

<sup>1</sup> Spatial Economy Approach and Development Disparity (Study  
<sup>2</sup> of Heterogeneity in the Municipalities of Saida City -Algeria-)

<sup>3</sup> Dr. Souar Youcef<sup>1</sup> and Idrissi Mokhtar<sup>2</sup>

<sup>4</sup> <sup>1</sup> Moulay Tahar university Saida

<sup>5</sup> *Received: 8 December 2013 Accepted: 5 January 2014 Published: 15 January 2014*

<sup>6</sup>

---

<sup>7</sup> **Abstract**

<sup>8</sup> The study of mechanisms of spatial convergence, and their impact on achieving spatial  
<sup>9</sup> development is necessary to find out the strengths and weaknesses in the construction of local  
<sup>10</sup> economies and which has become more of a condition to reduce disparities and spatial  
<sup>11</sup> differences within the same geographic structure, in order to help and guide public economic  
<sup>12</sup> and social policies for using development possibilities and resources more effectively. we will  
<sup>13</sup> use a panel data analysis, to test the size of homogeneity between geographic regions and their  
<sup>14</sup> importance in measuring levels of homogeneity or heterogeneity according to this study of  
<sup>15</sup> unemployment and the spatial distribution of wealth ratios in municipalities ,The results of  
<sup>16</sup> this analysis indicates the presence of heterogeneity among municipalities of saida regions,  
<sup>17</sup> which proves the existence of spatial disparity in development levels.

<sup>18</sup>

---

<sup>19</sup> **Index terms**— spatial disparity, spatial convergence, spatial heterogeneity, PCA clusters, panel data.

<sup>20</sup> **1 I. Introduction**

<sup>21</sup> one of the economic development problems in modern economies is the evolution of disparity and spatial variations  
<sup>22</sup> in development levels, which is becoming a feature of the economic structure of developed countries as well as  
<sup>23</sup> countries that didn't achieve growth and economic development. It is seem in the form of proliferation of poverty  
<sup>24</sup> forms and the emergence of social exclusion, in contrast of what world is witnessing of technological and cognitive  
<sup>25</sup> revolution.

<sup>26</sup> The override of traditional spatial economy concept based on the cost of transport and distance, and abundance  
<sup>27</sup> of natural resources provided to the poor area's opportunities to build their economic structure, which is  
<sup>28</sup> developmental approach to assert an evolution and achieve economic efficiency in the creation of production  
<sup>29</sup> dynamics. Some applied experiences in countries suggest to impel an excel progress that economic productivity  
<sup>30</sup> activities, in some places that are characterized by the scarcity of natural resources like silicon Valley in USA and  
<sup>31</sup> in India, as well as the spatial development of mountain regions in China, which intended to align economic and  
<sup>32</sup> social activities through the development of capabilities and capacities, which aims to create a spatial gravity  
<sup>33</sup> investments areas. in addition to the efficient use of resources and reduce spatial disparities and spatial variation  
<sup>34</sup> and creating a kind of homogeneity in the development levels.

<sup>35</sup> The study of spatial heterogeneity could help policy makers to guide development work by identifying the  
<sup>36</sup> degree of symmetry and homogeneity in spatial areas specificities and therefore directing and managing economic  
<sup>37</sup> and social public policies more effectively.

<sup>38</sup> Our empirical analysis thus investigates the heterogeneity between municipalities in saida city, which details  
<sup>39</sup> the differences and spatial variations, in order to see the convergence of the space between these municipalities  
<sup>40</sup> due to its importance in the development through the direction of public policy, as required by the spatial  
<sup>41</sup> characteristics of geographic areas, away from dependence on policy. stereotypes (public) that does not take into  
<sup>42</sup> account the specificity of each region.

