Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

10

11

12

13

14

15

16

17

18

19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45

Students’ Understanding of an Object-Oriented Design Task -A
Case Study

Oenardi Lawanto

Received: 15 December 2019 Accepted: 4 January 2020 Published: 15 January 2020

Abstract

Students must understand a problem accurately to solve it correctly. Unfortunately, numerous
studies reported that students only have a partial understanding of the information presented
in the problem description, including in computer science. This study assesses students’ task
and revised-task interpretations when working on an objectoriented design problem. Multiple
qualitative case study research was used in this study. Two malel I. Introduction and two
female senior computer science students at Utah State University, USA, volunteered as
participants. They were asked to solve five programming problems while thinking aloud,
complete surveys, and answer several interview questions. The study found that the
participants were able to identify most of the essential information after the initial reading of
the problem description. They strategically ignore detailed information that may affect their
design decisions and update it throughout their problem-solving enterprise.

Index terms— cognition, problem-solving, programming, self-regulation, self-regulated learning, task
interpretation, task revision.

1 Introduction

and two female senior computer science students at Utah State University, USA, volunteered as participants.
They were asked to solve five programming problems while thinking aloud, complete surveys, and answer several
interview questions. The study found that the participants were able to identify most of the essential information
after the initial reading of the problem description. They strategically ignore detailed information that may affect
their design decisions and update it throughout their problem-solving enterprise.

Index terms: cognition, problem-solving, programming, self-regulation, self-regulated learning, task interpre-
tation, task revision. t was a typical day in a programming lab session; students were working on their task
under the observation of several teaching assistants. Several students concentrated on solving the lab problem,
some were discussing the best approach to solve it, and some others were waiting for the answer from their peers.
Interestingly, some students did not even bother to open and read the lab instruction, regardless of suggestion and
encouragement from the assistants. While the motivation for their persistence may vary, reading and rereading
a problem is a crucial step to understand and solve it [1]- [5].

To accurately understanding a problem is not an easy task. Several studies reported that students are rarely
able to interpret a problem correctly [2], [3], [6]- [8].Some studies also reported that students’ submitted solutions
reveal their incomplete understanding of the 1 This paragraph of the first footnote will contain the date on which
you submitted your paper for review. It will also contain support information, including sponsor and financial
support acknowledgment. For exam ple, ”This work was supported in part by the U.S. Department of Commerce
under Grant BS123456.” This material is based, in part, upon work supported by the National Science Foundation
under Grant No. 1148806. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

given tasks [2], [8], [9].Although limited in number, similar phenomena also have been reported in the
discipline of computer science (CS).Some CS students were reported incapable of accurately inferring the expected
program’s behaviors based on a given design brief [10]. Other study reported that CS students tend to ignore
some assessment criteria while working on their tasks, which then negatively impact their grades [11].

46
47
48
49
50
51

52

53

54
55
56
57

58

59

60
61
62

63

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93
94
95
96
97
98
99
100
101

7 B) SELF-REGULATION IN COMPUTER PROGRAMMING

In this study, we aim to describe the approaches used by senior CS students in understanding an object-
oriented (OO) design problem; i.e., their initial task interpretation and the changes. Selfregulated learning
(SRL) framework is used to distinguish their cognitive and metacognitive activities during the problem-solving
endeavor. The description and analysis results may help instructors to understand better, and encourage students
to enhance their strategies in comprehending a design problem. The description may also help students to be
more aware of their self-regulation so that they can improve it.

2 1II.
3 Research Questions

As mentioned earlier, this study aims to describe senior CS students’ approaches to understanding an OO
design problem. In more specific, this study intends to assess (1) students’ initial explicit and implicit task
understanding, (2) how their initial understanding changes during the problem-solving activity, and (3) identify
factors that influence those changes.

4 III.

5 Relevant Literature

Since this study uses SRL as a framework in analyzing the data, the literature will discuss task understanding (or
task interpretation) within the SRL. Additionally, this section also discusses known literature on self-regulation
in CS to help readers familiar with existing research in that area.

6 a) Task Interpretation in Self-Regulated Learning

Students deliberately self-regulate when working on a task [12], [13]. Such activity involves the interplay of
interpreting a given task, developing a plan, and executing, monitoring, and adjusting the plan to complete
the task [4], [5], [13]- [16]. Fig. ?? and Table I presents the relationship and definition of each SRL activity,
respectively. It is clear from Fig. 77 that task interpretation, which refers to understanding the task and
associated process to complete it [17], is the starting point of any SRL activities. Thus, misinterpreting a task
may negatively affect follow-up planning, enacting, monitoring, and adjusting activities [18].

Fig. ??: Categories of various self-regulation activities. When interpreting a task, one must consider the
explicit and implicit aspects of it. Explicit task interpretation refers to students’ understanding of the information
presented in the problem description [8], such as written goals, requirements, and constraints. Implicit task
interpretation refers to extrapolated information base on the given description [8], for example, relevant concepts
and experience to solve the problem. These definitions imply that explicit and implicit task interpretation
is distinguishable based on the manner of that specific understanding being acquired (i.e., by identifying or
extrapolating).

Unfortunately, interpreting a task is not easy. Two studies reported that students could only correctly identify
63% -77% of valuable information presented in Thermodynamics course problems [3], [7]. The accuracy of
implicit task understanding is even more unsatisfactory, such that they could only extrapolate 37% -49% of the
essential information [3], [7]. Similar findings have been reported in engineering design [8] and electronics lab [2].
Consequently, this misinterpretation impedes their problem-solving performance [19]- [21].

