

1 Petrography, $\delta^{18}\text{O}$, $\delta^{13}\text{C}$ in Campanian Region (Southern 2 Italy) Speleothems

3 Angelo Paone¹

4 ¹ UniversitA degli Studi di Napol

5 *Received: 7 September 2015 Accepted: 30 September 2015 Published: 15 October 2015*

6

7 **Abstract**

8 Speleothems are good proxy to understand the environmental condition above the cave where
9 they form. I have studied three speleothems from the Campanian region (Matese Mts,
10 Sorrentina peninsula and Cilento area). The speleothems should suggest the climatic condition
11 some time in the past in Campanian region. I present data on the petrography, SEM, and
12 Carbon and Oxygen isotopes. The data present a scenario sapropelic some time in the past in
13 Campanian region.

14

15 **Index terms**— speleothem, campania, sapropel, isotopes, petrography.

16 **1 I. Introduction**

17 speleothem studies (trace elements (Sr, Mg and P), O and C isotopes, and U/Th disequilibria series) are a good
18 proxy to understand the climate variability during their growth. The relationship between the time growth (U-Th
19 dating), laminae extention rate of the stalagmite and/or stalactite, petrographic and textural studies (S.E.M.),
20 and isotopes ($\delta^{18}\text{O}$, $\delta^{13}\text{C}$) variations are the useful tools to determine the climate variation during the
21 last 10.000 yr. BP (e.g., McDermott et al., 1999; Huang et al., 2001). McDermott et al. (1999) illustrates the
22 climate variability in Europe from three speleotherms from (Ireland, Southern France and North Italy) during
23 the Holocene (10,000 up to now). They conclude that during the Holocene there has been significant decoupling
24 between the Atlantic (Ireland site) and Mediterranean seaboard (France site). They also affirm that there has
25 been little climate variation between the southern Alpine (North Italy) and the Mediterranean seaboard (France
26 site). However, for a better understanding of the climate variability during the past 10,000 yr. BP, much more
27 studies has to be accomplished, increasing the number of speleotherms studies around Europe. In this direction
28 some studies have focused their energy to samples younger than 10.000 yr. Bard et al. (2002) demonstrated that
29 $\delta^{18}\text{O}$ in a stalagmite from 19 metres below present-day sea-level at Argentola Cave on the Tyrrhenian coast of
30 Italy exhibits a 2-3 \textperthousand shift to lower values between 180 and 170 ka (MIS sub-stage 6.5). Approximately 0.8 -1.5 \textperthousand
31 of the observed 2-3 \textperthousand shift in $\delta^{18}\text{O}$ can be accounted for by changes in the isotopic composition of the vapour
32 source, but the remaining 1-2 \textperthousand was interpreted as conditions in the region during MIS 6.5. The inferred change
33 to wetter conditions during sapropel 6 is consistent with the pluvial events during this and later sapropel events
34 (S1-S6) inferred independently on the basis of decreases in $\delta^{18}\text{O}$ in speleothems from Israel (Bar- ??athews
35 et al., 2000; Ayalan et al., 2002).

36 A remarkably coherent picture of continental climate Late Pleistocene variability with close links to the oceanic
37 realm has emerged from studies of speleothems from the eastern margin of the Mediterranean. Particularly
38 impressive is the well-dated composite $\delta^{18}\text{O}$ record for the past 185 Kyr based on 21 speleotherms from Soreq
39 cave in Israel (Bar Matthews et al., 1996; 1997; 1999; Kaufman et al., 1998; Ayalan et al., 1998;). One of the reasons
40 that robust matches can be made between different coeval speleotherms in this composite record is that the
41 shifts in $\delta^{18}\text{O}$ are relatively large (several per mil), indicating a relatively strong climatic signal in the $\delta^{18}\text{O}$ record.
42 The Soreq record appears to reflect predominantly two effects (i) changes in the $\delta^{18}\text{O}$ of the oceanic
43 vapour source, and (ii) the "amount effect" (Bar Matthews et al., 1996; 1997; 1999; Kaufman et al., 1998; Ayalan
44 et al., 1998;). These studies are important because they establish a critical link between the oceanic realm and