### 3 III. RESEARCH METHODOLOGY

---

## 43 2 II. Litterateur Review

44 The aim of this section is to illustrate important results from several studies about spatial heterogeneity and their  
45 impact in development process, in first spatial heterogeneity which is related to the differentiation of variables  
46 and behaviors in space also it is one of spatial econometric that helps study spatial convergence or divergence  
47 between area in this space like the studies that deals with spatial heterogeneity (Catarina Cardoso & al, 2011)  
48 this study aims to examine the importance of human capital in the process of convergence between economic  
49 regions, The researcher used Spatial Econometrics models ,While spatial systems can be observed in groups  
50 convergent include the differences between them and this convergence incarnated in two types of convergence  
51 absolute and conditional, occurs mainly in the peripheral group of regions, while human capital represented by  
52 the average years of total, secondary and higher education plays a positive role only in the Core club of the  
53 richest regions but not in the Periphery, which suggests that a certain level of economic development is required  
54 to achieve a positive effect of human capital.

55 (Marie-Estelle BINET& al, 2013) This study aims to analyze the determinants of behavior entrepreneurship  
56 creation including spatial heterogeneity by using dynamic panel data model to explain the number of firms  
57 created in each region. The results of estimation in this study indicate that any attempt to reduce regional  
58 unemployment must address regional labour market specificities. and also highlight the role of decentralized  
59 territorial collectivities in implementing specific regional policies.

60 (Julia'n ??amajo & al.2008).In this paper, Researchers studied the importance of spatial heterogeneity and  
61 dependence to the European regions problems by using the  $\gamma$  -convergence process, to explain Heterogeneity  
62 and spatial autocorrelation who has impact on convergence between regions. in addition to evaluating the role  
63 of spatial cohesion to achieve real regional convergence according to European standards. The results figure out  
64 the importance of spatial effects that can give a new perceptions regarding to the European regional convergence  
65 policies.

66 The area in the EU is characterized by specificities. through the presence of disparity in income levels,  
67 geographical location and convergence that contributes to the interpretation of economic regions growth model  
68 in European Union.

69 (Cem Ertur et Wilfried ??och,2004) This study is to analyze regional inequalities by using spatial Exploratory  
70 Data Analysis that allows to show the relationship between the level of wealth of a region with its location and  
71 the level of average wealth neighboring regions , This research concluded that measuring and addressing regional  
72 inequalities in the future Union European appears much more complex than the simple mechanism of movement  
73 of arithmetical mean and European policy should also take into account the geographic location and structure  
74 of neighboring of each European regions.

75 (Julie Le Gallo, 2000) presented in their study the different methods to modeling the phenomenon of spatial  
76 autocorrelation and spatial heterogeneity and also presented the estimation and inference Procedures adapted  
77 to the models incorporating these two effects. This study was a purely Empirical, and Concluded that the  
78 simultaneous presence of spatial autocorrelation and spatial heterogeneity in a model requires estimation methods  
79 and inference adapted .

80 In other study (Julie Le ??allo.2004) which focused on the specificities of quantitative methods for study spatial  
81 heterogeneity and spatial autocorrelation. Also to explain at what extent can change traditional statistical tests  
82 one should take into account the effect of autocorrelation of spatial data, which are defined as non-independent.  
83 This study concluded that the impact of autocorrelation and heterogeneity at the same time several times due to  
84 the large number of links that unifying the two phenomena that require estimation and inference more convenient  
85 than traditional statistical tests, which can't be applied in case where there are two effects (spatial autocorrelation  
86 and spatial heterogeneity).

## 87 3 III. Research Methodology

88 In this section, we will in first introduce the data selected for empirical analysis, then we will develop the empirical  
89 methodology (PCA, Clusters, Panel data) to studying the heterogeneity from the spatial data for some economic  
90 variables to see homogeneity or heterogeneity between these geographical areas, this method has great importance  
91 in studying the unobserved heterogeneity.

92 Principal component analysis (PCA) is a method for detecting patterns in data and to emphasize similarities  
93 and differences in variables. PCA reduces the dimension of the data, that is, attempts to reduce the number of  
94 variables to analyze without much loss of information.

95 Cluster analysis is a numerical technique that is suitable for classifying a sample of heterogeneous observation  
96 in a limited number of groups, each of which is internally homogeneous in terms of the similarities between the  
97 observation that Comprise it. (Sergio Tezanos Vázquez & al, 2012).