Fortunately, several studies [2], [3], [8], [19], [21], [22] suggested that students enhance their task understanding
throughout their problem-solving enterprise. Theoretically, these refinements occur due to continuous monitoring
and adjusting activities [23]. Thus, insufficient and inefficient monitoring and adjustment activities may lead
to a meager solution. Since SRL is contextual, having sufficient relevant domain knowledge is necessary for
efficient monitoring and adjustment activities [4], [8], [19], [24]. Moreover, one has to be willing to adopt new
interpretations or strategies when it is necessary to do so.

7 b) Self-Regulation in Computer Programming

Although still limited in number, SRL research in CS is not new. Some scholars believe that it may ease the
curve of learning programming and increase student’s retention rate [25]. In this section, the reported cognitive
and meta cognitive characteristics of CS students found in the literature are discussed.

Most, CS students prefer to learn new materials sequentially through visual representation, and then reflect on
their progress [26]. Most of them are comfortable and competent in dealing with detailed information [26],which
strengthens their ability to solve complex problems (e.g., developing software systems). Their reflective nature
allows them to be appreciative of each task, which, in turn, influences them to be more self-regulated and deliver
better outputs [27].

A study reported that students use numerous SRL strategies instinctively when trying to understand a task,
design a solution, and debug a program [28]. Engaging in self-regulation activities may improve their performance
[27], [29].One study reported that students are sometimes unable to accurately address all the requirements and
constraints of a problem [11], which suggested that instinctive self-regulation may not be sufficient in the long
run. Students need to be more conscious of using it. Two studies suggested that deepening students’ familiarity

102
103
104

106
107
108
109
110
111
112

113

114

115
116
117

118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142

143
144
145
146
147
148
149
150
151
152

154
155
156
157
158

with various programming concepts and principles (i.e., contexts or knowledge) may increase their SRL quality
[11], [19].

Related to object-oriented (OO) design, a study reported that students are using typically suggested strategies
in interpreting an OO design problem, which is by identifying the nouns and verbs found in the task description
[9]. Although this report seems expected, this finding is important because it describes students ’ approaches in
design, not just a belief. Based on their understanding, students then decompose the problem and design the
solution. Interestingly, students consider problem decomposition as a skill that hard to master [11]. Students tend
to have incomplete and incorrect knowledge about OO design [9], which, plausibly, impair their decomposition
skills. While some students may be aware of their weaknesses and strive to address it, others chose to ignore
it. The last group of students tends to feel discouraged when facing a challenge [9] and, thus, have a negative
learning experience.

8 IV.
9 Research Design

In this section, the research design and its justification were explicated, which include data Selecting strategies
to complete the task [5] Enacting Strategies Students’ cognitive activities employed while completing the task
[54] collection and analysis methods, and the design problem.

10 a) Data Collection Method

Multiple, in-depth qualitative data were collected from the participants, which aligned with best practices of
qualitative study [30] and conducting SRL research [5], [31], [32]. Multiple data points allowed the researchers
to appraise the perception and activities of the participants accurately.

Five programming problems, five problemspace maps, initial task interpretation survey, and interview question
templates, were developed, pilot tested, and used. The programming problems consisted of two practice, one
OO, one break, and one algorithm tasks. All except one were related to imperative programming paradigms.
The problem-space maps described all correct and possible explicit and implicit task interpretation of each
problem. This technique was adopted from expert-novice research about trouble shooting [33]. The initial task
interpretation survey was used to assess the participants’ initial understanding of the task. Table [1 presents the
survey questions and the associated aspect of task interpretation. The interview question templates were used
to formulating confirmatory questions based on the researchers’ observation.

During the data collection, the participants followed a specific protocol when solving each programming
problem, and were audio-and videorecorded. The participants observed the following protocol in sequence: (a)
reading the problem description aloud, (b) completing initial task interpretation survey while thinking aloud, (c)
continue solving the problem while thinking aloud, and (d) answering the interview questions. The programming
problems were given in the order written in the previous paragraph. No time limit was set for each problem. The
practice problems were used to help the participants familiar with the data collection protocol and address any
thinking aloud issues, if any.

To accurately capture the initial task interpretation, the participants were prohibited from rereading the
problem description when completing the survey (i.e., step (a)). The problem-space maps were used to track the
participants’ thought processes when solving the problem (i.e., step (c)). The interview was semi-structured to
ensure its alignment with the research goal yet still providing flexibility in pursuing particular points of interest
that emerged during the problem-solving process.

11 b) Object-Oriented Design Problem

The OO problem is about designing a digital version of a classic board game, which commonly known as the
Monopoly. Unlike the original, this game would be set in Middle-Ages. Given a set of requirements and constraints
(see Table [11), the participants should design a game base so that the rest of the team members could move
forward smoothly. They are expected to deliver a class diagram. Also, they are allowed to ignore animation and
play-testing parts and add their creativity beyond the given requirements and constraints.

The participants are expected to declare and manage at least one function, five issues, and 4 to 41
variables when solving this problem. It also contains some missing or unspecified information (i.e., implicit
task interpretation) and has multiple solutions; all are typical characteristics of a design problem [34]- [36].
Consequently, the participants are not expected to comprehend the problem in one read. Based on the revised
Bloom’s Taxonomy [37], this problem belonged to the creation category, where the participants were expected to
make a product for a specific purpose.

