004). As the maximum average mass concentration during winter for PM 10 were 446, 573, and
130 631 μgm^{-3} at the traffic, industrial and residential sites in Beijing, respectively. These value were compared to
131 the maximum PM 10 concentration of our sites which were 179, 203 μgm^{-3} at SI and SIV (compared to the
132 residential site) respectively, 203, 213 μgm^{-3} at SII and SIII (compared to the traffic site) and 234, 213 μgm^{-3}
133 at SV and SVI (compared to the industrial site). All these concentrations were less from the findings of Sun et
134 al., 2004. As Moradabad is a small city comparatively to highly developed megacity Beijing, hence the sources
135 are more in Beijing in comparison to Moradabad.

136 8 b) Trace Metal Concentrations

137 Considerable differences were noted with respect to metal content in samples of PM 10 from Buddhi Vihar (SI,
138 Residential), Buddh Bazar (SII, Commercial) Kapoor company (SIII, Traffic) PTC (SIV, Residential), Peetal
139 Nagari (SV, Industrial) and Mughalpura (SVI, Industrial and illegal e-waste burning). Heavy metals such as Fe,
140 Al, Cu, Zn, Mn, Ni, Pb, Cr, and Cd concentration along with standard deviation were displayed in figure 2 at all
141 the sampling sites. Among the trace metals Zn contributed the maximum concentration with annual average of
142 11.84 μgm^{-3} followed by Fe (9.41 μgm^{-3}), Cu (7.57 μgm^{-3}), Al (5.74 μgm^{-3}), Pb (1.99 μgm^{-3}), Cr (0.21 μgm^{-3}),
143 Mn (0.11 μgm^{-3}), Cd (0.09 μgm^{-3}) and Ni (0.01 μgm^{-3}). Among all the six monitoring sites the highest
144 concentration of Fe (18.43 μgm^{-3}), Al (10.08 μgm^{-3}), Cu (15.23 μgm^{-3}) and Cr (0.41 μgm^{-3}) was observed
145 at Mughalpura (SVI) followed by Peetal Nagari (SV) 17.07, 9.88, 14.84, 0.39 μgm^{-3} respectively while Zn (21.09,
146 21.21 μgm^{-3}) and Ni (0.031, 0.034 μgm^{-3}) was found almost same at both the site. The Mughalpura and
147 Peetal Nagari sites were surrounded by many small and large scale brassware industries. In these industries, Brass
148 (60% Cu and 40% Zn) and German silver (55% Cu, 35% Zn and 10% Ni) are the main alloys used for moulding
149 purpose in making brassware items and other utensils in Moradabad. Brassware industries which are specialized
150 in cutting, grinding, scraping, polishing etc. are the major cause of high concentration of these metals ??Tripathi
151 et Peetal Nagari (industrial site), situated along the major road connected to Delhi is a major exporting centre
152 of brasswares so the vehicular traffic as well as industrial activity could be the major source of Cu, Zn and Cr.
153 As Cu is associated mainly with industrial activities, road traffic (diesel engine and wearing of brakes) could be
154 the most important source in urban area. Zn is reliable tracer of unleaded fuel and diesel oil powered motor
155 vehicles emissions (Monaci et al., 2000) and besides, it could be released in large amounts from tire friction or
156 various industrial activities. Use of oil lubricants at the service centers, tire abrasions and vehicle exhausts are
157 the possible sources of Cr at the study areas. Presence of such sources and their association with increased Cr
158 and Zn concentrations comply with the findings of Karar et al., 2006 and Bhaskar et al., 2008. Highest value
159 of Pb (2.72 μgm^{-3}) and Cd (0.21 μgm^{-3}) was observed at Buddh Bazar (SII), a very busy commercial site
160 along with vehicular activity throughout the day and night followed by Kapoor Company (SIII), 2.5, 0.17 μgm^{-3}
161 respectively. The concentration of Pb in higher amount is mainly due to traffic volume (Tripathi, 1994; Xia
162 and Gao, 2011). As lead pollution due to leaded gasoline still occurs in few cities (Prajapati et al., 2009; Andra

11 E) ENRICHMENT FACTOR ANALYSIS

163 et al., 2011). The major source of human lead accumulation in developing countries was found to be airborne
164 lead and 90 percent of which comes from leaded gasoline ??MECA, 2003). Cadmium, one of the most dangerous
165 pollutants for organism, is mainly derived from combustion of accumulators and carburetors of vehicles (Divrikli
166 et al., 2006). It is a major industrial pollutant particularly in areas associated with smelting of zinc and heavy
167 road traffic (Hassan et al., 2009). Mn which is mainly derived from the anthropogenic activities found highest
168 mean value at Peetal Nagari followed by Kapoor Company. The residential sites showed comparatively the lower
169 concentration.

