

1

Shafi Noor Islam

2

Received: 1 January 2022 Accepted: 31 January 2022 Published: 11 February 2022

3

4 **Abstract**

5 Urban areas have a high impact of shoreline changes that are influenced by human activities
6 rather than natural factors, together with hard structural mitigation and management which
7 are more practiced compared to other areas. The shoreline of Urban West of Unguja Island in
8 Zanzibar has been undergone changes in different stages due to human activities either like;
9 reclamation of Darajani creek, port expansion at Malindi, Mtoni beach nourishment, sewer
10 and stormwater channeling at Kilimani, construction of walls, groins, and jetties, etc.,
11 however, the area experience more accretion rather than retreat, integrated analysis and
12 projections of the overall accretion and retreat for 174 years is 1,527,693.85 m² (1.53 km²) and
13 -936,135.48 m² (-0.94 km) receptively. The average accretion of land from 1846 to 2020 is
14 8,779.85m²/yr. (0.0088 km²/yr.) and retreat is -5,380.09m²/yr. (- 0.0054 km²/yr.). A major
15 accretion was observed and detected during the early 1900s to late 1987 where major land
16 transformation with other minor development activities between 2010 to 2020. Sea walls,
17 groins, beach nourishment, mangroves, barrier islands, and islets are major management
18 practices of the shoreline which shows positive impact. Integrated methods were used to
19 analyze and detect changes using a sketch, topographic map, and images which were carefully
20 georeferenced with latitude and longitudes digitized using ArcGIS and demarcated along the
21 study area supported with ground truth observation.

22

23 **Index terms**— human activities, shoreline changes, accretion, retreat, urban management, zanzibar.

24 **1 Introduction**

25 Coastal zones are places where many people would like to visit, invest and enjoy, thus why human major projects
26 have been developed, small islands areas, ecosystem services are among the major economic driving factors [1]- [3].
27 In many countries, cities are allocated along the coast [4] which are the most populated places in the world holding
28 high population density (Kaneko et al., 2015). Historically coastal zones were most used before the invention
29 and advancement of space and air transport development thus, navigation along ocean and rivers were the most
30 transportation means [7] which influence the development of mega projects that we are witnessing nowadays in
31 many countries; port and harbor development, towns [8] and entertainment like tourism development [9], etc.
32 Due to these development projects, tremendous changes along the coast become vulnerable to flooding due to
33 climate change impacts such as Sea Level Rise [9], [10].

34 Although coral and limestone Islands have natural protection along the shore, the continuous wave processes
35 over a long time, sea-level rise, monsoon winds, and other human activities like tourism influence the dynamic
36 process ??Arthurton, 2004) of either accretion or retreat/erosion (Arthurton et al., 1999;Mahongo et al.,
37 2011;Ngusaru, 2000;Nyandwi, 2010Nyandwi, , 2015)). On one side it could be considered are social and economic
38 development [3] however, on another side, there are many impacts on ecology and environment [5], [16], [17] due
39 to these anthropogenic. The shoreline of Small Island States has been originally changing over time like any other
40 coast however when there is over interaction with human activities causes excess use of resources to interfere with
41 the shoreline systems and processes [16], [18].

42 The general results in Urban West of Unguja Zanzibar shoreline, showing more accretion rather than retreat,
43 the situation has been associated with major reclamation, especially at Darajani, Mnazi Mmoja, and Malindi
44 port area extension, as well as beach nourishments at Mtoni due to the hotel and mariner development. Also,
45 it has been revealed that five major types of mitigation and management measures that influence to reduce
46 retreat are; mangroves, sea walls, groins, islets, inlets, and beach nourishment, even though the hard structural

5 RESULTS AND DISCUSSION

47 measures like groins and sea walls are helpful, they also exacerbate retreat in adjacent sides where there are luck
48 such management practices. The experience shows that once the decision of construction of walls, jetties, and
49 groins in urban areas should be at entire distributed along the shoreline or small part of urban forest mangroves
50 buffer should be maintained as a control measure otherwise the adjacent sides will suffocate from severe erosion
51 or retreat. This paper analyzes how human activities influence the transformation of shorelines and to what
52 extent the longterm shoreline changes of Islands and urban areas have been reshaping coastline processes and
53 management.