12 c¢) Data Analysis Method

Recorded video/audio files, initial task interpretation survey responses, design solutions, design notes (if any),
observed thought processes (i.e., problem-space maps), and interview responses were collected from each
participant. All recorded video/audio files were transcribed using the verbatim technique, such that the
transcriptions recorded all articulated words and shutters [38]. Three additional notations were introduced

159
160
161
162
163
164
165
166

168
169
170
171
172
173
174
175

177
178
179
180

181

182

184

185

186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

14 TABLE III: OBJECT-ORIENTED PROBLEM REQUIREMENTS AND
CONSTRAINTS

in the transcriptions to clarify relevant contexts, including square bracket (”[]”), dash (7-”), and capitalizing the
first letter for describing the participants’ actions, correcting statements, and clarifying programming concepts,
respectively. For example, ”Since not having a particular idea on The qualitative coding process consisted of two
phases. In the first phase, both experts individually coded the transcriptions based on the definition provided in
Table I. After they finished, the coding results were then combined. Some disagreements were expected since the
experts worked independently. In the second phase, the experts met face-to-face to discuss and resolve all coding
disagreements. All collected data were used to ensure correct interpretations of the participants’ statements.
Through this process, the experts were able to reach a perfect agreement, with a Kappa score of 1.00 for each
transcription, and produced 875 codes.

To answer the first research question, the initial task interpretation survey responses and the associated
recorded video/audio files were used. These data sources were also triangulated against recorded problem-solving
approaches and interview responses. This step was necessary since the participants might forget reporting all
relevant thought processes when answering the survey.

To answer the second research question, the answer to the first research question and the codedtranscriptions
were used. All problem-solving activities that could not be associated with the initial task interpretation
were categorized as adjustment of participants’ task understanding. These adjusted interpretations were then
triangulated against recorded interview responses.

To answer the third research question, the list of task interpretation adjustments, coded-transcriptions, and
interview responses were used. All statements in the coded-transcription that were associated with the changes
were marked. The factors that influence the marked changes were then identified and triangulated against the
interview responses.

V.

13 The Participants

After the transcribing process completed, the OO-related transcriptions were qualitatively coded by two experts,
which were an information technologist and one of the researchers. All experts had experience in developing OO
applications. The expert-researcher also had a bachelor’s and master’s degrees in CS.

14 Table III: Object-Oriented Problem Requirements and Con-

straints

No.

Requirements and Constraints 1

The game is meant to be played by either two, three, or four players. 2

Each player chooses to play as any one of the following characters: King, Warrior, Merchant, or Thief. Each
character has unique special abilities and starts with different items and different amounts of money. 3

The game board will consist of 30 spaces where players can land, arranged in a circle. On some spaces, there
are buildings that can be bought and sold. On other spaces, there are shops where players can buy items. In
addition, some spaces have specific instructions that players must follow when they land there. 4

In the original board game, movement is determined by rolling dice, so you must develop an equivalent virtual
method of determining the number of spaces each player moves on his or her turn. 5

On their turn, each player must move, and they can choose to do any of the following: buy the building on
the space they are on, sell any building they own, spend money to improve buildings they own, or use one of
their character’s special abilities. 6

Items give special benefits to the player. Items include the following: Sword, Potion, Horse, or others. The
effects of the item will be different for each character type. 7

There are three different kinds of buildings: Castle, F d I Th b ildi h diff fourth year, USU CS students
have typically completed the introduction to programming, algorithm and data structure, software engineering,
event-driven programming, and internship courses. At the end of the research, each participant received a
personalized report of his or her task interpretation strategies and suggestions for improvement and a $40 gift
card. Participants responded positively towards the reports and suggestions.

All participants were Caucasians with GPAs of 3.10 to 3.96 on a 4-point scale. Sorted based on their GPAs,
they were Jake, Anne, LStew, and Rusty. The male participants also familiar with logic programming and had
spent approximately 4980 hours developing their programming skills.

The female participants had spent about 2050 hours of programming. Similar to most female CS students
[39]- [44], they had struggled with CS stereotypes, where CS students are viewed as overtly ”focused on CS,
asocial, competitive, and male” (p.30) [40]. They also suffered from comparing themselves against their peers.
L Stew said, "I have to ignore my colleagues and classmates programming ’successes’ as that comparison game
tends to reduce my selfesteem a lot and negatively impact my problem-solving and programming capabilities.”
She also said, "I nearly failed a class because I did not believe I was capable of succeeding in it.” Fortunately,
both participants were able to overcome that challenge and were almost finished with the degree requirements.

217

218

219
220
221
222
223
224
225
226

227

228
229
230
231
232

234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252

253

254
255
256
257

259
260
261
262
263
264
265

267
268
269
270
271
272
273
274

15 VI
16 Findings

All participants started with incomplete task understanding, which was expected, as explained earlier. For-
tunately, all participants were also aware of it and tried to update their task understanding. Unfortunately,
although their final task interpretation was better compared to the initial, it was still incomplete. There are
two possible reasons for this result. First, the participants were overwhelmed with the detail of their design.
Second, the participants were drawing knowledge from irrelevant experience. Rusty, for example, was using the
entity-relationship instead of the class diagram.