170 9 c) Correlation Analysis

171 Correlation coefficient was used to establish interrelationship between metals (Table 4). The strong correlation
172 (0.754, 0.729) was found between Fe-Al and Cu-Zn respectively in the study area. The significant correlation was
173 found between Fe with Cu (r=0.679), Zn (r=0.695), Ni (r=0.625) and Cr (r=0.504). It is also found significant
174 for Al with Cu (r=0.688), Zn (r=0.581), Ni (r=0.643) and Zn-Ni (r = 0.541), Mn-Ni (r=0.60). It may be due to
175 the industrial and anthropogenic activities like burning of fossil fuel. Zn-Cr (r=0.433), Al-Cr (r=0.419), Cu-Ni
176 (r=0.490), Pb-Cd (r=0.421), Cr-Cd (r=0.41) showed the moderate correlation while the negative correlation was
177 found between Ni-Pb and Ni-Cd. Based on the correlation study, it may be concluded that Fe, Al, Cu, Zn, Ni
178 and Cr were contributed by some common sources, probably by industrial and anthropogenic Sources.

179 10 d) Factor Analysis

180 The principal application of factor analysis is to reduce the number of variables. This method focuses on cleaning
181 up the factors. PCA was applied to determine the correlation between pollutants and to identify the source
182 profile of heavy metals in PM 10 . Table 5 describes the Principal Component (PC) loadings for the metal
183 data of the study period with corresponding eigen values and variances. Based on this matrix three new sets
184 of synthetic variables (Principal Component) were obtained. For interpreting of the data the method of Kaiser
185 Criterion (Kaiser, 1960) is followed which retain only those factor having eigen value greater than 1 has been
186 used for further interpretation. Factor loading > 0.71 are typically regarded as excellent and < 0.32 as very poor
187 (Nowak, 1998). The Ist PC explains 40.113% of data variance and it is characterized by Fe, Al, Cu, Zn and Ni.
188 These heavy metals are mainly related to the Industrial emissions, especially the metallurgical/ electroplating
189 and e-waste burning units located in the industrial area of the city (Wang et al., 2001;Quiterio et al., 2004;Shah
190 and Shaheen 2008). The IIInd factor characterized by Pb and Cd. These heavy metals are well known to be
191 associated with the automobiles ??Ayras and Kaushilina, 2000). The IIIrd component is characterized by Mn,
192 mainly derived from anthropogenic activities. The extracted components explain nearly 74.31% of the variability
193 in the original 9 variables. The number of eigen values can be estimated from a scree plot demonstrated in figure
194 ???. As shown in this figure, the eigen value sharply decrease within the first three components and then slowly
195 stabilize for the remaining ones.

196 11 e) Enrichment Factor Analysis

197 Enrichment factor (EF) analysis was used to differentiate between the metals originating from human activities
198 and those of natural origin and to assess the degree of anthropogenic influence. By convention, the average
199 metalal concentration of the natural crust is used instead of the continental crust composition of the specific
200 area, as detailed data for different areas are not easily available. There is no rule for the reference metal choice
201 and Si, Al, and Fe have been used as the most common metals for this purpose (Lee and Hieu 2011). In this
202 study, Fe used as the reference metal with upper continental crustal composition given by Taylor and McLennan
203 (1985). Since iron (Fe) has been used as a reference metal for an EF evaluation, assuming that the contribution of
204 its anthropogenic sources to the atmosphere is negligible (Nazir et al., 2011). The enrichment factor is calculated
205 through the following equation:(E/R) air sample EF = (E/R) crust

206 EF represents the ratio of the fraction of the metal E with respect to reference metal R in the samples. (E/R)
207 sample to the fraction of E with respect to the same R in the crust (E/R)crust. The EFs of individual metals
208 are shown in Figure ???. According to the degree of enrichment, the metals were grouped as follows:

209 ? Highly enriched (EF > 100) included Pb, Zn, Cu and Cd. ? Moderately enriched (EF between 10 and 100)
210 none of them. ? Less enriched (EF less than 10) included Al, Mn, Ni and Cr.