54 The paper also considers how Geographical Information System on digital spatial analysis is important to
55 detect, visualize shoreline position and also could be possibly used for coastal urban development, decision
56 making, and management. The paper also considers a field survey and observation that was made by the author
57 from August 2019 to January 2020 at Urban West of Unguja Island, Zanzibar.

58 2 II.

59 3 Methods and Study Area

60 The area of the study is the Urban West Region of Unguja, Zanzibar. Zanzibar is one of two countries that form
61 the United Republic of Tanzania which is also among the Small Island Developing States of the Western Indian
62 Ocean [6]. Zanzibar is located on the eastern coast 40 km away from the east coast of Tanzania Mainland, West of
63 the Indian Ocean. There are two major islands (Unguja and Pemba) and more than 50 other smaller islands and
64 islets [6]. The northern tip of Unguja island which is the mother island is located at 5.72 0 Latitudes South and
65 39.30 0 East; with the Southernmost point at 6.48 0 South and 39.51 0 East. There is another Island of Pemba
66 located at 4.870 0 South and 39.680 0 East, and the Southernmost point is located at 5.47 0 East (OCGS, 2018).
67 Unguja is the larger of the two islands (having 1,666 km²) and is some 35 kilometers from Mainland Tanzania,
68 while Pemba (988 km²) is located to the northeast (see also figure no. 3), around 55 kilometers from the
69 Mainland [6]. The main objective of this paper is to analyze the coastal beach erosion vulnerability of Zanzibar,
70 using GIS and RS applications, and find the relationship between the rate and trend of extreme beach erosion,
71 extreme changing wind patterns, and sea-level rise, where the specific objectives are; 1. To analyze the rate and
72 trends time series of coastal beach dynamic and shoreline changes between the 1880s to 2018, using GIS and RS
73 application 2. To determine the relationship between extremely coastal beach erosion and extreme changing of
74 wind pattern and sea-level rise 3. To determine the vulnerability of Zanzibar coastal zones in terms of population
75 displacement, coastal squeeze and loss of associated ecosystem services, and the limit of land capacity. 4. To
76 identify current best practices and possible motivating adaptation factors in building resilience and reducing the
77 risk for coastal beach management.

78 The Urban West of Unguja Town also known as Zanzibar Town/City, the region has three districts with
79 more than 700,791 population until 2019 [20] based on 2018 population projection, with a density of more than
80 2600/km² [6]. The general characteristics of the coast are intertidal fringing coral-rich limestone of Pleistocene
81 age (Arthurton et al., 1999), the shoreline of Urban West of Zanzibar City is a fringing reef, cliff coral, beaches
82 and sandbanks, stream deltas, mangroves with mudflat and wetland. It has a warm and humid tropical climate
83 with an average rainfall exceeding 1500mm/year and an average temperature of above 26 0 C, which is also
84 influenced by Northern and Southern Monsoonal winds (Arthurton et al., 1999; The dataset used for spatial
85 analysis is from the Guillain sketch plan survey map of 1846, and Baumann sketch plan survey map of 1892 1).
86 All sketch maps, topographic maps, and images were carefully georeferenced with hours, minutes, and seconds
87 (latitude and longitudes) using ArcGIS software whereby spatial analysis was made through demarcated along
88 the study area. The study also involves ground truth observation carried out between August 2019 and January
89 2020 where photos, GPS coordinates, and video were collected to support the analysis.) Shoreline spatial
90 analysis carried out about 15km and 5km stretch of Urban Wes of Zanzibar City from Kilimani to Mtoni area, a
91 mixed and integrated method using map and images for long term changes detection which is also used by [21]-
92 [23], which is suitable to detect and analyze long time series of shoreline change when there is a limitation of data
93 such as images of more than 100 years. It was used to analyze the shoreline position from 1846 to 2020 based on
94 the distance of the shoreline stretch and area differences compared one dataset time shoreline position to another
95 after being merged in both accreted or retreated. That means; dataset was carefully scanned, georeferenced,
96 alienated, digitized, plotted, and merged, and then area measurement and geometry calculation were carried
97 out to each spatial difference accreted or retread/eroded/reclaimed between two shoreline positions of executive
98 years, then shoreline position was used to categorize the dynamism of changes of the area as such comparative for
99 qualitative method has been used by [24], [25], as well as quantitative methods from dataset shoreline position
100 differential in geometry calculation both length and area in meter square/kilometer square of each shoreline.