In this section, participants’ initial and revisedtask interpretation, and factors that influenced the changes
were discussed.

17 a) Initial Explicit and Implicit Task Interpretation

Five questions were asked to assess the initial understanding of the participants (see Table I1). All participants
were able to determine the problem goal correctly. Anne, for example, defined the goal as ”develop[ing a] class
diagram from given constraints.” L Stew and Rusty also included design best practices and their interest in the
problem goal. Rusty, for example, said the problem goal was ”create[ing] a logic layer inside of our program
that can function completely without interaction from the graphical user interface or user.”Rusty knew that the
decoupling of logic and user interface is part of software design best practices, and would like to observe it during
the design process.

No participants had a complete initial understanding of the requirements and constraints, which required
explicit and implicit task interpretation. This result was expected, considering the number of requirements and
constraints. However, all participants understood that they needed to complete each item listed in Table [II.
They also understood that the problem implicitly required them to organize potential classes ”in a logical way”
since the classes will "interact in a specific way.” Anne, LStew, and Rusty also added that exercising creativity,
as directed in the problem, would affect their class design.

In designing the classes, LStew further added that she needed to “avoid common object-oriented programming
pitfalls by reducing coupling, reducing interdependencies, and avoiding the diamond of death.”Plausibly, this
implicit understanding was informed by her interests and experience in OO-design best practices.

All participants considered OO design principles and UML diagram notations as relevant concepts. Rusty and
LStew also added that design practices in writing a class diagram and software usability as essential knowledge
and skills. Thus, all participants were able to identify relevant concepts to complete the problem correctly.

In order to solve the problem, all participants determined that they need to (1) reread the problem description;
(2) identify potential classes; (3) draw the class; (4) establish the classes’ relationship; and (5) refine the class
diagram as necessary. Interestingly, while the male participants concentrated on rereading the problem description
on their first step, the females also concerned with identifying and rewriting the requirements and constraints in
their own words. Additionally, Rusty and LStew added that they needed to monitor their progress and address
creativity issues throughout their problem-solving enterprise.

18 b) Revising the Initial Task Understanding

The participants executed their problem-solving steps carefully. LStew, for example, started by rereading the
problem description and developed a list of requirements. She continued by solving the identified requirements
that were related to items, characters, special abilities, player actions, spaces, buildings, players, games, and turn.
Sometimes, after completing one of the requirements, she adjusted her design. For example, after designing the
action-related classes, she revised the item and character classes. LStew also enhanced her design by making it
as logical and as clear as possible so people could easily understand how the classes work together.

When rereading the problem description, the participants were frequently observed as if interpreting it for the
first time. These activities were coded as monitoring of task interpretation. Some of these activities triggered
them to adjust their task interpretation. Jake, Anne, Rusty, and LStew were observed investing 37.50%, 50.38%,
31.12%, and 36.47% of their engagement for interpreting the task, respectively, including for monitoring and
adjustment. Rusty said during the interview, "The general understanding did not really change because I knew
that I was going to be creating this class diagram, but as far as the design decisions, it changed a lot.”

19 c¢) Factors that Influence the Task Interpretation Revisions

As mentioned by Rusty, most of the revisedtask interpretations were somehow related to design decisions, such
as classes and their behaviors. When addressing each requirement and constraint, the participants need to
consider the best mechanism to incorporate it into their existing design. Such need encourages them to reread
the problem description as if they encountered it for the first time. This finding aligned with various reports that
argued students were required to employ vast cognitive skills and work with different abstraction levels during a
programming design activity [45], [46].

All participants except Anne were observed updating their task understanding when addressing creativity
requirements. For example, after rereading the third requirement (see Table III), LStew said, ”What kind of

275
276
277
278
279

281
282

283

284

285

287
288
289
290
291
292
293
294

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

316
317
318
319
320
321
322
323
324
325
326
327
328

22 CONCLUSION

special instructions could you have if it was a castle versus an inn? I suppose-or a castle versus a fortress? Oh,
nothing comes up. Well, a castle can have a king in it, right? ? Okay, so if you are a king and you land on
a castle owned by someone else, you get a discount on your rent.” The above illustration showed how LStew’s
interpretation of ”specific instruction” evolved as she infused her creativity into the design.

Unlike the other participants, Anne did not attempt to put creativity into her design. Using the third
requirement as an example, Anne addressed it by just creating a class called Instructions that would be used
by the Space class. At the beginning of solving the problem, Anne commented, "No one will hire me for my
creativity,” suggesting she was not confident of that particular skill.

20 VIL

21 Discussion, Conclusion, and Implication

The analysis results suggested that the participants were competent in identifying the problem goal, requirements,
constraints, relevant concepts, relevant experience, and steps to solve an OO design problem. It is important
to note that they were able to identify most of it after the initial reading of the problem. However, due to the
problem’s extensiveness, they were unable to determine all detailed requirements and constraints.

During the design, they displayed some attributes of expert problem-solvers (see [47], [48]), such as considering
possible concerns from various stakeholders. Their awareness of the problem complexity and prior experience in
solving OO design problems also inspire a positive behavior; in such, it drove them to be cautious in interpreting
the requirements. Thus, it might be beneficial to train students to identify problem characteristics and its
complexity as early as possible. Two educational theory may help in this issue, which are Jonassen’s problem
types [34]- [36] and Bloom’s Taxonomy to define the problem characteristics.