211 In the present study, large variation of EF values was found for different metals in the respirable dust. Amongst
212 these EFs of Cd and Cu are the highest followed by Zn and Pb. The higher EF values of these metals showed
213 the anthropogenic sources (industrial, automobile and combustion emission) contributed a substantial amount
214 of the metals in atmospheric particulates, which otherwise were difficult to justify on the basis of normal crustal
215 weathering process. In contrast the less enriched metals were dominantly derived from earth crust, and re-
216 suspension of soil dust. On the whole, all metals revealed EF greater than unity, thus predominantly contributed
217 by the anthropogenic source.

218 IV.

219 12 Conclusion

220 The study area covers a substantial portion of Moradabad city. Overall site specific analysis of PM 10 data reveals
221 that Peetal Nagari is the most polluted area in terms of dust loading with a maximum concentration of 234 μgm^{-3}
222 followed by Mughalpura. The concentrations of PM 10 in winter was higher than those in summer and monsoon.
223 Increased energy uses, low temperature and low mixing height contributed to increasing PM concentrations in
224 winter months while increased rainfall precipitation in monsoon period greatly contribute to decrease PM level.
225 The concentration of PM 10 in Moradabad recorded high than those from the other sites in Europe and Asia
226 except Beijing. The characterization of trace metal sources in the study area is quite challenging due to a large
227 number of industrial and urban sources. High concentration of Zn, Cu, Cr and Ni at industrial site (Peetal
228 Nagari and Mughalpura) was found mainly due to its use in brasswares and electroplating. Pb and Cd was found
229 highest at traffic and commercial sites (Kapoor Company and Buddh Bazar) was due the vehicular emission and
230 combustion process but the high concentration in Mughalpura area is mainly due to burning of e-waste near this
231 site, which is brought from Delhi in an illegal way. Focusing our attention on metal source characterization, the
232 multivariate techniques allowed us to identify three source components. The PC I (40.113%) is characterized by
233 Fe Al, Cu, Zn and Ni which represents industrial emission and combustion of fossil fuel. The PC II (20.470%)
234 is associated with vehicular traffic emission and characterized by Pb and Cd. The PC III (13.736%) is identified
235 as anthropogenic sources and characterized by Mn. Calculation of enrichment factors (EF) of the trace metals
236 showed high enrichment of Cd, Cu, Zn and Pb, indicating heavy contamination by anthropogenic sources. These
237 results are also supported by correlation study. Hence we conclude that in the investigated areas the level of some
238 trace metals are very high and the level of PM 10 was also found higher than the NAAQS and WHO standard
239 even in the residential areas. Due to high pollution level the people of the study area are suffering from many
240 diseases related to air pollution. This suggests that future strategies for air quality control on a local scale have
241 to take into account not only the amount of atmospheric particles, but their chemical composition as well.

V.

Figure 1: Figure 1 :Figure 2 :Figure 3 :Figure 4 :

