

Comparative Study of Methods for Estimating Evapotranspiration Reference in Paranaíba City, Brazil

Fernando Franca Da Cunha¹, Thiago Ramos Da Silva² and Arthur Ribeiro Ximenes³

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri

Received: 11 September 2015 Accepted: 3 October 2015 Published: 15 October 2015

6

Abstract

This study aimed to was evaluating the performance of 30 methods to estimate reference evapotranspiration (ET₀) to the city of Paranaíba, Brazil. The meteorological data was removed from National Institute of Meteorology, on the period of six year (March 2008 to February 2014). The method taken as standard was Penman-Monteith-FAO56 and the comparison of results was by the coefficients of determination (r^2), coefficients $?a?$ and $?b?$ of the linear regressions, estimate of standard-error, Willmott's index of agreement (d), Pearson correlation coefficient (r), and reliable coefficient (c). The better methods to ET₀ estimate was: Penman-Original, Stephens-Stewart, Priestley-Taylor, Hicks-Hess, Turc, Liquid-Radiation, Thornthwaite-Modified, Temperature-Radiation, Penman-FAO24, Abtew and Camargo. The Camargo method should be preferred when only air temperatures data have. The methods Blaney-Criddle-FAO24 and Hamon should receive calibration for be utilized on the estimate of ET₀ in Paranaíba city.

20

Index terms— agrometeorology. ET₀. evapotranspiration. penman-monteith-FAO56.

1 Introduction

he evapotranspiration is the term used to define the loss of water vapor to the atmosphere by the effect combined of the process of evaporation of water of superficies of soil and the plant and, of transpiration of water by the plant (OLIVEIRA et al., 2011). The study of evapotranspiration is important to the agricultural planning, being increasingly higher the requirement of information about the water requirement of crop to the regional planning and preliminary project. This study becomes more important in regions characterized by the spatial and temporal irregularity of rainfall ??MOURA et al., 2013). utilized in all world. This method requires many input parameters like air temperature, relative humidity, solar radiation and wind speed. However, there are a limited number of meteorological stations to the monitoring of this variable of time. This lack of meteorological data leads to the development of simpler approaches to estimate ET₀ that requiring only a few input parameters. In this context, various methods have been reported in the literature for this purpose.

Although there a lot models to estimate of ET₀, these, however, are utilized in climate and agronomics conditions very different from those that were originally designed and, therefore, is utmost importance evaluate the degree of accuracy of these models before using them to new condition. Given the above, the aim of this work was to evaluate the performance of 30 methods for ET₀ estimate, comparing them with the standard method of Penman-Monteith-FAO56, for the Paranaíba city, Brazil.

2 II.

3 Material and Methods

The meteorological data required for execution of this study were taken from the National Institute of Meteorology (INMET) for the automatic meteorological station in the Paranaíba city, of Mato Grosso do Sul state, Brazil

5 RESULTS AND DISCUSSION

(Latitude 19° 24' 51"S, Longitude 51° 06' 19" W, Altitude 424 m) for six years, from March 2008 to February 2014. The meteorological data used in the research were: average temperature, maximum and minimum (°C); average relative humidity, maximum and minimum (%); average dew point temperature, maximum and minimum (°C); average pressure, maximum and minimum (hPa) wind speed at 10 m height (m s⁻¹) and global radiation (kJ m⁻²). Data were obtained from a meteorological station that consists of the equipment WAWS 301 (Automatic Weather Station) of the Brand VAISALA, whose composition is described as follows: (1) Pyranometer CM6B; (2) Pressure Sensor PMT16A; (3) Thermometer QMH102; (4) Hygrometer QMH102; (5) Pluviometer QMR102 and (6) Anemometer WAA151. The hourly meteorological data were converted to daily data. In order to make the meteorological variables data more homogeneous, verification was made and, subsequently, the eliminated, aiming to obtain more representative data groupings. The methodologies used in this research to estimate the daily reference evapotranspiration (ET0) are presented in Table ???. The wind speed was corrected to a height of 2 m (Equation ??).

(1)

55 where: U_2 = wind speed at 2 m height ($m s^{-1}$); U_z = wind speed at "z" m above ground surface ($m s^{-1}$); and z = height of wind measurements (m). The net radiation was estimated according to the following equations: After obtaining the daily ET0 through different methodologies it was conducted a regression analysis that correlated the ET0 values estimated by empirical equations with the Penman-Monteith-FAO56 method (ALLEN et al., 1998). It was considered the coefficients "a" and "b" of the respective linear regressions and the coefficient of determination (r^2). The best alternative was the one that showed regression coefficient "a" near to zero, coefficient "b" near the unity and higher coefficient of determination, more than 0.60. The precision was measured through the coefficient of determination, which indicates the degree to which the regression explains the sum of the total squared.