3 IV. PETROGRAPHY AND SEM-EDS SUMMARY

45 continental climate in the Mediterranean region. Thus, $\delta^{18}\text{O}$ minima in speleotherms from Soreq coincide
46 exactly with the occurrence of sapropel events in the Mediterranean sea, and recently it has been shown that this
47 is true for glacial as well as for interglacial condition (Ayalan et al., 2002). The dominance of the "amount effect"
48 on $\delta^{18}\text{O}$ in stalagmites in this region allows reliable reconstruction of arid and pluvial phases. However, It appears
49 that, from this point of view and following this approach, there is not such a studies covering the southern Italy
50 area during the Holocene (10.000 yr up to now). Speleothems offer the best opportunity to accurately constrain the
51 timing of clearly defined climate signals (e.g., glacial-interglacial transitions, D/O oscillations, the "8.200 year"
52 event). It is noteworthy that at present the low-latitudes southern Italy are under-represented in the currently
53 dated speleothem stable isotope records.

54 To particularly implement the understanding of climate change in Southern Italy and to confront different
55 climatic micro-area (McDermott et al., 1999), a speleothem systematic study (textural studies, $\delta^{18}\text{O}$, $\delta^{13}\text{C}$
56 isotopes variations) from the southern Appenine area (Campanian region, Southern Italy) is presented.

57 2 II. Samples Studied III. Analytical Methods

58 Scanning electron microscope (SEM) observations on morphology and major element analyses were performed
59 on a Jeol JSM-5310 instrument (CISAG, Università degli Studi di Napoli "Federico"), in the energy-dispersive
60 spectroscopy (EDS) mode (Link Analytical 10000, ZAF corrections). Silicates, oxides and pure elements were
61 used as standards, operating conditions were 15 kV acceleration voltage and 10 mm spot size. Identification of
62 the entire mineral assemblage was made by combined SEM-EDS analyses, using the Jeol JSM-5310 instrument.
63 Stable isotope analysis were made by Carbonate powders were reacted with 100% phosphoric acid (density >1.9,
64 carbonate preparation line connected to a Thermo Finnigan 252 mass spectrometer. All values are reported in per
65 mil relative to V-PDB (Pee Dee Belemnite standard) by assigning a $\delta^{13}\text{C}$ value of +1.95 and a $\delta^{18}\text{O}$ value
66 of -2.20 to NBS19. Reproducibility was checked by replicate analysis of laboratory standards and is better than
67 ± 0.2 (1?). Oxygen isotopic compositions of dolomite and siderite were corrected using the fractionation factors
68 given by Rosenbaum & Sheppard (1986).

69 3 IV. Petrography and sem-eds Summary

70 These speleothems show varve-like submillimeter-scale color bands. The color of such speleothems is chiefly due
71 to the presence of variable amounts of clay or humic substances which coprecipitated or absorbed onto calcite
72 surfaces from drip waters that passed through soil before entering the cave. Lauritzen et al. (1986) found that
73 humic and fulvic acids are readily soluble and may be expected to enter speleothem feed waters preferentially
74 during growing seasons. The two groups found in speleothems may be taken as indices of productivity in the
75 overlying soil and plant cover and, therefore, as a proxy measure of paleoclimate (Lauritzen et al. 1986). This
76 cycle is probably a response to hydrological events in the recharge to the cave.

77 Petrography (Fig. 2) and X-ray diffraction (Fig. 3) indicate that the speleothems examined in this study
78 are all calcite, but their fabrics vary from inclusion zoned to clear and featureless. Macroscopically, transverse
79 sections of speleothem show mostly light brown calcite with pronounced fine-scale zonation. Microscopically,
80 speleothem consists of elongate or columnar calcite crystals radiating from the speleothem's center.

81 Both kinds of inclusions define apparent zones that extend across calcite crystals and that can commonly be
82 traced either perpendicular than parralel to the concentric circles growth all the way around the central canal.
83 None of the edges of the columnar calcite crystals coincide with the growth zones defined by inclusions. Some
84 patterns of inclusions in the outer areas have the form of euhedral calcite terminations, whereas others appear to
85 follow growth zonations that, if continuous, would define large concentric circles around the central canal. The
86 faster the growth rate, the warmer and/or wetter the climate is above the cave (Hennig 1983;Dreybrodt 1982).