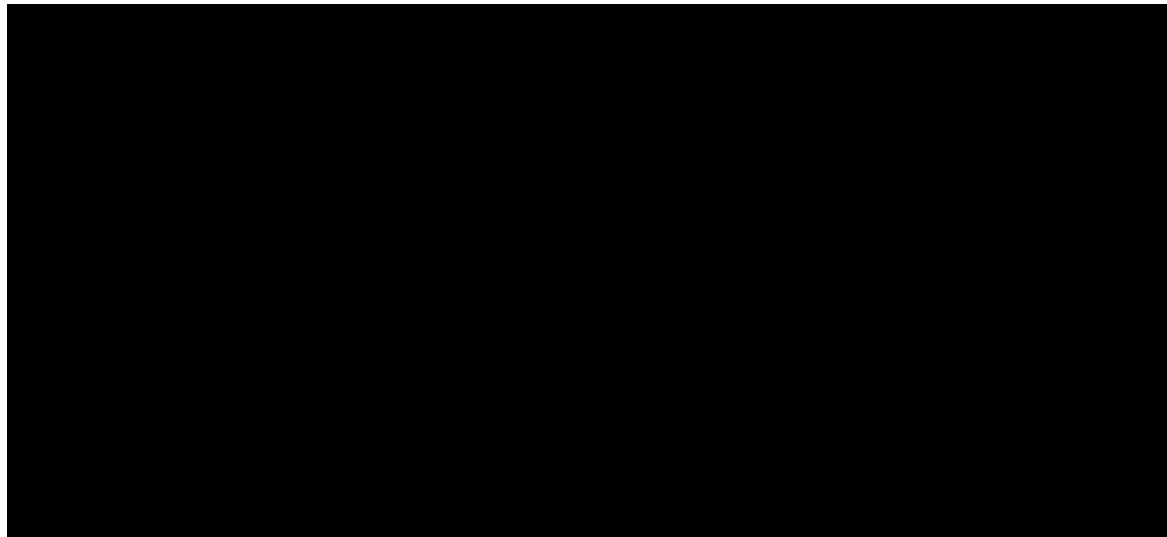


Figure 2:

Figure 3: A

Figure 4:

Figure 5:

3

Figure 6: Table 3 :

4

Figure 7: Table 4 :

5

Elements	Rotated Component Matrix a		
	PC I	PC II	PC III
Fe	0.856	0.150	0.239
Al	0.852	-0.044	0.281
Cu	0.835	0.147	0.016
Zn	0.777	0.471	0.012
Mn	0.078	0.017	0.935
Ni	0.824	-0.170	-0.019
Pb	0.072	0.783	-0.020
Cr	0.397	0.449	0.463
Cd	-0.033	0.854	
Eigen values	3.610	1.842	1.236
% Variance	40.113	20.470	13.736
%Cumulative variance	40.113	60.584	74.319
Possible Sources	Industrial emission	Vehicular emission	Anthropogenic activity

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

[Note: r-values shown in bold are significant at p<0.001]

Figure 8: Table 5 :

243 .1 Acknowledgements

244 The authors gratefully acknowledge for the financial assistance provided by University Grant Commission, New
245 Delhi and Uttar Pradesh Pollution Control Board, Lucknow (India). Thanks are also due to Dr. U. C. Shukla
246 and Mr. V. K. Rajput, for their kind support in sampling and analyses.

247 [Seneviratne et al.] , M C S Seneviratne , A V Waduge , L Hadagiripathira , S Sanjeevani , T Attanayake , N
248 Jayaratne .
249 [] , 10.1016/j.jhazmat.2006.11.002. <http://dx.doi.org/10.1016/j.jhazmat.2006.11.002>

250 [Nazir et al. ()] , R Nazir , N Shaheen , M H Shah . 2011.

251 [Pillai et al. ()] 'A study of PM, PM 10 and PM 2.5 concentration at a tropical coastal station'. P S Pillai , S S
252 Babu , M K Krishna . *Atmospheric Research* 2002. 61 p. .

253 [Kumar and Joseph ()] 'Air pollution concentrations of PM 2.5 , PM 10 and NO 2 at ambient and kerbsite and
254 their correlation in metro city -Mumbai'. R Kumar , A E Joseph . *Environmental Monitoring and Assessment*
255 2006. 119 p. .

256 [Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen dioxide and Sulphur dioxide: Global Update World Health Organa
257 'Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen dioxide and Sulphur dioxide: Global Update'.
258 *World Health Organization* 2006. 2005.

259 [Tripathi ()] 'Airborne lead pollution in city of Varanasi'. A Tripathi . *Atmos. Environ* 1994. 28 p. .

260 [Magas et al. ()] 'Ambient air pollution and daily pediatric hospitalizations for'. O K Magas , J T Gunter , J L
261 Gegens . *Asthma. Environmental Science and Pollution Research* 2007. 14 p. .

262 [Shah and Shaheen ()] 'Annual and Seasonal variation of Trace metals in atmospheric suspended particulate
263 matter in Islamabad'. M H Shah , N Shaheen . *Water Air Soil Pollut* 2008. 190 p. .

