
Students’ Understanding of an Object-Oriented Design Task -A1

Case Study2

Oenardi Lawanto3

Received: 15 December 2019 Accepted: 4 January 2020 Published: 15 January 20204

5

Abstract6

Students must understand a problem accurately to solve it correctly. Unfortunately, numerous7

studies reported that students only have a partial understanding of the information presented8

in the problem description, including in computer science. This study assesses students’ task9

and revised-task interpretations when working on an objectoriented design problem. Multiple10

qualitative case study research was used in this study. Two male1 I. Introduction and two11

female senior computer science students at Utah State University, USA, volunteered as12

participants. They were asked to solve five programming problems while thinking aloud,13

complete surveys, and answer several interview questions. The study found that the14

participants were able to identify most of the essential information after the initial reading of15

the problem description. They strategically ignore detailed information that may affect their16

design decisions and update it throughout their problem-solving enterprise.17

18

Index terms— cognition, problem-solving, programming, self-regulation, self-regulated learning, task19
interpretation, task revision.20

1 Introduction21

and two female senior computer science students at Utah State University, USA, volunteered as participants.22
They were asked to solve five programming problems while thinking aloud, complete surveys, and answer several23
interview questions. The study found that the participants were able to identify most of the essential information24
after the initial reading of the problem description. They strategically ignore detailed information that may affect25
their design decisions and update it throughout their problem-solving enterprise.26

Index terms: cognition, problem-solving, programming, self-regulation, self-regulated learning, task interpre-27
tation, task revision. t was a typical day in a programming lab session; students were working on their task28
under the observation of several teaching assistants. Several students concentrated on solving the lab problem,29
some were discussing the best approach to solve it, and some others were waiting for the answer from their peers.30
Interestingly, some students did not even bother to open and read the lab instruction, regardless of suggestion and31
encouragement from the assistants. While the motivation for their persistence may vary, reading and rereading32
a problem is a crucial step to understand and solve it [1]- [5].33

To accurately understanding a problem is not an easy task. Several studies reported that students are rarely34
able to interpret a problem correctly [2], [3], [6]- [8].Some studies also reported that students’ submitted solutions35
reveal their incomplete understanding of the 1 This paragraph of the first footnote will contain the date on which36
you submitted your paper for review. It will also contain support information, including sponsor and financial37
support acknowledgment. For exam ple, ”This work was supported in part by the U.S. Department of Commerce38
under Grant BS123456.” This material is based, in part, upon work supported by the National Science Foundation39
under Grant No. 1148806. Any opinions, findings, and conclusions or recommendations expressed in this material40
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.41

given tasks [2], [8], [9].Although limited in number, similar phenomena also have been reported in the42
discipline of computer science (CS).Some CS students were reported incapable of accurately inferring the expected43
program’s behaviors based on a given design brief [10]. Other study reported that CS students tend to ignore44
some assessment criteria while working on their tasks, which then negatively impact their grades [11].45

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

7 B) SELF-REGULATION IN COMPUTER PROGRAMMING

In this study, we aim to describe the approaches used by senior CS students in understanding an object-46
oriented (OO) design problem; i.e., their initial task interpretation and the changes. Selfregulated learning47
(SRL) framework is used to distinguish their cognitive and metacognitive activities during the problem-solving48
endeavor. The description and analysis results may help instructors to understand better, and encourage students49
to enhance their strategies in comprehending a design problem. The description may also help students to be50
more aware of their self-regulation so that they can improve it.51

2 II.52

3 Research Questions53

As mentioned earlier, this study aims to describe senior CS students’ approaches to understanding an OO54
design problem. In more specific, this study intends to assess (1) students’ initial explicit and implicit task55
understanding, (2) how their initial understanding changes during the problem-solving activity, and (3) identify56
factors that influence those changes.57

4 III.58

5 Relevant Literature59

Since this study uses SRL as a framework in analyzing the data, the literature will discuss task understanding (or60
task interpretation) within the SRL. Additionally, this section also discusses known literature on self-regulation61
in CS to help readers familiar with existing research in that area.62

6 a) Task Interpretation in Self-Regulated Learning63

Students deliberately self-regulate when working on a task [12], [13]. Such activity involves the interplay of64
interpreting a given task, developing a plan, and executing, monitoring, and adjusting the plan to complete65
the task [4], [5], [13]- [16]. Fig. ?? and Table I presents the relationship and definition of each SRL activity,66
respectively. It is clear from Fig. ?? that task interpretation, which refers to understanding the task and67
associated process to complete it [17], is the starting point of any SRL activities. Thus, misinterpreting a task68
may negatively affect follow-up planning, enacting, monitoring, and adjusting activities [18].69

Fig. ??: Categories of various self-regulation activities. When interpreting a task, one must consider the70
explicit and implicit aspects of it. Explicit task interpretation refers to students’ understanding of the information71
presented in the problem description [8], such as written goals, requirements, and constraints. Implicit task72
interpretation refers to extrapolated information base on the given description [8], for example, relevant concepts73
and experience to solve the problem. These definitions imply that explicit and implicit task interpretation74
is distinguishable based on the manner of that specific understanding being acquired (i.e., by identifying or75
extrapolating).76