87 Frist speleothem that we have obtained data on petrography, SEM and SEM-EDS is from Campo Braca.

88 The stalagmite seems to be completely formed by calcite crystal. The crystalline structure is between palisade
89 calcite to columnar calcite. It is worth noting the straight parallel crystal boundaries between the long crystals.
90 The calcite crystal have the c axes parallel to the cut of the thin section. This is true for all the samples examined.
91 Detrital carbonate grains are also individuated and they can be evidence of a dry climate and can be used in
92 paleoclimatology (Railsback et al., 1999). The cristalline concretization forms layers with different color bands.
93 Although the color of the bands defining these layers is suggestive of iron oxide, SEM-EDS analyses reveals the
94 presence of only Mg (not much) and Si, Fe and perhaps Al, suggesting the presence of a smectitic clay mineral.
95 Layers in inclusionrich calcite defined by variation in size and abundance of inclusions are also present. Presence
96 of absence of The samples are from limestone cretaceous caves outcropping on the southern Appenine (Fig. 1).
97 The speleothems samples are from "Campo Braca" cave on S. Gregorio del Matese city council zone (Mt. Matese;
98 Caserta); the entrance complex cave coordinates are lat. $41^{\circ} 25' 03''$ and long. $1^{\circ} 52' 54''$ and is 1130 mt. asl.
99 From the frist horizontal corridor which is around 30 mt, the sample was taken. From the "Inghiottito del
100 Trarro" ("Buco del Trarro"; Marina di Camerota), with coordinates of lat. $40^{\circ} 01' 04''$ and long. $2^{\circ} 54' 25''$,
101 respectively. The entrance is 220 mt asl. The corridor is semi-horizontal with length of 82 mt and depth 18 mt.
102 These samples are found at north and south of the Appenine length chain. The speleothem size ranges from 40 cm
103 with diameter of 15 cm (Campo Braca) to more than 80 cm with 20-30 cm in diameter ("Buco del Trarro), from
104 "Santa Barbara" cave in Bomerano, Agerola, just at middle distance between the previous sampling sites another

105 sample was collected. The Santa Barbara cave is several hundred meters deep the cave is formed in limestone and
106 on entrance there are outcrops of trasgressive deposits fromed by mostly sands with partly flowstone covering the
107 deposits. Wachter and Hayes, 1985) at 75°C using a Kiel III online fluid inclusion in layers can give an estimate
108 of the rate of precipitation of the calcite. Presence of fine red-brown layers in columnar calcite in a stalagmite
109 during the last stages of crystallization which give rise to the accumulation of clay material. This is also shown
110 from the SEM-EDS analyses.

111 **4 Global Journal of Human Social Science**

112 SEM image show columnar calcite in the stalagmite. However, SEM image have also shown the presence of equant
113 calcite in the same stalagmite. SEM-EDS analyses have been done systematically for each layer. Following are
114 shown two analyses which are respectively of calcite crystal and from a clay rich

115 **5 V. Stable Isotope Discussion**

116 The seepage water, upon entering a cave passage of lower CO₂ concentration (relative to the soil atmosphere),
117 releases CO₂ and CaCO₃ deposition takes place (Holland et al., 1964). Because bicarbonate concentrations
118 of karst ground waters are typically in the parts per thousand range, the d¹⁸O compositions of the water and
119 the dissolved carbonate species are dominated by the water molecules themselves, which originated as meteoric
120 precipitation. Therefore, the d¹⁸O values of speleothems are generally not significantly influenced by the
121 bedrock isotopic composition ??Harmon, 1979a). Speleothem d¹³C values, however, are significantly influenced
122 by the isotopic composition of the bedrock, and the soil CO₂. The latter is strongly related to the vegetation
123 overlying the cave, and vegetation at the regional scale is strongly correlated to climate.

124 Where the calcite is deposited in equilibrium with the thermodynamic environment, the 18 O/ 16 O ratio in
125 a speleothem may vary with the temperature of the cave or with the isotopic composition of the rainfall (itself a
126 temperature-dependent variable).