64 The models performance analysis was performed by comparing the daily ET0 values obtained by empirical
 65 methods such as the Penman-Monteith-FAO56 (ALLEN et al., 1998). The methodology adopted for comparison
 66 of results was proposed by Allen et al. (1989), and is based on the estimate of standard-error (ESE), calculated
 67 by Equation ???. The best method to estimate ET0 was the one that presented the lowest ESE.

The approximation of ET0 values estimated by the method studied, in relation to the values obtained using the standard method, was obtained by an index called concordance, represented by the letter "d" where its values range from zero, where there is no concordance, to 1, for the perfect concordance. The concordance index (d) was calculated using the Equation 6. To validate the model, it was also obtained the Pearson's correlation coefficient (r) through Equation ?? and the reliable coefficient or performance (c) through Equation ??.

(8) where: $d = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y}) / \sqrt{\sum_{i=1}^n (X_i - \bar{X})^2 \sum_{i=1}^n (Y_i - \bar{Y})^2}$

$r = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \bar{Y})^2}}$

$c = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \bar{Y})^2}}$

According to Cohen (1988), the correlation coefficient (r) can be classified as: "very low" ($r < 0.1$), "low" ($0.1 < r < 0.3$), "moderate" ($0.3 < r < 0.5$); "high" ($0.5 < r < 0.7$); "very high" ($0.7 < r < 0.9$); and "almost perfect" ($r > 0.9$).

The reliable coefficient or performance, proposed by Camargo e Sentelhas (1997), is interpreted in accordance with authors such as: "great" ($c > 0.85$); "very good" ($0.76 < c < 0.85$); "good" ($0.66 < c < 0.75$), "average" ($0.61 < c < 0.65$), "badly" ($0.51 < c < 0.60$), "not good" ($0.41 < c < 0.50$) and "terrible" ($c < 0.40$).

89 4 III.

90 5 Results and Discussion

91 On Figures 1 and 2 are shown the graphs and the resulting linear regression models considering the methods to
 92 estimates of reference evapotranspiration (ET0) utilized on the analysis having the Penman-Monteith method
 93 standardized by FAO as standard. It is observed, based on regression straight, that Blaney-Criddle-FAO24
 94 method underestimated the ET0 values only when the Penman-Monteith-FAO56 method was accused estimates
 95 exceeding 4.5 mm day $^{-1}$. The Camargo, Hamon, Abtew and Global-Radiation methods underestimated
 96 ET0 when the values of Penman-Monteith-FAO56 were accused estimates above 3.0 mm day $^{-1}$ and Blaney-
 97 Morin above 1.5 mm dia $^{-1}$. The methods of Penman-Original, Priestley-Taylor, Hicks-Hess, Lungeon, Turc,
 98 Liquid-Radiation, Stephens-Stewart e Thornthwaite-Modified accused good estimate of ET0, presenting curves
 99 of regression near relation of 1:1. Of these, the first four methods deserve spotlight, because presented the
 100 regression coefficients "a" next to zero and the coefficient "b" near to unit. Have other methods, independent of
 101 evapotranspirometrical demand, presenting higher regressions coefficients and overestimated the values of ET0
 102 in relation to standard method.

103 It is observed also on the Figures 1 and 2 that the methods that presented the better adjustment, according
104 with the determination coefficient (r^2), were the methods of Penman-Original ($r^2 = 0.9949$) and Penman-FAO24
105 ($r^2 = 0.9875$), that utilize the same input parameters that standard method. However, it is observed that the
106 Penman-FAO24 overestimated the ET0 (Figure 1), corroborating with Barros et al. (2009). These authors
107 affirmed that the simple adoption of r^2 as the only criterion of definition of quality of methods is not appropriate,
108 once that this method does not establish the type and the magnitude of the differences between a standard value
109 and a provided value by estimate models.