Unfortunately, interpreting a task is not easy. Two studies reported that students could only correctly identify77
63% -77% of valuable information presented in Thermodynamics course problems [3], [7]. The accuracy of78
implicit task understanding is even more unsatisfactory, such that they could only extrapolate 37% -49% of the79
essential information [3], [7]. Similar findings have been reported in engineering design [8] and electronics lab [2].80
Consequently, this misinterpretation impedes their problem-solving performance [19]- [21].81

Fortunately, several studies [2], [3], [8], [19], [21], [22] suggested that students enhance their task understanding82
throughout their problem-solving enterprise. Theoretically, these refinements occur due to continuous monitoring83
and adjusting activities [23]. Thus, insufficient and inefficient monitoring and adjustment activities may lead84
to a meager solution. Since SRL is contextual, having sufficient relevant domain knowledge is necessary for85
efficient monitoring and adjustment activities [4], [8], [19], [24]. Moreover, one has to be willing to adopt new86
interpretations or strategies when it is necessary to do so.87

7 b) Self-Regulation in Computer Programming88

Although still limited in number, SRL research in CS is not new. Some scholars believe that it may ease the89
curve of learning programming and increase student’s retention rate [25]. In this section, the reported cognitive90
and meta cognitive characteristics of CS students found in the literature are discussed.91

Most CS students prefer to learn new materials sequentially through visual representation, and then reflect on92
their progress [26]. Most of them are comfortable and competent in dealing with detailed information [26],which93
strengthens their ability to solve complex problems (e.g., developing software systems). Their reflective nature94
allows them to be appreciative of each task, which, in turn, influences them to be more self-regulated and deliver95
better outputs [27].96

A study reported that students use numerous SRL strategies instinctively when trying to understand a task,97
design a solution, and debug a program [28]. Engaging in self-regulation activities may improve their performance98
[27], [29].One study reported that students are sometimes unable to accurately address all the requirements and99
constraints of a problem [11], which suggested that instinctive self-regulation may not be sufficient in the long100
run. Students need to be more conscious of using it. Two studies suggested that deepening students’ familiarity101

2

with various programming concepts and principles (i.e., contexts or knowledge) may increase their SRL quality102
[11], [19].103

Related to object-oriented (OO) design, a study reported that students are using typically suggested strategies104
in interpreting an OO design problem, which is by identifying the nouns and verbs found in the task description105
[9]. Although this report seems expected, this finding is important because it describes students ’ approaches in106
design, not just a belief. Based on their understanding, students then decompose the problem and design the107
solution. Interestingly, students consider problem decomposition as a skill that hard to master [11]. Students tend108
to have incomplete and incorrect knowledge about OO design [9], which, plausibly, impair their decomposition109
skills. While some students may be aware of their weaknesses and strive to address it, others chose to ignore110
it. The last group of students tends to feel discouraged when facing a challenge [9] and, thus, have a negative111
learning experience.112

8 IV.113

9 Research Design114

In this section, the research design and its justification were explicated, which include data Selecting strategies115
to complete the task [5] Enacting Strategies Students’ cognitive activities employed while completing the task116
[54] collection and analysis methods, and the design problem.117

10 a) Data Collection Method118

Multiple, in-depth qualitative data were collected from the participants, which aligned with best practices of119
qualitative study [30] and conducting SRL research [5], [31], [32]. Multiple data points allowed the researchers120
to appraise the perception and activities of the participants accurately.121

Five programming problems, five problemspace maps, initial task interpretation survey, and interview question122
templates, were developed, pilot tested, and used. The programming problems consisted of two practice, one123
OO, one break, and one algorithm tasks. All except one were related to imperative programming paradigms.124
The problem-space maps described all correct and possible explicit and implicit task interpretation of each125
problem. This technique was adopted from expert-novice research about trouble shooting [33]. The initial task126
interpretation survey was used to assess the participants’ initial understanding of the task. Table II presents the127
survey questions and the associated aspect of task interpretation. The interview question templates were used128
to formulating confirmatory questions based on the researchers’ observation.129

During the data collection, the participants followed a specific protocol when solving each programming130
problem, and were audio-and videorecorded. The participants observed the following protocol in sequence: (a)131
reading the problem description aloud, (b) completing initial task interpretation survey while thinking aloud, (c)132
continue solving the problem while thinking aloud, and (d) answering the interview questions. The programming133
problems were given in the order written in the previous paragraph. No time limit was set for each problem. The134
practice problems were used to help the participants familiar with the data collection protocol and address any135
thinking aloud issues, if any.136

To accurately capture the initial task interpretation, the participants were prohibited from rereading the137
problem description when completing the survey (i.e., step (a)). The problem-space maps were used to track the138
participants’ thought processes when solving the problem (i.e., step (c)). The interview was semi-structured to139
ensure its alignment with the research goal yet still providing flexibility in pursuing particular points of interest140
that emerged during the problem-solving process.141

11 b) Object-Oriented Design Problem142

The OO problem is about designing a digital version of a classic board game, which commonly known as the143
Monopoly. Unlike the original, this game would be set in Middle-Ages. Given a set of requirements and constraints144
(see Table III), the participants should design a game base so that the rest of the team members could move145
forward smoothly. They are expected to deliver a class diagram. Also, they are allowed to ignore animation and146
play-testing parts and add their creativity beyond the given requirements and constraints.147