98 The Objectives of homogeneity tests tries to find out how specification (homogeneity and heterogeneity)  
99 unobserved before determining the panel data structure. in economic terms, these tests indicate that we can  
100 assume that theoretical models to study economic phenomena are homogeneous for observation study. or there  
101 are a specificities that characterized each observation study (Christophe HURLIN), It has been suggested by  
102 ??siao (1986) to make this test on the frame of sequential steps tested according to the following hypothesis  
103 (Régis Bourbonnais, 2011): The variables That we have used to build regression model concerning the study Of  
104 Spatial unemployment between the municipalities (16 municipalities of saida city) and has been estimated this

105 model which combines between some independent variables wealth variable ratio (RR),unemployment variable  
106 (TC), total population in each municipality (POP).

## 107 **4 IV. Empirical Modeling Result a) Principal component anal- 108 ysis**

109 Before our application of the PCA method, In a first stage, the PCA method is applied to the variables. The  
110 (KMO=0697) measure and Bartlett's Test of Sphericity suggest that the application of the PCA method provides  
111 good results for this data analysis. the first component accounts for 72,866% of the variance of the data. second  
112 explains 17.95% of the total variance and the third explains 7.166%(Table01),in total of accumulated variance  
113 97.986%. almost similar to results of the Principal component analysis as sited above, we will to make sure for  
114 this result, We try to examine the spatial heterogeneity between municipalities Proceeding from application of  
115 homogeneity tests by studying homogeneity of Unemployment across the municipalities .which reflect indirectly  
116 the nature and size of economic activity in the municipalities.

## 117 **5 c) Models characterization tests**

118 These tests are intended to find out how specialization (homogeneity and heterogeneity) that are unclear before  
119 you select structure of panel Data ( panel structure ).

## 120 **6 i. First Model**

121 The first model is to study the phenomenon of unemployment as a variable depends on wealth ratio variable  
122 (RR), and total population of each municipality (POP) and we can write the model as The Fisher statistical  
123 value is given Under Hypothesis as sited above :?? 1 = (SCR c1 ? SCR)/(N ? 1)(k + 1) SCR/?N × T ? N(k +  
1)?

124 We reject the hypothesis H 0 1 if :?? 1 > ?? (??.(??1)(??+1).?N×T?N(k+1)?

125 Through the estimation of global model, we find the value of Fisher under Hypothesis as follows:

126 Estimation of partial models to calculate the residual sum of squares for each model is given by : ? SCR ?  
127 SCR=5828, 34717 Through the use of Fisher statistical value, we obtain : The fisher statistique is given with  
128 following form :?? 1 = (24990?? 2 = (SCR c2 ? SCR)/((N ? 1) × k) SCR/?N × T ? N(k + 1)? the hypothesis  
129 ?? 0 2 is rejected if ?? 2 > ?? (??.(??1)×??).?N×T?N(k+1)?

130 Through the estimation of fixed effects model, we find the value of Fisher as follows: therefore the hypothesis  
131 H20 was rejected and there is a total heterogeneity.

132 From this result, we can say that there is heterogeneity between observation studied by the unemployment  
133 rate model and their explanatory variables.

## 135 **7 ii. Second Model**

136 The second model is to study the phenomenon of the unemployment rate as a variable dependent variable wealth  
137 ratio (RR), of various municipalities and this second is to try to eliminate the effect of population on the change in  
138 the unemployment rate model Where Where t=1 , : .?.13 , Time period, From this result, we can say that there  
139 is heterogeneity between observation studied by the unemployment rate model and their explanatory variables.

140 on the basis of the foregoing analysis noted there is heterogeneity between different spatial data (spatial  
141 heterogeneity), This heterogeneity refers in mathematical terms to differences in the coefficient models studied,  
142 which leads to the inability to estimate individual models has the fixed effects and random effects models also  
143 because the data does not have a panel structure (the panel structure) but in economic Table ?? : Fixed-  
144 Effect model Estimation terms refers to differences in economic and social spatial data, which is why there is  
145 a difference between the municipalities of saida city. Which must be brought to public development policies as  
146 spatial characteristics of each municipality far from typical and overall development programs.