101 4 III.

102 5 Results and Discussion

103 After carefully spatial analysis of mixed data, the results were categorized based on the availability of information
104 collected, there was a dataset that only covers part of the Urban West shoreline only 5 km, and a dataset that

105 covers 15 km shoreline. Also, results from analyses were performed based on the potential of the areas, length,
106 and area of shorelines accretion and retreat as well.

107 **6 a) Maisara, Malindi to Funguni shoreline changes between 108 1846 to 2020**

109 This is an important area in Zanzibar where the capital city (Zanzibar City) is located, results showing there
110 are tremendous changes of Malindi area due to extension of port and reclamation of Darajani creek and Mnazi
111 Mmoja areas. Malindi port during 1846 observed having huge sand deposits at the shore (see figure 3 the year
112 1846) in a place known as 'Funguni' in Swahili which means the bank of sand deposit which developed north
113 to the southwest along the shoreline, however at the inlet which is Darajani creek also known as 'Pwani ndogo'
114 looked wide and extended to the southwest up to about 0.46 km square inland as seen in figure 1.

115 In this year (1846) it could be seen a small Islet called Kisiwani within the inlets whereby the time was called
116 'Pwani Mbou' (rotten sea) which is nowadays known as Mnazi Mmoja area (figure 5 the year 1846). In figure
117 5 year 1892 the top north of Malindi area is observed there is development of 'ras' due to improvement of deposit
118 and port extension and the expansion of the Stone Town city along the bank of the creek especially at Mbuyuni,
119 Darajani, Kisiwandui, Mkunazini, Mchambawima, Kokoni and Mnazi Mmoja, these areas especially Mbuyuni
120 and Kokoni were the areas with huge mangroves at this time, the analysis showing that the Kisiwani Islet at
121 Mnzi Mmoja is already joined with Eastern part land of Mnazi Mmoja and Kikwajuni which form shoreline to
122 change by creating new land area, due to the slowly reclamation and extension of the city, even though there
123 was a slightly erosion and over floor of seawater, changes also is observed at top north of Malindi inside creek
124 where there is high erosion forming an elbow shoreline shape probably due to the amount of water coming inside
125 the creek bouncing along the bank of western part of the creek, from these changes also slowly result shoreline
126 length reduction.