The participants are expected to declare and manage at least one function, five issues, and 4 to 41148
variables when solving this problem. It also contains some missing or unspecified information (i.e., implicit149
task interpretation) and has multiple solutions; all are typical characteristics of a design problem [34]- [36].150
Consequently, the participants are not expected to comprehend the problem in one read. Based on the revised151
Bloom’s Taxonomy [37], this problem belonged to the creation category, where the participants were expected to152
make a product for a specific purpose.153

12 c) Data Analysis Method154

Recorded video/audio files, initial task interpretation survey responses, design solutions, design notes (if any),155
observed thought processes (i.e., problem-space maps), and interview responses were collected from each156
participant. All recorded video/audio files were transcribed using the verbatim technique, such that the157
transcriptions recorded all articulated words and shutters [38]. Three additional notations were introduced158

3

14 TABLE III: OBJECT-ORIENTED PROBLEM REQUIREMENTS AND
CONSTRAINTS

in the transcriptions to clarify relevant contexts, including square bracket (”[]”), dash (”-”), and capitalizing the159
first letter for describing the participants’ actions, correcting statements, and clarifying programming concepts,160
respectively. For example, ”Since not having a particular idea on The qualitative coding process consisted of two161
phases. In the first phase, both experts individually coded the transcriptions based on the definition provided in162
Table I. After they finished, the coding results were then combined. Some disagreements were expected since the163
experts worked independently. In the second phase, the experts met face-to-face to discuss and resolve all coding164
disagreements. All collected data were used to ensure correct interpretations of the participants’ statements.165
Through this process, the experts were able to reach a perfect agreement, with a Kappa score of 1.00 for each166
transcription, and produced 875 codes.167

To answer the first research question, the initial task interpretation survey responses and the associated168
recorded video/audio files were used. These data sources were also triangulated against recorded problem-solving169
approaches and interview responses. This step was necessary since the participants might forget reporting all170
relevant thought processes when answering the survey.171

To answer the second research question, the answer to the first research question and the codedtranscriptions172
were used. All problem-solving activities that could not be associated with the initial task interpretation173
were categorized as adjustment of participants’ task understanding. These adjusted interpretations were then174
triangulated against recorded interview responses.175

To answer the third research question, the list of task interpretation adjustments, coded-transcriptions, and176
interview responses were used. All statements in the coded-transcription that were associated with the changes177
were marked. The factors that influence the marked changes were then identified and triangulated against the178
interview responses.179

V.180

13 The Participants181

After the transcribing process completed, the OO-related transcriptions were qualitatively coded by two experts,182
which were an information technologist and one of the researchers. All experts had experience in developing OO183
applications. The expert-researcher also had a bachelor’s and master’s degrees in CS.184

14 Table III: Object-Oriented Problem Requirements and Con-185

straints186

No.187
Requirements and Constraints 1188
The game is meant to be played by either two, three, or four players. 2189
Each player chooses to play as any one of the following characters: King, Warrior, Merchant, or Thief. Each190

character has unique special abilities and starts with different items and different amounts of money. 3191
The game board will consist of 30 spaces where players can land, arranged in a circle. On some spaces, there192

are buildings that can be bought and sold. On other spaces, there are shops where players can buy items. In193
addition, some spaces have specific instructions that players must follow when they land there. 4194

In the original board game, movement is determined by rolling dice, so you must develop an equivalent virtual195
method of determining the number of spaces each player moves on his or her turn. 5196

On their turn, each player must move, and they can choose to do any of the following: buy the building on197
the space they are on, sell any building they own, spend money to improve buildings they own, or use one of198
their character’s special abilities. 6199

Items give special benefits to the player. Items include the following: Sword, Potion, Horse, or others. The200
effects of the item will be different for each character type. 7201

There are three different kinds of buildings: Castle, F d I Th b ildi h diff fourth year, USU CS students202
have typically completed the introduction to programming, algorithm and data structure, software engineering,203
event-driven programming, and internship courses. At the end of the research, each participant received a204
personalized report of his or her task interpretation strategies and suggestions for improvement and a $40 gift205
card. Participants responded positively towards the reports and suggestions.206

All participants were Caucasians with GPAs of 3.10 to 3.96 on a 4-point scale. Sorted based on their GPAs,207
they were Jake, Anne, LStew, and Rusty. The male participants also familiar with logic programming and had208
spent approximately 4980 hours developing their programming skills.209

The female participants had spent about 2050 hours of programming. Similar to most female CS students210
[39]- [44], they had struggled with CS stereotypes, where CS students are viewed as overtly ”focused on CS,211
asocial, competitive, and male” (p.30) [40]. They also suffered from comparing themselves against their peers.212
L Stew said, ”I have to ignore my colleagues and classmates programming ’successes’ as that comparison game213
tends to reduce my selfesteem a lot and negatively impact my problem-solving and programming capabilities.”214
She also said, ”I nearly failed a class because I did not believe I was capable of succeeding in it.” Fortunately,215
both participants were able to overcome that challenge and were almost finished with the degree requirements.216

4

15 VI.217

16 Findings218

All participants started with incomplete task understanding, which was expected, as explained earlier. For-219
tunately, all participants were also aware of it and tried to update their task understanding. Unfortunately,220
although their final task interpretation was better compared to the initial, it was still incomplete. There are221
two possible reasons for this result. First, the participants were overwhelmed with the detail of their design.222
Second, the participants were drawing knowledge from irrelevant experience. Rusty, for example, was using the223
entity-relationship instead of the class diagram.224