## 147 **8 V. Conclusion**

148 The effectiveness to achieve profitability of economic activities and their spatial distribution requires the study of  
149 the characteristics and components of geospatial areas that must be taken into account in the spatial construction  
150 of economic structure , in order to create spatial interaction among poor areas and areas that have the potential  
151 (natural and economic)resources that can distinguish and increase their competitiveness in the context of reducing  
152 development disparity and fight against economic and social inequality.

153 this study of heterogeneity help to explain the behavior of economic variables in space to help decision makers  
154 to guide productive development works and investment that leads to the efficient allocation of resources to ensure  
155 sustainability.

## 156 **9 VI. The Study Recommendations**

157 Through of this article that we have written by studying of spatial heterogeneity, which is reflected in economic  
158 realities of the existence of inequality and contrast in levels of economic and social development, for this and we

## 9 VI. THE STUDY RECOMMENDATIONS

---

159 decided to make recommendations that include: ? Necessity to Dependence on a proposed local development  
160 programs take into account specificities of each region (municipality) Apart from the standard and typical  
161 strategies adopted in most municipalities in Algeria, which explain why Algerians did not attain the objectives of  
162 the local development programs. ? Achieving spatial development requires the use of spatial planning of economic,  
163 social and human resources with more effective coordination among the parties to the development work. ? Create  
164 some sort of balance between urban and rural areas in the distribution of productive economic activities and  
165 investment, which could help reduce disparities in development and poverty reduction because generally rural  
166 areas are often a concentrations whith higher levels of poverty and exclusion. ? give importance to quantitative  
167 methods in the study of economic phenomena (the distribution of economic activities in the geographical areas,  
168 homogeneity and spatial heterogeneity, spatial interaction ... etc) as tools for decision making to achieve growth  
and spatial economic and social development. <sup>1 2 3</sup>




Figure 1: Figure 1 :

169

---

<sup>1</sup>© 2014 Global Journals Inc. (US)

<sup>2</sup>© 2014 Global Journals Inc. (US) Spatial Economy Approach and Development Disparity (Study of Heterogeneity in the Municipalities of Saida City -Algeria-)

<sup>3</sup>Spatial Economy Approach and Development Disparity (Study of Heterogeneity in the Municipalities of Saida City -Algeria-)