The analysis results suggested that the participants had a relatively similar approach in solving an OO design
problem with extensive requirements and constraints. This approach included rereading the problem description,
identifying requirements, identifying classes, determining the classes’ relationships, and refining the class diagram.
This finding aligned with various arguments that students developed metacognitive knowledge about the tasks
based on their problem-solving experience [1], [49], [50]. Since these metacognitive knowledge influence students’
problem-solving approach [1],it might be beneficial for the instructors to check and ensure that students could
acquire that knowledge correctly.

There was self-regulation different between male and female, in such that both female participants listed
the requirements and constraints using their own words. However, since all participants unable to identify the
requirements and constraints completely, it is impossible to comments more on this difference.

The findings suggested that the participants’ interest and experience influenced their initial and revised-
task interpretations. Similarly, when addressing creativity requirements, they also exploited their interest and
experience. One study argues that creativity is primarily related to the design process [51]. Thus, Anne’s
discomfort about her creative side might be induced by a lack of exposure to a variety of products, and chances
to express her creativity. These issues could be fixed by exposing students to various creative software products
and encouraging them to tap into their creative side in several programming assignments.

The analysis suggested that task interpretation skills might be deteriorated due to being overwhelmed and
drawing from irrelevant experience. This findings also suggested that the participants’ incorrect assumption of
educational tasks might affect their selfregulation. Students need to be aware of this potential danger in their
education.

22 Conclusion

This study shows that the participants, senior CS students, are capable of drawing explicit and implicit
information from an OO-design problem. Most of this information is identified during their initial task
interpretation. It is important to note that various contexts influence their task interpretation skills; this
is coherent with SRL theory [4], [5], [8], [13], [52] and other existing research [19], [21]. This study shows
how participants’ perception of the problem (e.g., domain and complexity) and their experience, interest, and
selfefficacy influences their task interpretation (and selfregulation in general). Thus, it is also essential to help
students more aware of such contextual information when solving a problem.

This study also shows that participants’ task understanding evolves during their problem-solving endeavor. In
terms of solving an OO-design problem, revised-task interpretations are mostly related to design decisions, such
as considering the interplay among classes. These senior students also display expert like behaviors where they try
to interpolate possible concerns from various stakeholders. All participants also have developed a similar problem-
solving approach to OO-design problems. A slight difference exists between males’ and females’ approach, where
the females prefer to develop a list of known requirements and constraints.

329

330

331
332
333
334
335
336
337
338
339

340

23 IX.
24 Limitations

This qualitative multiple case study was not designed to produce generalizable results but rather to capture as
much variety of students’ task interpretation while solving OO-design problems as much as possible. With such
a goal, having four participants was adequate for a qualitative case study research [30]. When interpreting the
findings, remember that the participants’ diversity in this study was limited to their sex. There was a limitation
regarding the problem types, such that the research tasks were limited to OO and imperative paradigms. Finally,
one study argues that although thinking aloud is commonly used in educational studies, it might also affect
students’ self-regulation [53] and then influence the research results. Unfortunately, there is no known approach
to overcome it.

This paper only focuses on the participants’” SR while working on OO design problem. The other unit of
analysis is discussed in [21]. * 2

Start Task
das c
©—> . —» Planning
Interpretation
b It
| ” .- J~;\
- \
| - .
' s LY)
End Sy— L 2 A
onitoring _
.. +— Enacting
Adjusting
Figure 1:
I
Strategic Action Definition
Task Students’ understanding of the task
Interpretation and associated process to complete
it [17]
Planning
Strategies

Figure 2: Table I :

Year 2020 @ 2020 Global Journals Students’ Understanding of an Object-Oriented Design Task -A Case
Study
2@ 2020 Global JournalsStudents’ Understanding of an Object-Oriented Design Task -A Case Study

24 LIMITATIONS

11

Layer
Explicit
Explicit &
Implicit
Implicit
Implicit

Implicit

Question

What is the primary goal of this problem?
In relation to the program that you will
design, what are the requirements and
constraints that you need to consider?
What are the programming concepts
related to this problem?

What are your previous experiences related
to this problem?

In relation to the program that you will
design, what are the steps (e.g., tasks) that
you need to take?

Figure 3: Table II :

341

342

343

344
345
346

347
348
349

350
351
352

353

354
355
356

357
358

359
360
361

362
363

364
365

366
367

368
369

370
371
372

373
374

375
376

377
378

379
380

381
382
383

384
385
386

387
388

389
390

391
392
393

394
395
396
397

[Coll. Rec ()] , Coll. Rec 2004. 106 (9) p. .

[Res (2008)] , J Res . 10.3102/0002831207312909. Mar. 2008. 45 p. .

[Tmprov (2008)] , Q Improv . 10.1111/j.1937-8327.1988.tb00021.x. Oct. 2008. 1 p. .

[First] Author was born in xz in z. X received the B.S. and M.S. degrees in Computer Science from the X, in X
and the Ph.D. degree in X in X, A First . (Short bio: interests, academic activities, research activities, and
professional associations)

[Second] Author was born in zz in z. X received the B.S. and M.S. degrees in Computer Science from the X, in
X and the Ph.D. degree in X in X, B Second . (Short bio: interests, academic activities, research activities,
and professional associations)

[Butler and Cartier ()] ‘Case Studies as a Methodological Framework for Studying and Assessing Self-Regulated
Learning’. L Butler , S C Cartier . Handbook of Self-Regulation of Learning and Performance, D H Schunk,
J Greene (ed.) (New York, New York, USA) 2018. Routledge. p. . (2nd ed.)