In this section, participants’ initial and revisedtask interpretation, and factors that influenced the changes225
were discussed.226

17 a) Initial Explicit and Implicit Task Interpretation227

Five questions were asked to assess the initial understanding of the participants (see Table II). All participants228
were able to determine the problem goal correctly. Anne, for example, defined the goal as ”develop[ing a] class229
diagram from given constraints.” L Stew and Rusty also included design best practices and their interest in the230
problem goal. Rusty, for example, said the problem goal was ”create[ing] a logic layer inside of our program231
that can function completely without interaction from the graphical user interface or user.”Rusty knew that the232
decoupling of logic and user interface is part of software design best practices, and would like to observe it during233
the design process.234

No participants had a complete initial understanding of the requirements and constraints, which required235
explicit and implicit task interpretation. This result was expected, considering the number of requirements and236
constraints. However, all participants understood that they needed to complete each item listed in Table III.237
They also understood that the problem implicitly required them to organize potential classes ”in a logical way”238
since the classes will ”interact in a specific way.” Anne, LStew, and Rusty also added that exercising creativity,239
as directed in the problem, would affect their class design.240

In designing the classes, LStew further added that she needed to ”avoid common object-oriented programming241
pitfalls by reducing coupling, reducing interdependencies, and avoiding the diamond of death.”Plausibly, this242
implicit understanding was informed by her interests and experience in OO-design best practices.243

All participants considered OO design principles and UML diagram notations as relevant concepts. Rusty and244
LStew also added that design practices in writing a class diagram and software usability as essential knowledge245
and skills. Thus, all participants were able to identify relevant concepts to complete the problem correctly.246

In order to solve the problem, all participants determined that they need to (1) reread the problem description;247
(2) identify potential classes; (3) draw the class; (4) establish the classes’ relationship; and (5) refine the class248
diagram as necessary. Interestingly, while the male participants concentrated on rereading the problem description249
on their first step, the females also concerned with identifying and rewriting the requirements and constraints in250
their own words. Additionally, Rusty and LStew added that they needed to monitor their progress and address251
creativity issues throughout their problem-solving enterprise.252

18 b) Revising the Initial Task Understanding253

The participants executed their problem-solving steps carefully. LStew, for example, started by rereading the254
problem description and developed a list of requirements. She continued by solving the identified requirements255
that were related to items, characters, special abilities, player actions, spaces, buildings, players, games, and turn.256
Sometimes, after completing one of the requirements, she adjusted her design. For example, after designing the257
action-related classes, she revised the item and character classes. LStew also enhanced her design by making it258
as logical and as clear as possible so people could easily understand how the classes work together.259

When rereading the problem description, the participants were frequently observed as if interpreting it for the260
first time. These activities were coded as monitoring of task interpretation. Some of these activities triggered261
them to adjust their task interpretation. Jake, Anne, Rusty, and LStew were observed investing 37.50%, 50.38%,262
31.12%, and 36.47% of their engagement for interpreting the task, respectively, including for monitoring and263
adjustment. Rusty said during the interview, ”The general understanding did not really change because I knew264
that I was going to be creating this class diagram, but as far as the design decisions, it changed a lot.”265

19 c) Factors that Influence the Task Interpretation Revisions266

As mentioned by Rusty, most of the revisedtask interpretations were somehow related to design decisions, such267
as classes and their behaviors. When addressing each requirement and constraint, the participants need to268
consider the best mechanism to incorporate it into their existing design. Such need encourages them to reread269
the problem description as if they encountered it for the first time. This finding aligned with various reports that270
argued students were required to employ vast cognitive skills and work with different abstraction levels during a271
programming design activity [45], [46].272

All participants except Anne were observed updating their task understanding when addressing creativity273
requirements. For example, after rereading the third requirement (see Table III), LStew said, ”What kind of274

5

22 CONCLUSION

special instructions could you have if it was a castle versus an inn? I suppose-or a castle versus a fortress? Oh,275
nothing comes up. Well, a castle can have a king in it, right? ? Okay, so if you are a king and you land on276
a castle owned by someone else, you get a discount on your rent.” The above illustration showed how LStew’s277
interpretation of ”specific instruction” evolved as she infused her creativity into the design.278

Unlike the other participants, Anne did not attempt to put creativity into her design. Using the third279
requirement as an example, Anne addressed it by just creating a class called Instructions that would be used280
by the Space class. At the beginning of solving the problem, Anne commented, ”No one will hire me for my281
creativity,” suggesting she was not confident of that particular skill.282

20 VII.283

21 Discussion, Conclusion, and Implication284

The analysis results suggested that the participants were competent in identifying the problem goal, requirements,285
constraints, relevant concepts, relevant experience, and steps to solve an OO design problem. It is important286
to note that they were able to identify most of it after the initial reading of the problem. However, due to the287
problem’s extensiveness, they were unable to determine all detailed requirements and constraints.288