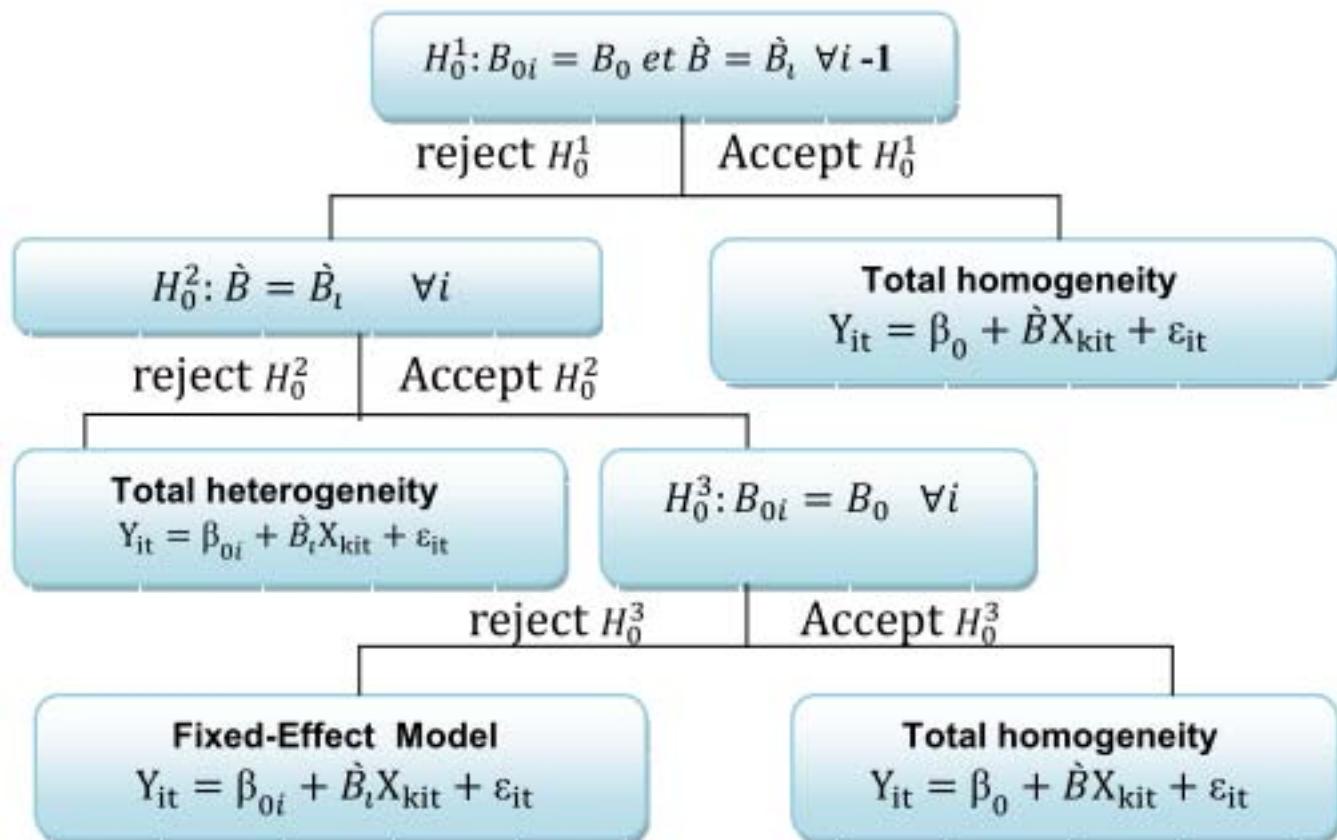



Figure 2:

$$31 \quad Tc_{it} = b_{0i} + b_{1i}RR_{it} + b_{2i}POP_{it} + \varepsilon_{it} [1]$$

Figure 3: 3 Volume?? 1 >

## 9 VI. THE STUDY RECOMMENDATIONS

---

| Fixed-Effect Model Estimation         |             |                       |             |        |
|---------------------------------------|-------------|-----------------------|-------------|--------|
| Variable                              | Coefficient | Std. Error            | t-Statistic | Prob.  |
| C                                     | 63.61133    | 6.651333              | 9.563698    | 0.0000 |
| RR?                                   | -0.005513   | 0.000807              | -6.833050   | 0.0000 |
| POP?                                  | -0.001783   | 0.000343              | -5.192000   | 0.0000 |
| Fixed Effects (Cross)                 |             |                       |             |        |
| _1-C                                  | 205.7143    |                       |             |        |
| _2-C                                  | -28.13207   |                       |             |        |
| _3-C                                  | 14.50327    |                       |             |        |
| _4-C                                  | 8.279352    |                       |             |        |
| _5-C                                  | -19.47796   |                       |             |        |
| _6-C                                  | -5.116163   |                       |             |        |
| _7-C                                  | -23.93310   |                       |             |        |
| _8-C                                  | -28.53805   |                       |             |        |
| _9-C                                  | -0.043113   |                       |             |        |
| _10-C                                 | -5.083638   |                       |             |        |
| _11-C                                 | -32.17850   |                       |             |        |
| _12-C                                 | -12.84840   |                       |             |        |
| _13-C                                 | -29.37240   |                       |             |        |
| _14-C                                 | -0.843092   |                       |             |        |
| _15-C                                 | -25.51670   |                       |             |        |
| _16-C                                 | -17.41371   |                       |             |        |
| Effects Specification                 |             |                       |             |        |
| Cross-section fixed (dummy variables) |             |                       |             |        |
| R-squared                             | 0.489314    | Mean dependent var    | 21.8173     |        |
| Adjusted R-squared                    | 0.443621    | S.D. dependent var    | 12.9079     |        |
| S.E. of regression                    | 9.628104    | Akaike info criterion | 7.44981     |        |
| Sum squared resid                     | 17613.07    | Schwarz criterion     | 7.73863     |        |
| Log likelihood                        | -756.7805   | Hannan-Quinn criter.  | 7.56659     |        |
| F-statistic                           | 10.70875    | Durbin-Watson stat    | 0.39557     |        |
| Prob(F-statistic)                     | 0.000000    |                       |             |        |