On the ¹

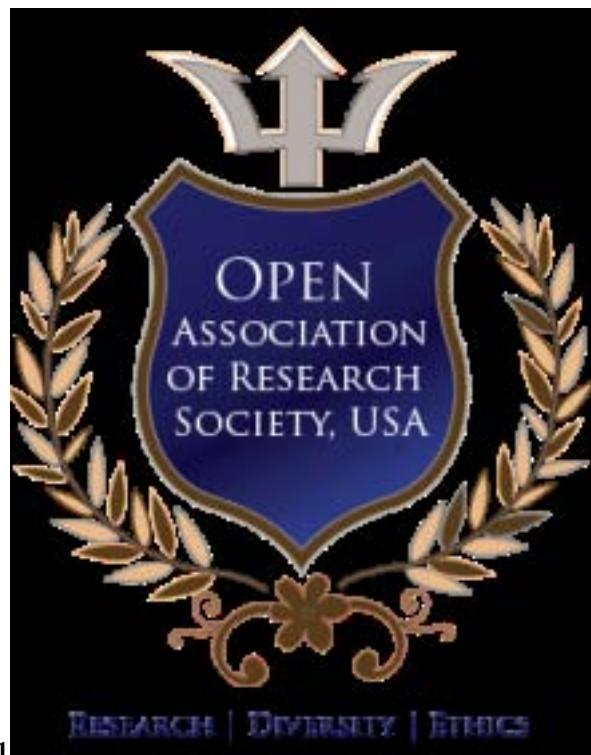


Figure 1: Table 1 :

110

5 RESULTS AND DISCUSSION

Methodology	Equation
Penman-Monteith-FAO56	$ET0 = \frac{0.408 \Delta (Rn - G) + \gamma \frac{900}{t+273} U_2 \frac{(e_s - e)}{10}}{\Delta + \gamma (1 + 0.34 U_2)}$
Penman-Original	$ET0 = \frac{\Delta}{\Delta + \gamma} 0.408 (Rn - G) + \frac{\gamma}{\Delta + \gamma} 0.26 \left(1 + \frac{U_2}{160}\right) (e_s - e)$
Penman-FAO24	$ET0 = c \left[\frac{\Delta}{\Delta + \gamma} 0.408 Rn + \frac{\gamma}{\Delta + \gamma} 0.27 (1 + 0.864 U_2) (e_s - e) \right]$
Blaney-Criddle-FAO24	$ET0 = k \ p (0.457 \ t + 8.13)$
Radiation-FAO24	$ET0 = -0.3 + k \left(\frac{\Delta}{\Delta + \gamma} R_{sE} \right)$
Makkink	$ET0 = R_{sE} \left(\frac{\Delta}{\Delta + \gamma} \right) + 0.12$
Hargreaves-Samani	$ET0 = 0.0023 \ Ra_E (t_{\max} - t_{\min})^{0.5} (t + 17.8)$
Hargreaves-Original	$ET0 = 0.135 \frac{R_s}{\lambda} (t + 17.8)$
Priestley-Taylor	$ET0 = 0.5143 \frac{\Delta}{\Delta + \gamma} (Rn - G)$
Jensen-Haise	$ET0 = R_{sE} (0.025 \ t + 0.08)$
Camargo	$ET0 = 0.01 \ Ra_E \ t$
Linaore	$ET0 = \frac{500 (t + 0.006z)}{100 - \phi} + 15 (t - t_d) / (80 - t)$
Hamon	$ET0 = 0.55 \left(\frac{N}{12} \right)^2 \left(\frac{4.95 \exp^{-0.062t}}{100} \right) 25.4$
Ivanov	$ET0 = 0.006 (25 + t)^2 \left(1 - \frac{RH}{100} \right)$
Kharrufa	$ET0 = 0.34 \ p \ t^{1.3}$
Garcia-Lopez	$ET0 = 1.21 \ 10^{\left(\frac{7.45z}{243.7+t}\right)} (1 - 0.01 \ RH) + 0.21 \ t - 2.30$
Blaney-Morin	$ET0 = p (0.457 \ t + 8.13) (1.14 - 0.01 \ RH)$
Turc	$ET0 = \frac{0.013 \ t}{t + 15} (23.9 \ R_s + 50)$
McCloud	$ET0 = 0.254 \ 1.07^{(1.8z)}$
McGuiness-Bordne	$ET0 = \frac{Ra}{\lambda} \frac{t + 5}{68}$
Romanenko	$ET0 = 4.5 \left(1 + \frac{t}{25} \right)^2 \left(1 - \frac{e}{e_s} \right)$
Lungeon	$ET0 = 0.2985 (e_s - e) \left(\frac{273 + t}{273} \right) \left(\frac{760}{P - e_s} \right)$
Abtew	$ET0 = \frac{0.53}{\lambda} R_s (1 - \alpha)$

Figure 2:

2

Method	ET0	ESE	d	r	c	Performance
Penman-Monteith-FAO56	3.5356	-				
Penman-Original	4.0383	0.5193	0.9561	0.9976	0.9537	Great
Penman-FAO24	4.9544	1.5231	0.7771	0.9938	0.7723	Very good
Blaney-Criddle-FAO24	3.9843	0.8298	0.8132	0.8708	0.7082	Good
Radiation-FAO24	4.8380	1.5501	0.7620	0.9090	0.6926	Good
Makkink	5.8910	2.4928	0.5871	0.9074	0.5327	Badly
Hargreaves-Samani	4.7963	1.3888	0.7334	0.8969	0.6578	Average
Hargreaves-Original	4.4629	1.0834	0.8397	0.9270	0.7784	Very good
Priestley-Taylor	3.4741	0.6732	0.9223	0.9023	0.8321	Very good
Jensen-Haise	5.3871	2.0264	0.6775	0.9398	0.6368	Average
Camargo	3.4081	0.7198	0.8726	0.8785	0.7665	Very good
Linacre	5.0218	1.8599	0.6082	0.7441	0.4526	Not good
Hamon	3.1756	0.7601	0.8553	0.8858	0.7576	Good
Ivanov	4.8086	2.2559	0.5808	0.7226	0.4197	Not good
Kharrufa	5.8654	2.4366	0.5397	0.8751	0.4723	Not good
Garcia-Lopez	4.6547	1.4324	0.7279	0.8218	0.5981	Badly
Blaney-Morin	2.4566	1.3738	0.6492	0.7861	0.5104	Badly
Turc	4.0649	0.7250	0.8995	0.9167	0.8245	Very good
McCloud	5.0226	1.7827	0.6883	0.8568	0.5897	Badly
McGuiness-Bordne	6.0635	2.7059	0.5174	0.8759	0.4531	Not good
Romanenko	5.7703	3.1736	0.4755	0.7226	0.3436	Terrible
Lungeon	3.6041	1.4451	0.7318	0.7413	0.5425	Badly
Abtew	3.1932	0.7030	0.8769	0.8783	0.7702	Very good
Hicks-Hess	3.5058	0.6748	0.9216	0.9010	0.8304	Very good
Global-Radiation	3.0972	0.8495	0.7753	0.8760	0.6792	Good
Liquid-Radiation	3.3699	0.6769	0.9138	0.8941	0.8170	Very good
Temperature-Radiation	4.4124	1.0841	0.8455	0.9193	0.7773	Very good
Stephens-Stewart	3.3494	0.4699	0.9558	0.9379	0.8965	Great
Tanner-Pelton	4.2615	1.1090	0.8355	0.8933	0.7463	Good
Thornthwaite-Modified	3.5698	0.7316	0.9064	0.8757	0.7938	Very good
Thornthwaite	4.9645	1.9540	0.6402	0.7773	0.4977	Not good

Figure 3: Table 2 :

5 RESULTS AND DISCUSSION

111 .1 Year 2015

112 The methods Penman-FAO24, Hargreaves-Original, Turc, Abtew, Hicks-Hess, Liquid-Radiation, Temperature-
 113 Radiation received performance "very good", according ??amargo e Sentelhas (1997). This methods can be
 114 utilized to estimating of ET0 in Paranaíba city but present the inconvenient dependence of global radiation to
 115 your calculate, as reported previously to the method of Stephens-Stewart.

116 Despite the Penman-FAO24 method have presented r^2 satisfactory, your value of Willmott's concordance not
 117 obtained the same success, making with your performance were classified only as "very good". These result can
 118 be explained by the fact of the values estimated by Penman-FAO24 have overestimated appreciably the ET0 in
 119 relation to standard method in moments of high rate evapotranspirometrical (Figure ??), with this, in comparison
 120 between these point values of ET0, there was a reduction in the value of concordance index.

121 The methods Priestley-Taylor, Camargo e Thornthwaite-Modified also received performance "very good",
 122 according Camargo e Sentelhas (1967). The Priestley-Taylor method was development to estimate of evaporation
 123 of saturated surfaces in a not saturated atmosphere, that is the normal condition of nature ??013) in the state
 124 of Pernambuco state, Brazil also observed good estimates of ET0 by the Camargo method. To be quite simple,
 125 requiring only medium temperature data, it is expected that the Camargo methodology to be used by those is
 126 producers devoid of complete weather stations. The Thornthwaite-Modified method can be used in the study
 127 area. Among all methods studied in this research, the equations Thornthwaite-Modified along with Thornthwaite
 128 who received "bad" performance are the only physical equations.