During the design, they displayed some attributes of expert problem-solvers (see [47], [48]), such as considering289
possible concerns from various stakeholders. Their awareness of the problem complexity and prior experience in290
solving OO design problems also inspire a positive behavior; in such, it drove them to be cautious in interpreting291
the requirements. Thus, it might be beneficial to train students to identify problem characteristics and its292
complexity as early as possible. Two educational theory may help in this issue, which are Jonassen’s problem293
types [34]- [36] and Bloom’s Taxonomy to define the problem characteristics.294

The analysis results suggested that the participants had a relatively similar approach in solving an OO design295
problem with extensive requirements and constraints. This approach included rereading the problem description,296
identifying requirements, identifying classes, determining the classes’ relationships, and refining the class diagram.297
This finding aligned with various arguments that students developed metacognitive knowledge about the tasks298
based on their problem-solving experience [1], [49], [50]. Since these metacognitive knowledge influence students’299
problem-solving approach [1],it might be beneficial for the instructors to check and ensure that students could300
acquire that knowledge correctly.301

There was self-regulation different between male and female, in such that both female participants listed302
the requirements and constraints using their own words. However, since all participants unable to identify the303
requirements and constraints completely, it is impossible to comments more on this difference.304

The findings suggested that the participants’ interest and experience influenced their initial and revised-305
task interpretations. Similarly, when addressing creativity requirements, they also exploited their interest and306
experience. One study argues that creativity is primarily related to the design process [51]. Thus, Anne’s307
discomfort about her creative side might be induced by a lack of exposure to a variety of products, and chances308
to express her creativity. These issues could be fixed by exposing students to various creative software products309
and encouraging them to tap into their creative side in several programming assignments.310

The analysis suggested that task interpretation skills might be deteriorated due to being overwhelmed and311
drawing from irrelevant experience. This findings also suggested that the participants’ incorrect assumption of312
educational tasks might affect their selfregulation. Students need to be aware of this potential danger in their313
education.314

22 Conclusion315

This study shows that the participants, senior CS students, are capable of drawing explicit and implicit316
information from an OO-design problem. Most of this information is identified during their initial task317
interpretation. It is important to note that various contexts influence their task interpretation skills; this318
is coherent with SRL theory [4], [5], [8], [13], [52] and other existing research [19], [21]. This study shows319
how participants’ perception of the problem (e.g., domain and complexity) and their experience, interest, and320
selfefficacy influences their task interpretation (and selfregulation in general). Thus, it is also essential to help321
students more aware of such contextual information when solving a problem.322

This study also shows that participants’ task understanding evolves during their problem-solving endeavor. In323
terms of solving an OO-design problem, revised-task interpretations are mostly related to design decisions, such324
as considering the interplay among classes. These senior students also display expert like behaviors where they try325
to interpolate possible concerns from various stakeholders. All participants also have developed a similar problem-326
solving approach to OO-design problems. A slight difference exists between males’ and females’ approach, where327
the females prefer to develop a list of known requirements and constraints.328

6

23 IX.329

24 Limitations330

This qualitative multiple case study was not designed to produce generalizable results but rather to capture as331
much variety of students’ task interpretation while solving OO-design problems as much as possible. With such332
a goal, having four participants was adequate for a qualitative case study research [30]. When interpreting the333
findings, remember that the participants’ diversity in this study was limited to their sex. There was a limitation334
regarding the problem types, such that the research tasks were limited to OO and imperative paradigms. Finally,335
one study argues that although thinking aloud is commonly used in educational studies, it might also affect336
students’ self-regulation [53] and then influence the research results. Unfortunately, there is no known approach337
to overcome it.338

This paper only focuses on the participants’ SR while working on OO design problem. The other unit of339
analysis is discussed in [21]. 1 2

Figure 1:

I

Strategic Action Definition
Task Students’ understanding of the task
Interpretation and associated process to complete

it [17]
Planning
Strategies

Figure 2: Table I :
340

1Year 2020 © 2020 Global Journals Students’ Understanding of an Object-Oriented Design Task -A Case
Study

2© 2020 Global JournalsStudents’ Understanding of an Object-Oriented Design Task -A Case Study

7

24 LIMITATIONS

II

Layer Question
Explicit What is the primary goal of this problem?
Explicit & In relation to the program that you will
Implicit design, what are the requirements and

constraints that you need to consider?
Implicit What are the programming concepts

related to this problem?
Implicit What are your previous experiences related

to this problem?
Implicit In relation to the program that you will

design, what are the steps (e.g., tasks) that
you need to take?

Figure 3: Table II :

8

[Coll. Rec ()] , Coll. Rec 2004. 106 (9) p. .341

[Res (2008)] , J Res . 10.3102/0002831207312909. Mar. 2008. 45 p. .342

[Improv (2008)] , Q Improv . 10.1111/j.1937-8327.1988.tb00021.x. Oct. 2008. 1 p. .343

[First] Author was born in xx in x. X received the B.S. and M.S. degrees in Computer Science from the X, in X344
and the Ph.D. degree in X in X, A First . (Short bio: interests, academic activities, research activities, and345
professional associations)346

[Second] Author was born in xx in x. X received the B.S. and M.S. degrees in Computer Science from the X, in347
X and the Ph.D. degree in X in X, B Second . (Short bio: interests, academic activities, research activities,348
and professional associations)349