3

Figure 4: 3 Volume

$$TC_{it} = b_{0i} + b_{1i} RR_{it} + \varepsilon_{it} \quad [2]$$

Figure 5:

---

**1**

|                                                                                                                                                                                                                                                                                | Initial Eigen values | Extraction Sums of squares |                | Sum<br>retained                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------|----------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                |                      | %                          | % of           |                                                                                                    |
| Components                                                                                                                                                                                                                                                                     | Total % of variance  | cumulated                  | Total variance | cumulated                                                                                          |
| First component                                                                                                                                                                                                                                                                | 12,695 79,346        | 79,346                     | 12,695 79,346  | 79,346 11,6                                                                                        |
| Second component                                                                                                                                                                                                                                                               | 1,930 12,064         | 91,411                     | 1,930 12,064   | 91,411 2,87                                                                                        |
| Third component                                                                                                                                                                                                                                                                | 1,052 6,576          | 97,986                     | 1,052 6,576    | 97,986 1,14                                                                                        |
| Source: Prepared by the authors                                                                                                                                                                                                                                                |                      |                            |                |                                                                                                    |
| The first component: explains the value of 72.866% of the explained variance and includes 13 municipalities (Second component: explains about 17.954 % of the explained variance and includes 02 municipalities (Maamoura, Ain skhouna) and represents and forestry component. |                      |                            |                | Third component: explains about explained and variance includes a this component represent urban c |

Figure 6: Table 1 :

**2**

Figure 7: Table 2 :

3

| Observation   | Cluster | Cluster 3 | Cluster 2 |
|---------------|---------|-----------|-----------|
|               | 4       |           |           |
| adiaS         | 1       | 1         | 1         |
| Dhoui Thabet  | 2       | 2         | 2         |
| Ain alhadjar  | 2       | 2         | 2         |
| delahk deluO  | 3       | 2         | 2         |
| ibral yaluoM  | 2       | 2         | 2         |
| buoY          | 2       | 2         | 2         |
| tenuoH        | 2       | 2         | 2         |
| rama idiS     | 2       | 2         | 2         |
| ruekbuob idiS | 2       | 2         | 2         |
| ansassaH      | 2       | 2         | 2         |
| aruomaam      | 2       | 2         | 2         |
| demha idis    | 4       | 3         | 2         |
| anuohks niA   | 2       | 2         | 2         |
| miharb deluO  | 2       | 2         | 2         |
| enicriT       | 2       | 2         | 2         |
| Aenatlos ni   | 2       | 2         | 2         |

Source: Prepared by the author

This result indicate that saida municipality belong to the first group Whatever to the groups distribution. And also we observed that Hounet, Youb, Moulay larbi, Sidi boubkeur, Hassasna ,maamoura.ain Skhouna, Ouled ibrahim, Tircine, ain soltane, Sidi Amar, Dhoui Thabet, municipalities are belong to the second groups Whatever to groups distribution. Whereas sidi ahmed municipality is belong to the fourth group If we divided into four groups. And also belong to the third group If we divided into three groups. We can summarize these results as follows:

Cluster 1: Includes, Hounet, Youb, Moulay larbi, khaled Ouled, Dhoui thabet, Sidi amar, Hassasna, Sidiboubkeur, Maamoura, Ainskhouna, ouled Ibraim, Tircine, Ain soltane that are characterized by its agricultural character

Cluster 2 : include the Sidi ahmedmunicipality which is characterized by pastoral character and production of livestock.