129 The methods Blaney-Criddle-FAO24, Radiation-FAO24, Hamon, Global-Radiation e Tanner-Pelton received
 130 performance "good" and can be utilized with restriction. The Blaney-Criddle-FAO24 methods and Hamon
 131 presented simplicity in your calculate, and only the air temperature as input parameter measured. Thus,
 132 it will be able to obtain calibration from this methods for those producers without condition of acquire a
 133 meteorological station complete can obtain estimate reliable of ET0 to the proper irrigation management, using
 134 only a thermometer.

135 The other evaluated methods received performance "Not good", "badly" or "terrible" performance and should
 136 not be used to estimate ET0 in Paranaíba city.

137 IV.

138 .2 Conclusions

139 In order, the best methods for estimating evapotranspiration reference to Paranaíba city, Brazil are: Penman-
 140 Original, Stephens-Stewart, Priestley-Taylor, Hicks-Hess, Turc, Liquid-Radiation, Thornthwaite-Modified,
 141 Temperature-Radiation, Penman-FAO24, Abtew and Camargo.

142 When have only temperature data, it is recommended using the method of Camargo to estimate reference
 143 evapotranspiration in Paranaíba city.

144 The Blaney-Criddle-FAO24 and Hamon methods after receiving calibration can be used to estimate reference
 145 evapotranspiration in Paranaíba city.

146 [Moura] , A R Moura .

147 [Montenegro] , S M G L Montenegro .

148 [Barros et al. ()] 'Avaliação da evapotranspiração de referência na região de Seropédica, Rio de Janeiro, utilizando
 149 lisímetro de pesagem e modelos matemáticos'. V R Barros , A P Souza , D C Fonseca , L B Silva . *Revista*
 150 *Brasileira de Ciências Agrárias* 2009. (2) p. .

151 [Camargo and Sentelhas ()] 'Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração
 152 potencial no estado de São Paulo'. A P Camargo , P C Sentelhas . *Revista Brasileira de Agrometeorologia*
 153 1997. (1) p. .

154 [Allen et al. ()] *Crop evapotranspiration: Guidelines for computing crop water requirements*. Rome: FAO, R G
 155 Allen , L S Pereira , D Raes , M Smith . 1998. 56 p. 300. (Irrigation and Drainage Paper)

156 [Oliveira et al. ()] 'Desempenho de métodos de estimativa da evapotranspiração de referência baseadas na
 157 temperatura do ar, em Aquidauana-MS'. G Q Oliveira , A S Lopes , L H Jung , P L Nagel , D M Bertoli .
 158 *Revista Brasileira de Agricultura Irrigada* 2011. (5) p. .

159 [Antonino et al. ()] 'Evapotranspiração de referência baseada em métodos empíricos em bacia experimental no
 160 Estado de Pernambuco'. A C D Antonino , J R G Azevedo , B B Silva , L M Oliveira . *Revista Brasileira de*
 161 *Meteorologia* 2013. 28 (2) p. .

162 [Kisi et al. ()] 'Generalized neurofuzzy models for estimating daily pan evaporation values from weather data'.
 163 O Kisi , Ali , A P Baba , J Shiri . *Journal of Irrigation and Drainage Engineering* 2012. 138 (4) p. .

164 [Kisi ()] 'Modeling monthly evaporation using two different neural computing techniques'. O Kisi . *Irrigation*
 165 *Science* 2009. 29 (2) p. .

166 [Cavalcante Jr et al. ()] 'Métodos de estimativa da evapotranspiração de referência para as condições do
 167 semiárido Nordestino'. E G Cavalcante Jr , A D Oliveira , B M Almeida , J Sobrinho . *Semina: Ciências*
 168 *Agrárias* 2011. p. .

5 RESULTS AND DISCUSSION

169 [Cunha et al. ()] *Métodos para estimativa da evapotranspiração de referência para Chapadão do Sul-MS.*
170 *Engenharia na Agricultura*, F F Cunha , F F Magalhães , M A Castro . 2013. Viçosa. p. .

171 [Allen et al. ()] ‘Operational estimates of reference evapotranspiration’. R G Allen , M E Jensen , J Wright , R
172 D Burman . *Agronomy Journal* 1989. (4) p. .

173 [Sahoo et al. ()] ‘Standardization of reference evapotranspiration models for a sub-humid Valley Rangeland of
174 Eastern Himalayas’. B Sahoo , I Walling , B C Deka , B P Bhatt . *Journal of Irrigation and Drainage
175 Engineering* 2012. 138 (10) p. .

176 [Cohen ()] *Statistical power analysis for the behavioral sciences*, J Cohen . 1988. New Jersey: Lawrence Erlbaum.
177 p. 569.