264 [Van Zyl et al. ()] 'Assessment of atmospheric trace metals in the western Bushveld Igneous Complex,
265 South Africa'. P G Van Zyl , J P Beukes , G Du Toit , D Mabaso , J Hendriks , V Vakkari .
266 10.1590/sajs.2014/20130280. <http://dx.doi.org/10.1590/sajs.2014/20130280> *S Afr J Sci* 2014.
267 2013-0280. 110 (3/4) .

268 [Pal et al. ()] 'Assessment of heavy metals in suspended particulate matter in Moradabad'. R Pal , Mahima , A
269 Gupta , A Tripathi . *India. Journal of environmental Biology* 2014. 35 (2) p. .

270 [Artinano et al. ()] 'at the Tarragona harbor'. B Artinano , F J Gomez -Moreno , M Pujadasa , N Moreno , A
271 Alastuey , X Querol , F Martin , A Guerra , J A Luaces , J Barosa . *Atmospheric Environment* 2007. 41 p. .

272 [Available online National Ambient Air Quality Standards (NAAQS) ()] 'Available online'. <http://epa.gov/air/criteria.html> *National Ambient Air Quality Standards (NAAQS)*, 2008. 2008. 23. United States
273 Environmental Protection Agency (USEPA

274 [Bayraktar et al. ()] 'Average mass concentrations of TSP, PM 10 , and PM 2.5 in Erzurum urban atmosphere'.
275 H Bayraktar , F S Turalioglu , G Tuncel . *Turkey. Stochastic Environmental Research and Risk Assessment*
276 2010. 24 p. .

277 [Monaci et al. ()] *Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission*, F
278 Monaci , F Moni , E Lanciotti , D Grechi , R Bargagli . 2000. 107 p. . (in place of lead. Environmental
279 Pollution)

280 [Hassan et al. ()] 'Cadmium toxicity and tolerance in plants'. A S Hassan , Q Farriduddin , B Ali , S Hayal , A
281 Ahmad . *J. Environ. Biol* 2009. 30 (2) p. .

282 [CAFÉ Working group on particulate matter, second position paper on particulate matter European Commission (2004)]
283 'CAFÉ Working group on particulate matter, second position paper on particulate matter'. http://ec.europa.eu/environment/air/cafe/working_groups/2nd_position_paper_pm.pdf
284 European Commission 2004. December 20. January 21. 2008.

285 [Mavroidis and Chaloulakou ()] 'Characteristics and expected health implications of annual PM 10 concentrations in Athens'. I Mavroidis , A Chaloulakou . *Greece. Intern. J. of Environ. and Poll* 2010. 41 p. .

286 [Vallius ()] *Characteristics and sources of fine particulate matter in urban air*, M Vallius . 2005. Finland. National
287 Public Health Institute, Department of Environmental Health Kuopio

288 [Chen et al. ()] 'Characteristics of trace elements and lead isotope ratios in PM 2.5 from four sites in Shanghai'.
289 J Chen , M Tan , Y Li , J Zheng , Y Zhang , Z Shan , G Zhang , Y Li . *J. Hazard. Mat* 2008. 156 p. .

290 [Karar et al. ()] 'Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel,
291 manganese and iron in PM 10 particulates at the two sites of Kolkata'. K Karar , A K Gupta , A Kumar , A
292 K Biswas . *Environ Monit Assess* 2006. 120 p. .

293 [Hopke ()] 'Characterization and source apportionment of particulate pollution in Colombo'. P K Hopke .
294 *Atmospheric Pollution Research* 2011. 2 p. .

12 CONCLUSION

298 [Tsai and Cheng ()] 'Characterization of chemical species in atmospheric aerosols in a metropolitan basin'. Y I
299 Tsai , M T Cheng . *Chemosphere* 2004. 54 p. .

300 [Xia and Gao ()] 'Characterization of trace metals in PM 2.5 aerosol in the vicinity of highways in northeast
301 New Jersey in the U'. L Xia , Y Gao . *S. east coast. Atmos. Pollu. Res* 2011. 2 p. .