127 When speleothems are deposited in isotopic equilibrium with their parent drip waters, two factors cause
128 variations in calcite $\delta^{18}\text{O}$: 1) Variations in cave temperature, 2) Variations in $\delta^{18}\text{O}$ of seepage water and meteoric
129 water respectively, which depend on: a. Changes in the $\delta^{18}\text{O}$ of the oceanic source region (ice volume effect), b.
130 Changes in moisture sources or storm tracks, c. Variations in the proportion of precipitation (e.g., winter/summer
131 precipitation), d. Air temperature, e. Amount of precipitation (amount effect), f. Evaporation in the epikarst
132 and/or within the cave.

133 Where calcite has formed in oxygen isotopic equilibrium with ambient water, the isotopic fractionation between
134 calcite and water, $\delta_{\text{C-W}}$, is dependent on the temperature (O'Neill et al. For speleothems deposited under isotopic
135 equilibrium conditions, oxygen isotopic variations reflect changes in the isotopic composition of meteoric water
136 and can be linked to climate through understanding of the hydrologic cycle.

137 The 13 C/ 12 C ratio is believed to vary with the abundance of 13 C-depleted CO₂ in the soil in a similar
138 manner. Both ratios may be distorted by kinetic processes, chiefly evaporation. I present data on Oxygen
139 and carbon isotopes for all three speleothems (Fig. 4). In Campa Braca speleothem, the Carbon and Oxygen
140 isotopes are overlapping with the Soreq cave speleothems (Bar-Matthews et al., 1997) suggesting a sapropel event.
141 However, the Oxygen isotopes tend through the Sapropel events for all three speleothems (Fig. 4). The 13 C/
142 12 C suggest different vegetation between the three sites

143 **6 VI. Conclusions**

144 All the data presented suggest that in Campania in the past has occurred a sapropel event, with different climatic
145 condition between North and South area. the future research is to point the time when these events have possibly
146 been forming.

147 **7 VII. Acknowledgement**

148 This work was developed during my stay at Università degli Studi di Napoli "Federico II" during my post-doc
149 ??2004) ??2005) ??2006) ??2007). Thanks to Giuseppe Rolandi for hosting in his office. The fund used for this
150 work comes from my wage during the post-doc.