[Johnson] Cognitive Analysis of Expert and Novice Troubleshooting Performance, S D Johnson . (Perform)

[Butler et al. (2015)] ‘Collaborative inquiry and distributed agency in educational change: A case study of a
multi-level community of inquiry’. D L Butler , L Schnellert , K Macneil . 10.1007/s10833-014-9227-z. J.
Educ. Chang Feb. 2015. 16 (1) p. .

[Wing (2008)] ‘Computational Thinking and Thinking About Computing’. J M Wing . 10.1098 /rsta.2008.0118.
Philos. Trans. A. Math. Phys. Eng. Sci Oct. 2008. 366 (1881) p. .

[Christiaans and Venselaar (2005)] ‘Creativity in Design Engineering and the Role of Knowledge: Modelling the
Expert’. H Christiaans , K Venselaar . 10.1007/s10798-004-1904-4. Int. J. Technol. Des. Educ Jan. 2005. 15
3) p. .

[Creswell ()] J W Creswell . Qualitative Inquiry and Research Design: Choosing Among Five Approaches, 2012.
SAGE Publications. (3rd ed)

[Graham and Latulipe (2003)] ‘CS girls rock: sparking interest in computer science and debunking the stereo-
types’. S Graham , C Latulipe . 10.1145/792548.611998. ACM SIGCSE Bull Jan. 2003. 35 (1) p. 322.

[Saulnier and Brisson ()] ‘Design for Use: A Case Study of an Authentically Impactful Design Experience’. C R
Saulnier , J G Brisson . Int. J. Eng. Educ 2018. 34 (2B) p. .

[Butler et al. ()] Developing Self-Regulating Learners, D L Butler , L Schnellert , N E Perry . 2017. Toronto, ON,
Canada: Pearson Education Inc.

[Febrian et al. ()] ‘Do Computer Science Students Understand Their Programming Task?-A Case Study of
Solving the Josephus Variant Problem’ A Febrian , Lawanto , Oenardi . Int. Educ. Stud 2018. 11 (12)

[Hadwin ()] ‘Do your students really understand your assignments?. A Hadwin . LTC Curr. Optim. Learn.
Environ 2006. 11 (3) p. .

[Kumar ()] ‘Effects of self-regulated learning in programming’ V Kumar . doi: 10.1109/ ICALT. 2005.131. Fifth
IEEEFE International Conference on Advanced Learning Technologies (ICALT’05), 2005. p. .

[Cartier and Butler ()] ‘Elaboration and validation of questionnaires and plan for analysis’ S C Cartier , D L
Butler . Annual Conference of the Canadian Society for The Study of Education, 2004.

[Chi et al. ()] ‘Eliciting Self-Explanations Improves Understanding’. M T H Chi , N De Leeuw , M.-H Chiu , C
Lavancher . 10.1207/s15516709cog1803__3. Cogn. Sci 1994. 18 (3) p. .

[Hadwin et al. ()] ‘Examining Student and Instructor Task Perceptions in a Complex Engineering Design Task’
A F Hadwin , M Oshige , M Miller , P Wild . The Sizth International Conference on Innovation and Practices
in Engineering Design and Engineering Education, 2009.

[Bergin et al. ()] ‘Examining the role of self-regulated learning on introductory programming performance’. S
Bergin , R Reilly , D Traynor . 10.1145/1089786.1089794. First International Workshop on Computing
Education Research, 2005. p. .

[Glaser ()] ‘Expert knowledge and processes of thinking’. R Glaser . Enhancing thinking skills in the sciences and
mathematics, D Halpern (ed.) (Ed. Hillsdale, NJ, USA) 1992. Lawrence Erlbaum Associates, Inc. p. .

[Butler and Winne (1995)] ‘Feedback and Self-Regulated Learning: A Theoretical Synthesis’ D L Butler , P H
Winne . 10.3102/00346543065003245. Rev. Fduc. Res Jan. 1995. 65 (3) p. .

[Dinsmore et al. ()] ‘Focusing the conceptual lens on metacognition, self-regulation, and self-regulated learning
L Dinsmore , P A Alexander , S M Loughlin . 10.1007/s10648-008-9083-6. Fduc. Psychol. Rev 2008. 20 (4)
p. -

[Falkner et al. ()] ‘Gender Gap in Academia: Perceptions of Female Computer Science Academics’. K Falkner , C
Szabo , D Michell , A Szorenyi , S Thyer . 10.1145/2729094.2742595. Proceedings of the 2015 ACM Conference

on Innovation and Technology in Computer Science Education -ITiCSE ’15, (the 2015 ACM Conference on
Innovation and Technology in Computer Science Education -ITiCSE ’15) 2015. p. .