302 [Wang et al. ()] *Comparative studies on the concentration of rare earth elements and heavy metals in the*
303 *atmospheric particulate matter in Beijing, china*, C X Wang , W Zhu , A Peng , R Guichreit . 2001. 26
304 p. . (and in Delft, the Netherlands. Environmental International.)

305 [Nowak ()] 'Contents and relationship of elements in human hair for a non industrialized population in Poland'.
306 B Nowak . *Science of the Total Environment* 1998. 209 p. .

307 [Niyogi et al. ()] 'Direct observations of the effects of aerosol loading on net ecosystem CO 2 exchange over
308 different landscapes'. D Niyogi , H I Chang , V K Saxena , T Holt , K Alapaty , F Booker , F Chen , K J
309 Davis , B Holben . *Geophysical Research Letters* 2004. 31 p. .

310 [Prajapati et al. ()] 'Distribution of vehicular pollutants in street canyons of Varanasi, India: A different case'.
311 S K Prajapati , B D Tripathi , V Pathak . *Environ. Monit. Assess* 2009. 148 p. .

312 [E-waste recycling hub: Moradabad ()] *E-waste recycling hub: Moradabad*, 2010. 19 p. . Down to Earth

313 [Liu et al. ()] 'Effect of Indoor, outdoor and personal exposure to particulate air pollution on cardiovascular
314 physiology and systemic mediators in seniors'. L Liu , T Ruddy , M Dalipaj , R Poon , M Szyszkowicz , H Y
315 You , R E Dales , A Z Wheeler . *J. Occup. Environ. Med* 2009. 51 p. .

316 [Vassilakos et al. ()] 'Estimation of selected heavy metals and arsenic in PM 10 aerosols in the ambient air of the
317 Greater Athens Area'. C H Vassilakos , D Veros , J Michopoulos , T H Maggosa , C M O'connor . *J Hazard
318 Mater* 2007. 140 p. .

319 [Glavas et al. ()] 'Factor affecting the seasonal variation of mass and ionic composition of PM 2.5 at a Central
320 Mediterranean Costal site'. S D Glavas , P Nikolakis , D Ambatzoglou , N Mihalopoulos . *Atmos. Environ*
321 2008. 42 p. .

322 [Mahima et al. ()] 'Five year studies on suspended particulate matter and heavy metals trends in brass city of
323 india'. Pal Mahima , R Singh , D Tripathi , A Singh , GS . *J environ. Science & engg* 2013. 55 (3) p. .

324 [Zheng et al. ()] 'Health risk assessment of heavy metal exposure to street dust in the zinc smelting district,
325 Northeast of China'. N Zheng , J Liu , Wang Q Liang , Z . 10.1016/j.scitotenv.2009.10.075. <http://dx.doi.org/10.1016/j.scitotenv.2009.10.075> *Sci Total Environ* 2010. 408 p. .

327 [Leung et al. ()] 'Heavy Metals Concentrations of Surface Dust from e-Waste Recycling and Its Human Health
328 Implications in Southeast China'. O W Leung , Anna , S Nurdan , K C Duzgoren-Aydin , H W Cheung &
329 Ming . 10.1021/es071873x. *Environ. Sci. Technol* 2008. 42 (7) p. .

330 [Quinn et al. ()] 'Impact of particulate organic matter on the relative humidity dependence of light scattering:
331 A simplified parameterization'. P K Quinn , T S Bates , T Baynard , A D Clarke , T B Onasch , W Wang .
332 *Geophysical Research Letters* 2005. 32 p. .

333 [Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area Atmospheric Research
334 'Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area'.
335 *Atmospheric Research* 101 p. .

336 [Intergovernmental panel on climate change, third assessment report IPCC ()] 'Intergovernmental panel on cli-
337 mate change, third assessment report'. *IPCC* 2001. Cambridge University Press.

338 [Pathak et al. ()] 'Interpretation of ground water quality using multivariate statistical technique in Moradabad
339 city, western Uttar Pradesh state'. J K Pathak , M Alam , S Sharma . *India. E-Journal of Chemistry* 2008.
340 5 (3) p. .

341 [Begum et al. ()] 'Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh'.
342 B A Begum , E Kim , S K Biswas , P K Hopke . *Atmospheric Environment* 2004. 38 p. .