[Butler and Cartier ()] ‘Case Studies as a Methodological Framework for Studying and Assessing Self-Regulated350
Learning’. L Butler , S C Cartier . Handbook of Self-Regulation of Learning and Performance, D H Schunk,351
J Greene (ed.) (New York, New York, USA) 2018. Routledge. p. . (2nd ed.)352

[Johnson] Cognitive Analysis of Expert and Novice Troubleshooting Performance, S D Johnson . (Perform)353

[Butler et al. (2015)] ‘Collaborative inquiry and distributed agency in educational change: A case study of a354
multi-level community of inquiry’. D L Butler , L Schnellert , K Macneil . 10.1007/s10833-014-9227-z. J.355
Educ. Chang Feb. 2015. 16 (1) p. .356

[Wing (2008)] ‘Computational Thinking and Thinking About Computing’. J M Wing . 10.1098/rsta.2008.0118.357
Philos. Trans. A. Math. Phys. Eng. Sci Oct. 2008. 366 (1881) p. .358

[Christiaans and Venselaar (2005)] ‘Creativity in Design Engineering and the Role of Knowledge: Modelling the359
Expert’. H Christiaans , K Venselaar . 10.1007/s10798-004-1904-4. Int. J. Technol. Des. Educ Jan. 2005. 15360
(3) p. .361

[Creswell ()] J W Creswell . Qualitative Inquiry and Research Design: Choosing Among Five Approaches, 2012.362
SAGE Publications. (3rd ed)363

[Graham and Latulipe (2003)] ‘CS girls rock: sparking interest in computer science and debunking the stereo-364
types’. S Graham , C Latulipe . 10.1145/792548.611998. ACM SIGCSE Bull Jan. 2003. 35 (1) p. 322.365

[Saulnier and Brisson ()] ‘Design for Use: A Case Study of an Authentically Impactful Design Experience’. C R366
Saulnier , J G Brisson . Int. J. Eng. Educ 2018. 34 (2B) p. .367

[Butler et al. ()] Developing Self-Regulating Learners, D L Butler , L Schnellert , N E Perry . 2017. Toronto, ON,368
Canada: Pearson Education Inc.369

[Febrian et al. ()] ‘Do Computer Science Students Understand Their Programming Task?-A Case Study of370
Solving the Josephus Variant Problem’. A Febrian , Lawanto , Oenardi . Int. Educ. Stud 2018. 11 (12)371
.372

[Hadwin ()] ‘Do your students really understand your assignments?’. A Hadwin . LTC Curr. Optim. Learn.373
Environ 2006. 11 (3) p. .374

[Kumar ()] ‘Effects of self-regulated learning in programming’. V Kumar . doi: 10.1109/ ICALT. 2005.131. Fifth375
IEEE International Conference on Advanced Learning Technologies (ICALT’05), 2005. p. .376

[Cartier and Butler ()] ‘Elaboration and validation of questionnaires and plan for analysis’. S C Cartier , D L377
Butler . Annual Conference of the Canadian Society for The Study of Education, 2004.378

[Chi et al. ()] ‘Eliciting Self-Explanations Improves Understanding’. M T H Chi , N De Leeuw , M.-H Chiu , C379
Lavancher . 10.1207/s15516709cog1803_3. Cogn. Sci 1994. 18 (3) p. .380

[Hadwin et al. ()] ‘Examining Student and Instructor Task Perceptions in a Complex Engineering Design Task’.381
A F Hadwin , M Oshige , M Miller , P Wild . The Sixth International Conference on Innovation and Practices382
in Engineering Design and Engineering Education, 2009.383

[Bergin et al. ()] ‘Examining the role of self-regulated learning on introductory programming performance’. S384
Bergin , R Reilly , D Traynor . 10.1145/1089786.1089794. First International Workshop on Computing385
Education Research, 2005. p. .386

[Glaser ()] ‘Expert knowledge and processes of thinking’. R Glaser . Enhancing thinking skills in the sciences and387
mathematics, D Halpern (ed.) (Ed. Hillsdale, NJ, USA) 1992. Lawrence Erlbaum Associates, Inc. p. .388

[Butler and Winne (1995)] ‘Feedback and Self-Regulated Learning: A Theoretical Synthesis’. D L Butler , P H389
Winne . 10.3102/00346543065003245. Rev. Educ. Res Jan. 1995. 65 (3) p. .390

[Dinsmore et al. ()] ‘Focusing the conceptual lens on metacognition, self-regulation, and self-regulated learning’.391
L Dinsmore , P A Alexander , S M Loughlin . 10.1007/s10648-008-9083-6. Educ. Psychol. Rev 2008. 20 (4)392
p. .393

[Falkner et al. ()] ‘Gender Gap in Academia: Perceptions of Female Computer Science Academics’. K Falkner , C394
Szabo , D Michell , A Szorenyi , S Thyer . 10.1145/2729094.2742595. Proceedings of the 2015 ACM Conference395
on Innovation and Technology in Computer Science Education -ITiCSE ’15, (the 2015 ACM Conference on396
Innovation and Technology in Computer Science Education -ITiCSE ’15) 2015. p. .397