151 **8 Global Journal of Human Social Science**

152 Figure Captions and Table

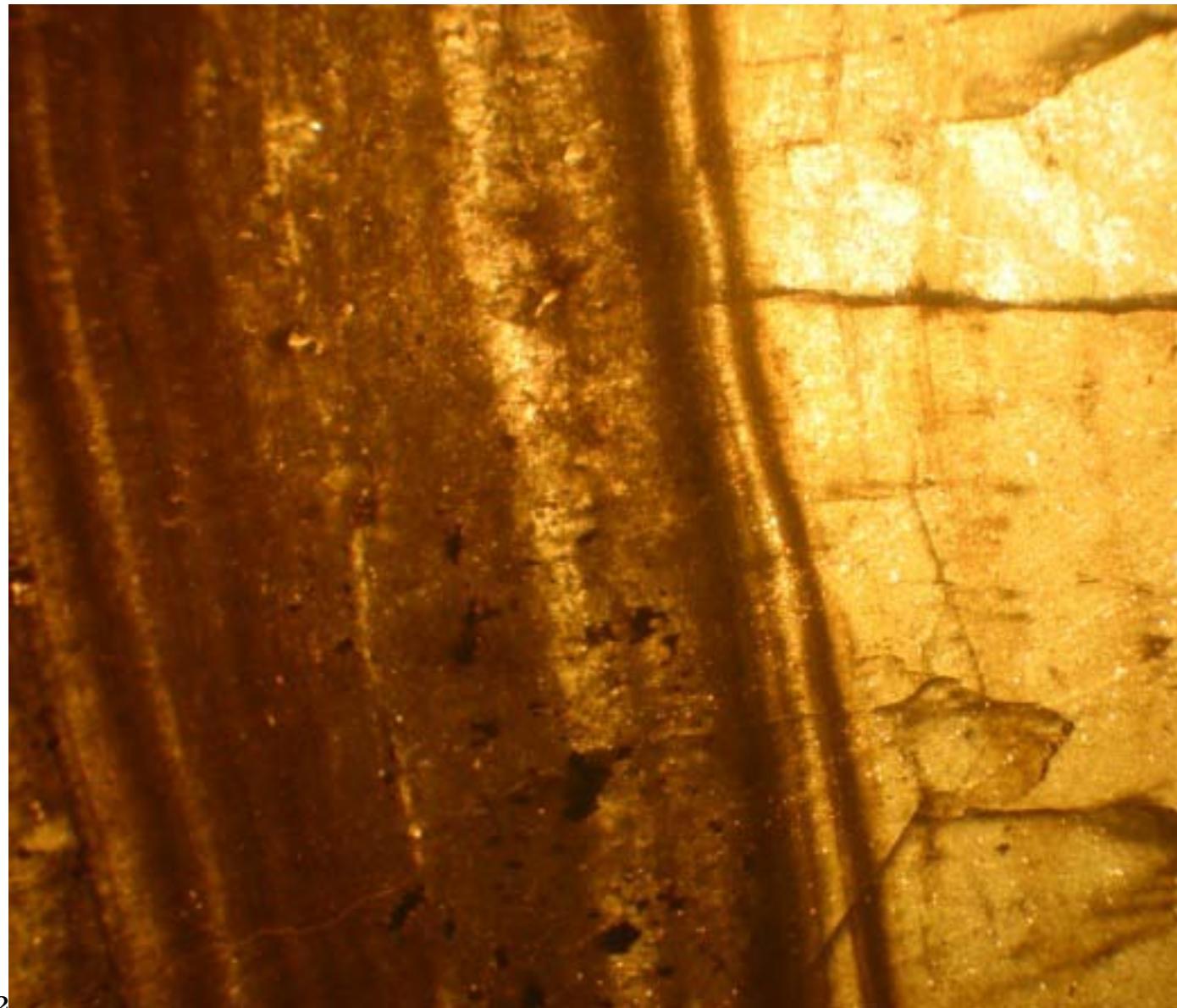

Figure 1:

Figure 2:

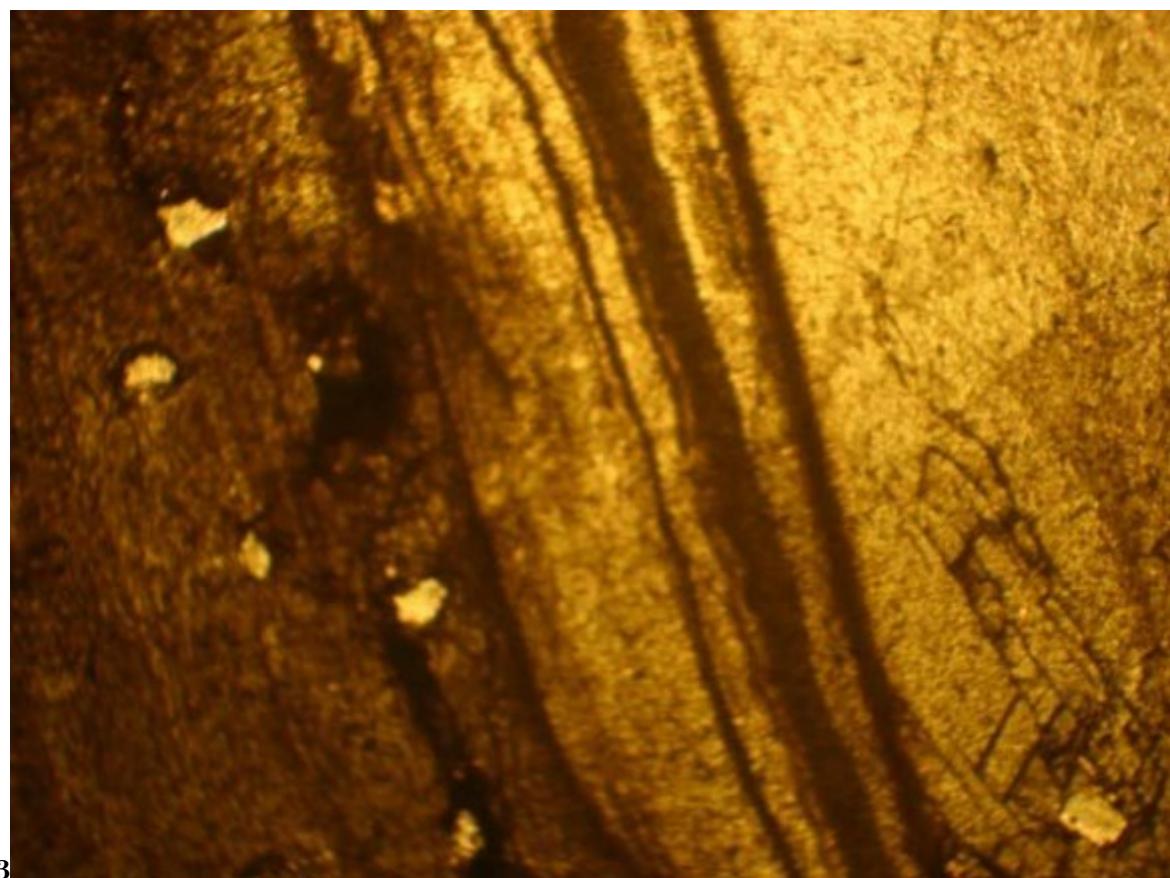


Figure 3: Figure 1 :

2

Figure 4: Figure 2 :

3

Figure 5: Figure 3 :