http://dx.doi.org/10.3102/0002831207312909
http://dx.doi.org/10.1111/j.1937-8327.1988.tb00021.x
http://dx.doi.org/10.1007/s10833-014-9227-z
http://dx.doi.org/10.1098/rsta.2008.0118
http://dx.doi.org/10.1007/s10798-004-1904-4
http://dx.doi.org/10.1145/792548.611998
http://dx.doi.org/10.1207/s15516709cog1803_3
http://dx.doi.org/10.1145/1089786.1089794
http://dx.doi.org/10.3102/00346543065003245
http://dx.doi.org/10.1007/s10648-008-9083-6
http://dx.doi.org/10.1145/2729094.2742595

398
399
400

401
402

403
404

406
407

408
409
410
411

412
413
414

415
416
417
418

419
420

421
422

423
424
425

426
427

428
429

430
431

432
433

434
435

437
438

439
440

441
442
443

444
445

446
447

448
449
450
451

452
453
454

24 LIMITATIONS

[Outlay et al. (2017)] ‘Getting IT Together: A Longitudinal Look at Linking Girls’ Interest in IT Careers to
Lessons Taught in Middle School Camps’. C N Outlay , A J Platt , K Conroy . doi: 10.1145/ 3068838. ACM
Trans. Comput. Educ Aug. 2017. 17 (4) p. .

[Gronlund et al. ()] N E Gronlund , E N Gronlund , C K Waugh . Assessment of Student Achievement, 2013.
(10th ed. Pearson)

[Shaft ()] ‘Helping Programmers Understand Computer Programs: the Use of Metacognition’ T M Shaft . ACM
SIGMIS Database 1995. 26 (4) p. .

[Hoffman (ed.) ()] How can ezpertise be defined? Implications of research from cognitive psychology, R R Hoffman
. Exploring Expertise, R. Williams, W. Faulkner, and J. Fleck (ed.) 1996. Edinburgh, Scotland: University
of Edinburgh Press. p. .

[Lewis et al. ()] ‘I Don’t Code All Day’: Fitting in Computer Science When the Stereotypes Don’t Fit> C M
Lewis , R E Anderson , K Yasuhara . 10.1145/2960310.2960332. Proceedings of the 2016 ACM Conference
on International Computing Education Research -ICER ’16, (the 2016 ACM Conference on International
Computing Education Research -ICER ’16) 2016. p. .

[Renumol et al. (2010)] ‘Identification of Cognitive Processes of Effective and Ineffective Students During
Computer Programming’. V G Renumol , D Janakiram , S Jayaprakash . 10.1145/1821996.1821998. ACM
Trans. Comput. Educ Aug. 2010. 10 (3) p. .

[Falkner et al. ()] ‘Identifying computer science self-regulated learning strategies’ K Falkner , R Vivian , N J
G Falkner . 10.1145/2591708.2591715. Proceedings of the 2014 conference on Innovation € technology in
computer science education -ITiCSE 14, (the 2014 conference on Innovation & technology in computer
science education -ITiCSE ’14) 2014. p. .

[Zimmerman| ‘Investigating Self-Regulation and Motivation: Historical Background, Methodological Develop-
ments, and Future Prospects’. B J Zimmerman . Am. Educ

[Lawanto and Febrian ()] ‘Investigating the Influence of Context on Students’ Self-Regulation during the
Capstone Design Course (Accepted)’. O Lawanto , A Febrian . Int. J. Eng. Educ 2018.

[Butler and Cartier ()] ‘Learning in varying activities: An explanatory framework and a new evaluation tool
founded on a model of self-regulated learning’. D L Butler , S C Cartier . Annual Conference of the Canadian
Society for The Study of Education, 2004.

[Jonassen ()] Learning to solve problems: A handbook for designing problem-solving learning environments, D H
Jonassen . 2010. (Routledge)

[Jonassen ()] Learning to Solve Problems: An Instructional Design Guide, D H Jonassen . 2004. John Wiley &
Sons.

[Flavell ()] ‘Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry’. J H Flavell
. 10.1037/0003-066x.34.10.906. Am. Psychol 1979. 34 (10) p. .

[Butler ()] ‘Metacognition and Learning Disabilities’ D L Butler . Learning About Learning Disabilities, BY L
Wong, Ed Toronto (ed.) 1998. Academic Press. p. . (2nd ed)

[Flavell ()] ‘Metacognitive Aspects of Problem Solving’. J H Flavell . The Nature of Intelligence, L B Resnick
(ed.) (Ed. Hillsdale, NJ, USA) 1976. Erlbaum. p. .

[Butler and Cartier ()] ‘Multiple Complementary Methods for Understanding Self-Regulated Learning as Situ-
ated in Context’. D L Butler , S C Cartier . Annual Meeting, 2005. American Educational Research Association.
p. .

[Carver and Scheier ()] ‘Origins and functions of positive and negative affect: A control-process view’. S Carver
, M F Scheier . 10.1037/0033-295X.97.1.19. Psychol. Rev 1990. 97 (1) p. .

[Lawanto ()] ‘Pattern of Task Interpretation and Self-Regulated Learning Strategies of High School Students and
College Freshmen during an Engineering Design Project’. O Lawanto . J. STEM Educ. Innov. Res 2013. 14
(4) p. 15.

[Butler and Cartier] Promoting Effective Task Interpretation as an Important Work Habit: A Key to Successful
Teaching and Learning, D L Butler , S C Cartier . (Teach)

[Butler (1995)] ‘Promoting Strategic Learning by Postsecondary Students with Learning Disabilities’ D L Butler
. 10.1177/002221949502800306. J. Learn. Disabil Mar. 1995. 28 (3) p. .