9

http://dx.doi.org/10.3102/0002831207312909
http://dx.doi.org/10.1111/j.1937-8327.1988.tb00021.x
http://dx.doi.org/10.1007/s10833-014-9227-z
http://dx.doi.org/10.1098/rsta.2008.0118
http://dx.doi.org/10.1007/s10798-004-1904-4
http://dx.doi.org/10.1145/792548.611998
http://dx.doi.org/10.1207/s15516709cog1803_3
http://dx.doi.org/10.1145/1089786.1089794
http://dx.doi.org/10.3102/00346543065003245
http://dx.doi.org/10.1007/s10648-008-9083-6
http://dx.doi.org/10.1145/2729094.2742595

24 LIMITATIONS

[Outlay et al. (2017)] ‘Getting IT Together: A Longitudinal Look at Linking Girls’ Interest in IT Careers to398
Lessons Taught in Middle School Camps’. C N Outlay , A J Platt , K Conroy . doi: 10.1145/ 3068838. ACM399
Trans. Comput. Educ Aug. 2017. 17 (4) p. .400

[Gronlund et al. ()] N E Gronlund , E N Gronlund , C K Waugh . Assessment of Student Achievement, 2013.401
(10th ed. Pearson)402

[Shaft ()] ‘Helping Programmers Understand Computer Programs: the Use of Metacognition’. T M Shaft . ACM403
SIGMIS Database 1995. 26 (4) p. .404

[Hoffman (ed.) ()] How can expertise be defined? Implications of research from cognitive psychology, R R Hoffman405
. Exploring Expertise, R. Williams, W. Faulkner, and J. Fleck (ed.) 1996. Edinburgh, Scotland: University406
of Edinburgh Press. p. .407

[Lewis et al. ()] ‘I Don’t Code All Day’: Fitting in Computer Science When the Stereotypes Don’t Fit’. C M408
Lewis , R E Anderson , K Yasuhara . 10.1145/2960310.2960332. Proceedings of the 2016 ACM Conference409
on International Computing Education Research -ICER ’16, (the 2016 ACM Conference on International410
Computing Education Research -ICER ’16) 2016. p. .411

[Renumol et al. (2010)] ‘Identification of Cognitive Processes of Effective and Ineffective Students During412
Computer Programming’. V G Renumol , D Janakiram , S Jayaprakash . 10.1145/1821996.1821998. ACM413
Trans. Comput. Educ Aug. 2010. 10 (3) p. .414

[Falkner et al. ()] ‘Identifying computer science self-regulated learning strategies’. K Falkner , R Vivian , N J415
G Falkner . 10.1145/2591708.2591715. Proceedings of the 2014 conference on Innovation & technology in416
computer science education -ITiCSE ’14, (the 2014 conference on Innovation & technology in computer417
science education -ITiCSE ’14) 2014. p. .418

[Zimmerman] ‘Investigating Self-Regulation and Motivation: Historical Background, Methodological Develop-419
ments, and Future Prospects’. B J Zimmerman . Am. Educ420

[Lawanto and Febrian ()] ‘Investigating the Influence of Context on Students’ Self-Regulation during the421
Capstone Design Course (Accepted)’. O Lawanto , A Febrian . Int. J. Eng. Educ 2018.422

[Butler and Cartier ()] ‘Learning in varying activities: An explanatory framework and a new evaluation tool423
founded on a model of self-regulated learning’. D L Butler , S C Cartier . Annual Conference of the Canadian424
Society for The Study of Education, 2004.425

[Jonassen ()] Learning to solve problems: A handbook for designing problem-solving learning environments, D H426
Jonassen . 2010. (Routledge)427

[Jonassen ()] Learning to Solve Problems: An Instructional Design Guide, D H Jonassen . 2004. John Wiley &428
Sons.429

[Flavell ()] ‘Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry’. J H Flavell430
. 10.1037/0003-066x.34.10.906. Am. Psychol 1979. 34 (10) p. .431

[Butler ()] ‘Metacognition and Learning Disabilities’. D L Butler . Learning About Learning Disabilities, B Y L432
Wong, Ed Toronto (ed.) 1998. Academic Press. p. . (2nd ed)433

[Flavell ()] ‘Metacognitive Aspects of Problem Solving’. J H Flavell . The Nature of Intelligence, L B Resnick434
(ed.) (Ed. Hillsdale, NJ, USA) 1976. Erlbaum. p. .435

[Butler and Cartier ()] ‘Multiple Complementary Methods for Understanding Self-Regulated Learning as Situ-436
ated in Context’. D L Butler , S C Cartier . Annual Meeting, 2005. American Educational Research Association.437
p. .438

[Carver and Scheier ()] ‘Origins and functions of positive and negative affect: A control-process view’. S Carver439
, M F Scheier . 10.1037/0033-295X.97.1.19. Psychol. Rev 1990. 97 (1) p. .440

[Lawanto ()] ‘Pattern of Task Interpretation and Self-Regulated Learning Strategies of High School Students and441
College Freshmen during an Engineering Design Project’. O Lawanto . J. STEM Educ. Innov. Res 2013. 14442
(4) p. 15.443

[Butler and Cartier] Promoting Effective Task Interpretation as an Important Work Habit: A Key to Successful444
Teaching and Learning, D L Butler , S C Cartier . (Teach)445

[Butler (1995)] ‘Promoting Strategic Learning by Postsecondary Students with Learning Disabilities’. D L Butler446
. 10.1177/002221949502800306. J. Learn. Disabil Mar. 1995. 28 (3) p. .447