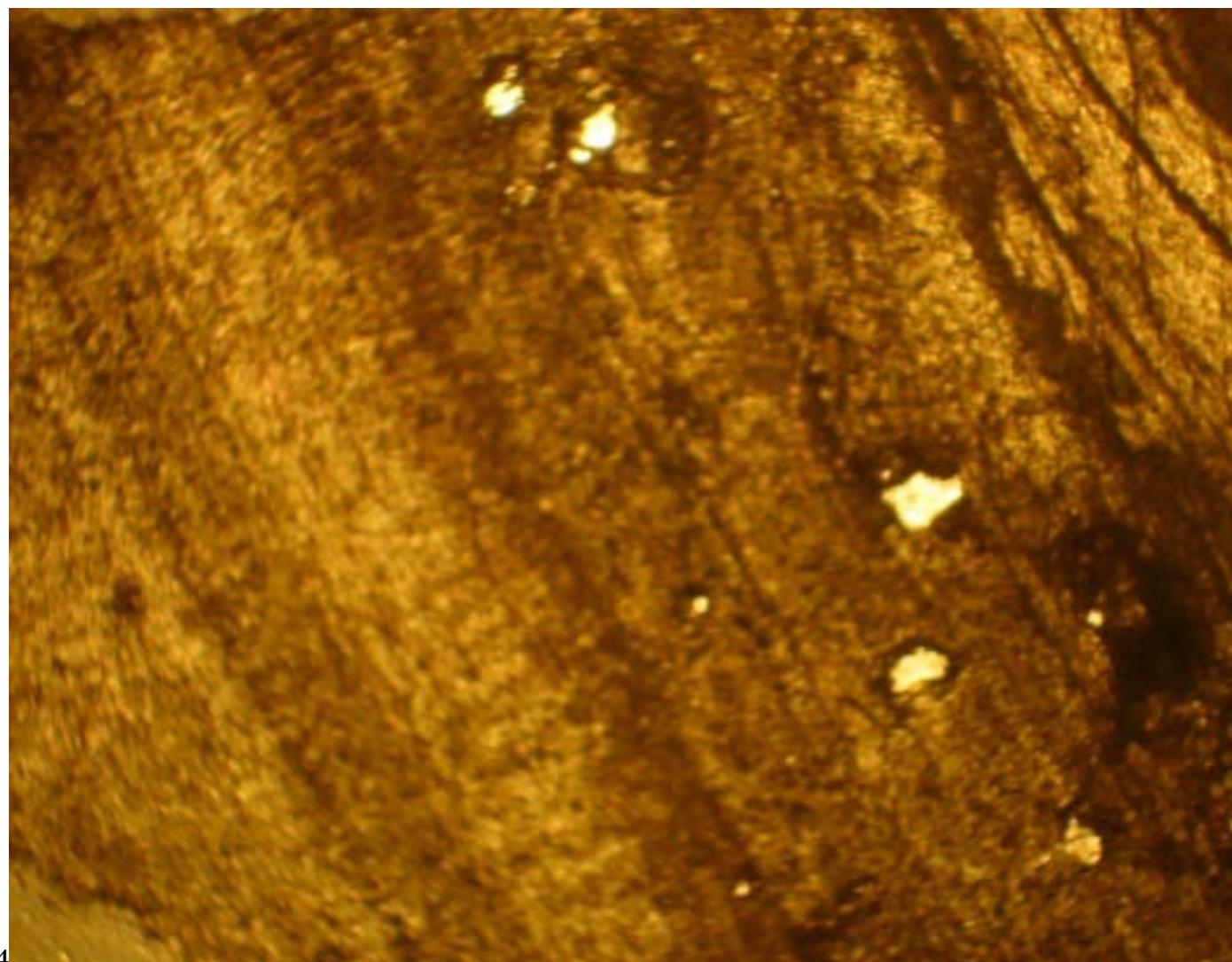


Figure 6: Figure 4 :

1

Samples	SiO ₂	Al ₂ O ₃	MgO	FeO	ZnO	CaO	K ₂ O	Na ₂ O	MnO	TiO ₂	PbO	S	SrO	P ₂ O ₅
CB	1,171	0,233	0,423	4,541	0	48,216	0	0,447	0,019	0,065	0	0,384	0	0
5ANL10														
CB 5A3	0,266	0,472	0,198	1,01	0	97,024	0	0,486	0,063	0,027	0	0,232	0,028	0,1
CB	69,886	1,338	4,605	0,228	0,145	8,514	0,46	13,846	0,126	0,028	0,109	0,007	0,286	0,4
S2A4D														

Figure 7: Table 1 :