[Wang et al. ()] ‘Social Perceptions in Computer Science and Implications for Diverse Students’. J Wang , S
Hejazi Moghadam , J Tiffany-Morales . 10.1145/3105726.3106175. Proceedings of the 2017 ACM Conference
on International Computing Education Research -ICER ’17, (the 2017 ACM Conference on International
Computing Education Research -ICER ’17) 2017. p. .

[Alharbi et al. (2012)] ‘Student-Centered Learning Objects to Support the Self-Regulated Learning of Computer
Science’. A Alharbi , F Henskens , M Hannaford . 10.4236/ce.2012.326116. Creat. Educ Oct. 2012. 03 (06) p.

10

http://dx.doi.org/10.1145/2960310.2960332
http://dx.doi.org/10.1145/1821996.1821998
http://dx.doi.org/10.1145/2591708.2591715
http://dx.doi.org/10.1037/0003-066x.34.10.906
http://dx.doi.org/10.1037/0033-295X.97.1.19
http://dx.doi.org/10.1177/002221949502800306
http://dx.doi.org/10.1145/3105726.3106175
http://dx.doi.org/10.4236/ce.2012.326116

456
457

458
459
460

461
462
463

464
465

466
467

468
469

470
471

472
473

474

475
476

477
478

479
480

[Lawanto and Stewardson (2013)] ‘Students’ interest and expectancy for success while engaged in analysis-and
creative design activities’. O Lawanto , G Stewardson . 10.1007/s10798-011-9175-3. Int. J. Technol. Des. Educ
May 2013. 23 (2) p. .

[Rivera-Reyes et al. (2017)] ‘Students’ Task Interpretation and Conceptual Understanding in an Electronics
Laboratory’. P Rivera-Reyes , O Lawanto , M L Pate . 10.1109/TE.2017.2689723. IEEE Trans. Educ Nov.
2017. 60 (4) p. .

[Lawanto et al. (2018)] ‘Students’ Task Understanding during Engineering Problem Solving in an Introductory
Thermodynamics Course’. O Lawanto , A Minichiello , J Uziak , A Febrian . 10.5539/ies.v11n7p43. Int. Educ.
Stud Jun. 2018. 11 (7) p. 43

[Lawanto et al. ()] ‘Task Affect and Task Understanding in Engineering Problem-Solving’. O Lawanto , A
Minichiello , J Uziak , A Febrian . J. Technol. Educ 2018.

[Isométtonen and Tirronen (2013)] ‘Teaching programming by emphasizing self-direction’. V Isométténen , V
Tirronen . 10.1145/2483710.2483711. ACM Trans. Comput. Educ Jun. 2013. 13 (2) p. .

[Havenga ()] ‘The Role of Metacognitive Skills in Solving Object-Oriented Programming Problems: a Case
Study’. M Havenga . TD J. Transdiscipl. Res. South. Africa 2015. 11 (1) p. .

[Abdillah et al. (2016)] ‘The Students Decision Making in Solving Discount Problem’. T Abdillah , S Nusantara
, H Subanj , A Susanto , Abadyo . 10.5539/ies.vOnTp57. Int. Educ. Stud Jun. 2016. 9 (7) p. 57.

[Jonassen (2000)] ‘Toward a design theory of problem solving’. H Jonassen . 10.1007/BF02300500. Educ. Technol.
Res. Dev Dec. 2000. 48 (4) p. .

[Tigerfish] ‘Transcription Style Guide’ Tigerfish . Tigerfish p. 11.

[Irani (2004)] ‘Understanding gender and confidence in CS course culture’. L Irani . 10.1145/1028174.971371.
ACM SIGCSE Bull Mar. 2004. 36 (1) p. 195.

[Leiviskd and Siponen ()] ‘Understanding Why IS Students Drop Out: Toward A Process Theory’ K Leiviski ,
M Siponen . ECIS 2013 Proceedings, 2013. p. .

[Peng et al. ()] ‘Visualizing the Complex Process for Deep Learning with an Authentic Programming Project’. J
Peng , M Wang , D Sampson . Educ. Technol. Soc 2017. 20 (4) p. .

11

http://dx.doi.org/10.1007/s10798-011-9175-3
http://dx.doi.org/10.1109/TE.2017.2689723
http://dx.doi.org/10.5539/ies.v11n7p43
http://dx.doi.org/10.1145/2483710.2483711
http://dx.doi.org/10.5539/ies.v9n7p57
http://dx.doi.org/10.1007/BF02300500
http://dx.doi.org/10.1145/1028174.971371

	1 Introduction
	2 II.
	3 Research Questions
	4 III.
	5 Relevant Literature
	6 a) Task Interpretation in Self-Regulated Learning
	7 b) Self-Regulation in Computer Programming
	8 IV.
	9 Research Design
	10 a) Data Collection Method
	11 b) Object-Oriented Design Problem
	12 c) Data Analysis Method
	13 The Participants
	14 Table III: Object-Oriented Problem Requirements and Constraints
	15 VI.
	16 Findings
	17 a) Initial Explicit and Implicit Task Interpretation
	18 b) Revising the Initial Task Understanding
	19 c) Factors that Influence the Task Interpretation Revisions
	20 VII.
	21 Discussion, Conclusion, and Implication
	22 Conclusion
	23 IX.
	24 Limitations