[Wang et al. ()] ‘Social Perceptions in Computer Science and Implications for Diverse Students’. J Wang , S448
Hejazi Moghadam , J Tiffany-Morales . 10.1145/3105726.3106175. Proceedings of the 2017 ACM Conference449
on International Computing Education Research -ICER ’17, (the 2017 ACM Conference on International450
Computing Education Research -ICER ’17) 2017. p. .451

[Alharbi et al. (2012)] ‘Student-Centered Learning Objects to Support the Self-Regulated Learning of Computer452
Science’. A Alharbi , F Henskens , M Hannaford . 10.4236/ce.2012.326116. Creat. Educ Oct. 2012. 03 (06) p.453
.454

10

http://dx.doi.org/10.1145/2960310.2960332
http://dx.doi.org/10.1145/1821996.1821998
http://dx.doi.org/10.1145/2591708.2591715
http://dx.doi.org/10.1037/0003-066x.34.10.906
http://dx.doi.org/10.1037/0033-295X.97.1.19
http://dx.doi.org/10.1177/002221949502800306
http://dx.doi.org/10.1145/3105726.3106175
http://dx.doi.org/10.4236/ce.2012.326116

[Lawanto and Stewardson (2013)] ‘Students’ interest and expectancy for success while engaged in analysis-and455
creative design activities’. O Lawanto , G Stewardson . 10.1007/s10798-011-9175-3. Int. J. Technol. Des. Educ456
May 2013. 23 (2) p. .457

[Rivera-Reyes et al. (2017)] ‘Students’ Task Interpretation and Conceptual Understanding in an Electronics458
Laboratory’. P Rivera-Reyes , O Lawanto , M L Pate . 10.1109/TE.2017.2689723. IEEE Trans. Educ Nov.459
2017. 60 (4) p. .460

[Lawanto et al. (2018)] ‘Students’ Task Understanding during Engineering Problem Solving in an Introductory461
Thermodynamics Course’. O Lawanto , A Minichiello , J Uziak , A Febrian . 10.5539/ies.v11n7p43. Int. Educ.462
Stud Jun. 2018. 11 (7) p. 43.463

[Lawanto et al. ()] ‘Task Affect and Task Understanding in Engineering Problem-Solving’. O Lawanto , A464
Minichiello , J Uziak , A Febrian . J. Technol. Educ 2018.465

[Isomöttönen and Tirronen (2013)] ‘Teaching programming by emphasizing self-direction’. V Isomöttönen , V466
Tirronen . 10.1145/2483710.2483711. ACM Trans. Comput. Educ Jun. 2013. 13 (2) p. .467

[Havenga ()] ‘The Role of Metacognitive Skills in Solving Object-Oriented Programming Problems: a Case468
Study’. M Havenga . TD J. Transdiscipl. Res. South. Africa 2015. 11 (1) p. .469

[Abdillah et al. (2016)] ‘The Students Decision Making in Solving Discount Problem’. T Abdillah , S Nusantara470
, H Subanj , A Susanto , Abadyo . 10.5539/ies.v9n7p57. Int. Educ. Stud Jun. 2016. 9 (7) p. 57.471

[Jonassen (2000)] ‘Toward a design theory of problem solving’. H Jonassen . 10.1007/BF02300500. Educ. Technol.472
Res. Dev Dec. 2000. 48 (4) p. .473

[Tigerfish] ‘Transcription Style Guide’. Tigerfish . Tigerfish p. 11.474

[Irani (2004)] ‘Understanding gender and confidence in CS course culture’. L Irani . 10.1145/1028174.971371.475
ACM SIGCSE Bull Mar. 2004. 36 (1) p. 195.476

[Leiviskä and Siponen ()] ‘Understanding Why IS Students Drop Out: Toward A Process Theory’. K Leiviskä ,477
M Siponen . ECIS 2013 Proceedings, 2013. p. .478

[Peng et al. ()] ‘Visualizing the Complex Process for Deep Learning with an Authentic Programming Project’. J479
Peng , M Wang , D Sampson . Educ. Technol. Soc 2017. 20 (4) p. .480

11

http://dx.doi.org/10.1007/s10798-011-9175-3
http://dx.doi.org/10.1109/TE.2017.2689723
http://dx.doi.org/10.5539/ies.v11n7p43
http://dx.doi.org/10.1145/2483710.2483711
http://dx.doi.org/10.5539/ies.v9n7p57
http://dx.doi.org/10.1007/BF02300500
http://dx.doi.org/10.1145/1028174.971371

	1 Introduction
	2 II.
	3 Research Questions
	4 III.
	5 Relevant Literature
	6 a) Task Interpretation in Self-Regulated Learning
	7 b) Self-Regulation in Computer Programming
	8 IV.
	9 Research Design
	10 a) Data Collection Method
	11 b) Object-Oriented Design Problem
	12 c) Data Analysis Method
	13 The Participants
	14 Table III: Object-Oriented Problem Requirements and Constraints
	15 VI.
	16 Findings
	17 a) Initial Explicit and Implicit Task Interpretation
	18 b) Revising the Initial Task Understanding
	19 c) Factors that Influence the Task Interpretation Revisions
	20 VII.
	21 Discussion, Conclusion, and Implication
	22 Conclusion
	23 IX.
	24 Limitations