- 153 [Petrography] '18 O, ? 13 C in Campanian Region (Southern Italy) Speleothems material (Table 1). research in
154 semiarid regions'. Petrography . *Geoch. Cosmoch. Acta* 60 (2) p. .
- 155 [Dreybrodt ()] *A possible mechanism for growth of calcite speleothems without participation of biogenic carbon*
156 *dioxide: Earth and Planetary Science Letters*, W Dreybrodt . 1982. 58 p. .
- 157 [Harmon ()] 'An isotopic study of groundwater seepage in the central Kentucky karst'. R S Harmon .
158 *WaterResources Research* 1979. 15 p. .
- 159 [Rosenbaum and Sheppard ()] 'An isotopic study of siderites, dolomites and ankerites at high temperatures'. J
160 Rosenbaum , S M Sheppard . *Geochim. Cosmochim. Acta* 1986. 50 p. .
- 161 [Frisia et al. ()] 'Aragonite-calcite relationships in speleotherms (Grotte de Calmouse, France): Environment,
162 fabrics, and carbonate geochemistry'. S Frisia , A Borsato , I J Fairchild , F Mcdermott , E M Selmo . *J.*
163 *Sedimen. Res* 2002. 72 p. .
- 164 [Frisia et al. ()] 'Calcite fabrica, growth mechanisms, and enviroments of formation in speleothems from the
165 Italian Alps and southwestern Ireland'. S Frisia , A Borsato , I J Fairchild , F Mcdermott . *J. Sedimen. Res*
166 2000. 70 p. .
- 167 [Matthews et al. ()] *Carbon and oxygen isotope study of the active water-carbonate system in a arstic Mediter-*
168 *ranean cave: implication for palaeoclimate* Year, Bar Matthews , M Ayalan , A Matthews , A Sass , E Halicz
169 , L . 1996. 2015.
- 170 [Dorale et al. ()] 'Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record
171 from Crevice Cave'. J A Dorale , R L Edwards , E Ito , L A Gonzalez . *Science* 1998. 282 p. .
- 172 [Ayalan et al. ()] 'Climatic conditions during marine oxygen isotope stage 6 in the eastern Medierranean region
173 from the isotopic composition of speleotherm of Soreq Cave'. A Ayalan , M Bar Mathews , A Kaufman .
174 *Israel. Geology* 2002. 30 p. .
- 175 [Wachter and Hayes ()] 'Exchange of oxygen isotopes in carbon-dioxide -phosphoric acid systems'. E Wachter ,
176 J M Hayes . *Chemical Geology* 1985. 52 p. .
- 177 [Hennig et al. ()] G J Hennig , R Grun , K Brunnacker . *Speleothems, travertines and paleoclimates: Quaternary*
178 *Research*, 1983. 20 p. .
- 179 [Mcdermott et al. ()] 'Holocene climate variability in Europe: Evidence from ?18O, textural and extension-rate
180 variations in three speleotherms'. F Mcdermott , S Frisia , Y Huang , A Longinelli , B Spiro , T H E Heaton
181 , C J Hawkesworth , A Borsato , E Keppers , I J Fairchild , K Van Der Borg , S Verheyden , E Selmo .
182 *Quatern. Sci. Rev* 1999. 18 p. .
- 183 [Lauritzen et al. ()] 'Humic substances in speleothem matrix -Paleoclimate significance'. S E Lauritzen , D C
184 Ford , H P Schwarcz . *International Congress of Speleology 9*, 1986. 2 p. .
- 185 [Bard et al. ()] 'Hydrological conditions over the western Mediterranean basin during teh deposition of the cold
186 sapropel 6 (ca. 175 Kyr BP)'. E Bard , G Delaygue , F Rostek , F Antonioli , S Silenzi , D P Schrag . *Earth*
187 *Planet. Sci. Lett* 2002. 202 p. .
- 188 [Mathews et al. ()] 'Late Quaternary paleaeoclimate in the Eastern Mediterranean region from stable isotope
189 analysis of speleotherms at Soreq cave'. Bar Mathews , M Ayalan , A Kaufman , A . *Israel. Quater. Res* 1997.
190 47 p. .
- 191 [Holland et al. ()] 'On some aspects of the chemical evolution of cave waters'. H D Holland , T V Kirsipu , J S
192 Huebner , U M Oxburgh . *Journal of Geology* 1964. 72 p. .
- 193 [Railsback ()] *Patterns in the compositions, properties, and geochemistry of carbonate minerals: Carbonates and*
194 *Evaporites*, v. 14, L B Railsback . 1999. p. .
- 195 [Ayalan et al. ()] 'Rainfallrecharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid
196 region, Israel: ? 18 O and ?D characteristics'. A Ayalan , M Bar Mathews , E Sass . *J. Hydrology* 1998. 207
197 p. .
- 198 [O'neil et al. ()] 'Revised value for the 18 O fractionation factor between H 2 O and CO 2 at 25°C'. J R O'neil ,
199 L H Adami , S Epstein . *Journal of Research U.S.G.S (ed.)* 1975. p. .
- 200 [Huang et al. ()] 'Seasonal variations in Sr, Mg and P in modern speleothems'. Y Huang , I J Fairchild , A
201 Borsato , S Frisia , N J Cassidy , F Mcdermott , C J Hawkesworth . *Italy) Chem. Geol* 2001. Grotta di
202 Ernesto. 175 p. .
- 203 [Mathews et al. ()] 'The Eastern Mediterranean palaeoclimate as reflection of regional events: Soreq cave'. Bar
204 Mathews , M Ayalan , A Kaufman , A Wasserburg , GJ . *Israel. Earth Planet. Sci. Lett* 1999. 166 p. .
- 205 [Mathews et al. ()] 'Timing and hydrogeological conditions of Sapropel events in the Eastern Mediterranean, as
206 evident from speleotherms, Soreq cave'. Bar Mathews , M Ayalan , A Kaufman , A . *Israel. Chem. Geol* 2000.
207 169 p. .
- 208 [Kaufman et al. ()] 'U-Th isotope systematics from the Soreq cave, Israel and climate correlations'. A Kaufman
209 , G J Wasserburg , D Porcelli , M Bar Matthews , A Ayalon , L Halicz . *Earth Planet. Sci. Lett* 1998. 156 p. .