343 [Schwartz et al. ()] 'Is daily mortality associated specifically with fine particulates'. J Schwartz , D W Docherty
344 , L M Neas . *J. Air Waste Manage Assoc* 1996. 46 p. .

345 [Wojas and Almquist ()] 'Mass concentration and Metal speciation of PM 2.5 , PM 10 , and total suspended
346 solids in Oxford, Ohio and comparison with those from metropolitan sites in Greater Cincinnati region'. B
347 Wojas , C Almquist . *Atmospheric Environment* 2007. 41 p. .

348 [Bhaskar et al. ()] 'Measurement and modeling of respirable particulate (PM 10) and lead pollution over
349 Madurai'. B V Bhaskar , J Rajasekhar , R V Muthusubramanian , A P Kesarkar . *India. Air Quality
350 Atmos. Health* 2008. 1 p. .

351 [Chaloulakou et al. ()] 'Measurement of PM 10 and PM 2.5 particle concentrations in Athense'. A Chaloulakou
352 , P Kassomenos , N Spyrellis , P Demokritou , P Koutrakis . *Greece. Atmospheric Environment* 2003. 37 p. .

353 [Quiterio et al. ()] 'Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period'. S L Quiterio , C R S Da Silva , G Arbillia , V Escaleira . *Atmos. Environ* 2004. 38 p. .

355 [National Ambient Air Quality Standards Central Pollution Control Board ()] 'National Ambient Air Quality Standards'. http://www.cpcb.nic.in/National_Ambient_Air_Quality_Standards.php Central Pollution Control Board 2009. 2009. 29.

358 [Particulate matter (PM 2.5) speciation guidance. US Environmental Protection Agency. Final draft. US Environmental Protection Agency. 'Particulate matter (PM 2.5) speciation guidance. US Environmental Protection Agency. Final draft. US Environmental Protection Agency'. *Office of Air Quality Planning and Standards*, (Research Triangle Park, NC) 1999. 1999. p. 50. USEPA

362 [Andra et al. ()] 'Predicting potentially plant-available lead in contaminated residential sites'. S S Andra , D Sarkar , S K M Saminathan & Dutta , R . *Environ. Sci. Poll. Res* 2011. 2011. 75 p. .

364 [Brigden et al. ()] *Recycling of electronic wastes in China and India: Workplace*, K Brigden , I Labunska , D Santillo , M Allsopp . 2005. (and environmental contamination)

366 [Ayras and Kashulina ()] 'Regional patterns of metal contents in the organic horizon of podzols in the central part of the Barents region (Finland, Norway and Russia) with special reference to heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur as indicators of airborne pollution'. M Ayras , G Kashulina . *Journal of Geochemical Exploration* 2000. 68 p. .

370 [Shah and Shaheen ()] 'Seasonal behaviours in metalal composition of atmospheric aerosols collected in Islamabad'. M H Shah , N Shaheen . *Pakistan. Atmospheric Research* 2010. 95 p. .

372 [Lee and Hieu ()] 'Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan'. B K Lee , N T Hieu . *Korea. Aerosol and Air Quality Research* 2011. 11 p. .

374 [Khodeir et al. ()] 'Source apportionment and metalal composition of PM 2.5 and PM 10 in Jeddah city'. M Khodeir , S Magdy , A Mansour , Z Mianhua , S Hong , C Max , C Lung-Chi , M Polina . *Saudi Arabia. Atmospheric Pollution Research* 2012. 3 p. .

377 [Roy et al. ()] 'Source apportionment of ambient PM 10 . A case study from a mining belt of Orissa'. P Roy , P K Sikandar , G Singh , A K Pal . *Atmosfera* 2012. 25 (3) p. .

379 [Gummeneni et al. ()] 'Source apportionment of particulate matter in the ambient air of Hyderabad city'. S Gummeneni , Y Binyusup , M Chavali , S Z Samadi . *India. Atmospheric Research* 2011. 101 p. .

381 [Marcazzan et al. ()] 'Source apportionment of PM 10 and PM 2.5 in Milan (Italy) using receptor modeling'. G M Marcazzan , M Ceriani , G Valli , R Vecchi . *Science of the Total Environment* 2003. 317 p. .