Cluster 3 : Includes Saida municipality Which is characterized for being a large geographical condition compared to other municipalities, This resu

Figure 8: Table 3 :

---

| RR                | Variable           | Coefficient | Std. Error | 0.000716             | t-Statistic        |
|-------------------|--------------------|-------------|------------|----------------------|--------------------|
|                   |                    | -0.006230   |            |                      | -                  |
| POP C             |                    | 9.50E-05    | 2.70E-05   | 1.118294             | 8.702093           |
|                   |                    | 26.41743    |            |                      | 3.514288           |
| R-squared         | Adjusted R-squared | 0.275420    | 0.268351   | 23.62299             |                    |
|                   | S.E. of regression | 0.268351    | 11.04096   | Mean dependent var   | S.D. dependent var |
| Sum squared resid |                    | 24990.09    |            |                      | Schwarz criterion  |
| Log likelihood    | F-statistic        | -793.1637   | 38.96120   | Hannan-Quinn criter. | Durbin-Watson st   |
|                   | Prob(F-statistic)  |             | 0.000000   |                      |                    |

[Note: © 2014 Global Journals Inc. (US) -( E ) Source: Prepared by the authors ?? 2 = (17613.07 ? 5828,34717)/(16 ? 1)(5) 5828,34717/?16 × 13 ? 16(2 + 1)?]

Figure 9: Table 4 :



---

170 [Analyse spatiale des disparités régionales dans l'Europe élargie"] LEG UMR 5118 ()] *Analyse spatiale des dis-*  
171 *parités régionales dans l'Europe élargie" LEG UMR 5118*, 2004. Cem Ertur et Wilfried Koch ; CNRS Pôle  
172 d'Economie et de Gestion Université de Bourgogne Cedex -France

173 [Sergio et al. ()] 'Beyond Low and Middle Income Countries: What if There Were Five Clusters of Developing  
174 Countries?'. Tezanos Sergio , Andy Vázquez , Sumner . *Institute of Development Studies W P*, 2012. 2012.  
175 404 p. .

176 [Binet and François ()] 'DETERMINANTS OF ENTREPRENEURSHIP IN FRENCH REGIONS: THE ROLE  
177 OF SPATIAL HETEROGENEITY'. Marie-Estelle Binet , Facchini François . *Center For Research in*  
178 *Economics and Management WP 2013-12*, 2013. p. .

179 [Christophe] *Econométrie des Données de Panel Modèles Linéaires Simples" Séminaire MéthodologiqueP08*,  
180 Hurlin Christophe . p. .

181 [Gallo et al. ()] *Econométrie spatiale: Hétérogénéité spatiale*, Julie Le Gallo , ; De Travail , Laboratoire D'analyse  
182 Et De Techniques Économiques Pôle . 2000. p. . Economie et de Gestion Université de Bourgogne Cedex -  
183 France

184 [Cardoso and Pentecost ()] 'Human Capital and Spatial Heterogeneity in the Iberian Countries' Regional  
185 Growth and Convergence'. Catarina Cardoso , Eric J Pentecost . *School of Business and Economics* 2011.  
186 Loughborough University WP-04

187 [Gallo ()] *HÉTÉROGÉNÉITÉ SPATIALE, Principes et méthodes" La Doc. française,Economie & prévision*  
188 2004/1 no 162, Julie Le Gallo . 2004. p. .

189 [Ramajo et al. ()] 'Spatial heterogeneity and interregional spillovers in the European Union: Do cohesion policies  
190 encourage convergence across regions?'. Julia'n Ramajo , Miguel A Ma'rquez , Geoffrey J D Hewings , M  
191 Mar? a , Salinas . *European Economic Review* 2008. 2008. 52.

192 [Bourbonnais ()] *Économétrie Manuel et exercices corrigés*, Régis Bourbonnais . 2011. Dunod. Paris P 347.