383 [Yong-Hua et al. ()] 'Source Characterization and Apportionment of PM 10 in Panzhihua'. X Yong-Hua , W Jian-Hui , F Yin-Chang , D Li , B Xiao-Hui , L Xiang , Z Tan , T Shi-Bao , C Mei-Fang . *China. Aerosol and Air Quality Research* 2010. 10 p. .

386 [Park and Kim ()] 'Source contributions to fine particulate matter in an urban atmosphere'. S S Park , Y J Kim . *Chemosphere* 2005. 59 p. .

388 [Guttikunda et al. ()] 'Source emissions and health impacts of urban air pollution in Hyderabad'. K Guttikunda , Ramani V Sarath , Kopakka . *India. Air Quality, Atmosphere & Health* 2014. 7 (2) p..

390 [Abu-Allaban et al. ()] 'Source of PM 10 and PM 2.5 in Cairo's ambient air'. M Abu-Allaban , D H Lowenthal , A W Gertler , M Labib . *Environmental Monitoring and Assessment* 2007. 133 p. .

392 [Cheng et al. ()] 'Spatial and Temporal Variation of Chemical composition and mass closure of ambient coarse particulate matter (PM 10-2.5) in the Los Angeles Area'. K Cheng , N Daher , W Kam , M M Shafer , Z Ning , J J Schauer , C Sioutas . *Atmos. Environ* 2011. 45 p. .

395 [Shah et al. ()] 'Spatial variation in selected metal contents and particle size distribution in an urban and rural atmosphere of Islamabad'. M H Shah , N Shaheen , M Jaffar , A Khaliqu , S R Tariq , S Manzoor . *Pakistan. J. Environ.,. Manage* 2006. 78 p. .

398 [Sun et al. ()] 'The air borne particulate pollution in Beijingconcentration, composition, distribution and sources'. Y Sun , G Zhuang , Y Wang , L Han , J Guo , Dan , Mo , Zhang , Z Wang , Z Hao . *Atmospheric Environment* 2004. 38 p. .

401 [Kaiser ()] 'The application of electronic computers to factor analysis'. H F Kaiser . *Educ Psychol Measure* 1960. 20 p. .

403 [The case for banning lead in Gasoline manufactures of emission controls association MECA ()] 'The case for banning lead in Gasoline manufactures of emission controls association'. *MECA* 2003. p. 51.

405 [Taylor and McLennan ()] *The continental Crust: Its Composition and Evolution*, S R Taylor , S M McLennan . 1985. Oxford, England: Ba Lackwell Scientific Publications. p. 312.

407 [Pal et al. ()] 'The Effects of Fireworks on Ambient Air and Possible Impact on Cardiac Health, During Deepawali Festival in North India'. R Pal , Mahima , A Gupta , C Singh , A Tripathi , R B Singh . *World Heart Journal* 2014. 5 (1) p. .

12 CONCLUSION

410 [Giri et al. ()] 'The influence of meteorological conditions on PM 10 concentrations in Kathmandu Valley' D
411 Giri , M V Krishna , P R Adhikary . *International Journal of Environmental Research* 2008. 2 p. .

412 [Tripathi et al. ()] 'Toxic Trace Metals in The Atmosphere of Moradabad (India)'. R M Tripathi , R N Khandekar
413 , U C Mishra . *Indian J. Environ. Hlth* 1990. 32 (2) p. .

414 [Divrikli et al. ()] 'Trace metal pollution from traffic in Denizli-Turkey during dry season'. G Divrikli , D Mendil
415 , M Tuzen , M Soylak , L Elci . *Biomed. and Environ. Sci* 2006. 19 p. .

416 [Park et al. ()] 'Ultrafine metal concentration in atmospheric aerosol in urban Gwangju'. K Park , Y Heo , H E
417 Putra . *Korea. Aerosol Air Quality Research* 2008. 8 p. .

418 [Van and Delalieux ()] *X-ray spectrometry for air pollution and cultural heritage research*, Grieken Van , R
419 Delalieux , F . 2004. Belgrade: Serbian Physical Society. p. . (Invited Lectures of the 5th Gen. Conf. Balkan
420 Phys. Union, BPU-5)