127 In 1907 the passage of Creek at the north part at Funguni starts to narrow and the southern part of the inlet
128 at Mnazi Mmoja as well. The result shows that by this time at Funguni and Malindi there is more development
129 seaward especially in the Forodhani area (see figure no. 5 the year 1907). In between 1907 to 1987, there is a
130 major change, a tremendous and major reclamation was done in this time, in figure 1, 2, and table 2 above, figure
131 3, 4, and 5 below are showing clearly the entire creek from Mnazi Mmoja, Darajani to Funguni at this time was
132 reclaimed and transformed into other human development projects like; cities and other huge construction took
133 place during this time. About 0.46 km square of the creek where it was called a rotten sea and 'Pwani ndogo'
134 (figure 1 and 2 above) was reclaimed totally except a small portion which is now called Bwawani wetland. At
135 the northwest of the area there is an extension seaward side up to several meters for Malindi port expansion (see
136 figure 5 the year 2004 -2020), figure 3 and 4 are an example of changes before reclamation in 1920 and after 2020
137 respectively. However, at this time there was much sea wall development for protection along the entire shoreline
138 of Zanzibar Stone Town to manage the shoreline and properties from wave destruction. Shallow and calm water of
139 western side of Unguja Island together with barrier coral Islets at far north from Malindi port has been protecting
140 the Island from direct strong waves and longshore bouncing, however, apart from this natural protection, the
141 removal of Mpigaduri mangroves will highly affect the entire shore unless there will be other feasible adaptation
142 measures. This development of mega projects although is said to be an advantage for land accretion also, the
143 analysis shows there were challenges along the shoreline especially at the Funguni passage; in this area, there is
144 extra erosion and inland water floor which extend several meters to Mpigaduri up to Mtoni shoreline that has also
145 influence the development of mangroves (see also figure 5) although the increasing of mangroves is an advantage,
146 it was also seeming like an attempt of increasing level of water at Malindi port in such a way that seafloor forced
147 to change its direction to the southwest where there was a high and long impacts on this shoreline, two jetties are
148 evidence (figure 5 Apart from human influences, some other factors have also influenced the changes of shoreline,
149 there are natural processes as discussed by ??Arthurton, 2004), even though there is no direct report of climate
150 change impacts such as sea-level rise until the 1980s due to the limited availability of data sources in Zanzibar
151 that could be also a reason for shoreline changes, some studies [26] showing falling of relative sea-level until 2000,
152 it might be also a bit of good luck for the city to reduce severe impact from flooding of the shore. However, in
153 recent years between 2000 to 2012 [1] shows there is a sign of rising in sea level that could be also possible related
154 to shoreline changes [11], [27], thus why in some areas like Kilimani (will be explained later) have been facing
155 such challenges which are associated to climate change impacts.

156 **7 b) Shoreline changes Kilimani to Mtoni between 1846 to 2020**

157 It was found that when the shoreline is longer than the previous one is an indication of having either too much
158 retreat or huge accretion. The trend of the shoreline length in figure 6 shows that in the early 1900s (1846, 1892,
159 and 1907) shoreline was longer and started to shorten up to the late 1980s, however, the tendency of stretched
160 again is shown from the late 1980s to 2020, where this is correlated with accretion and retreat results obtained
161 as shown in figure ?? which will be explained later.

162 The figure shows four hotspots areas of changes, two have more accretion and two with more retreat of the
163 shoreline. In Malindi hotspot which includes Darajani and Mnazi Mmoja (Zanzibar Town area) from 1846 to
164 2020, there is accretion as described earlier in this study, we could see the shoreline is longer and extended

9 CONCLUSION

165 onshore several meters (see figure 7). The second hotspot that shows changes of accretion is the Mtoni area, this
166 location has been accreted for the last decade in different years; 2010, 2004, 2016, 2017, 2019 to 2020. Kilimani
167 and Migaduri are the other three and four hotspots respectively which their shoreline has seen to be longer and
168 extended landward, for Mpigaduri hotspot which also involves Funguni and Kinazini; these areas according to
169 spatial analysis are alternatives of wave movement to maintain a balance of Malindi and Darajani reclamation
170 caused by port and city development which is adjacent to it. Likewise, Kilimani hotspot shoreline changes
171 (figure no. 7 the year 1907 -2020 and from the year 2010, 2016, 2017, 2019, and 2020) show different stages of
172 shoreline changes that have been caused by many factors; the development of sewer channels that interrupted
173 coastal processes and causing seawater landward(inundate) and develop an inlet which did not exist before 2010
174 as shown in a map, although the area had a sandbank ridge in adjacent side of shoreline north westward there
175 are walls thus why when seawater bounce is deflected and forced southeastward which found its way in loose
176 white sand beach deposits which are easy to erode loose sandbank.

177 The area also, because it is on the opposite side where coastal processes are likely to be little interrupted from
178 Malindi Darajani reclamation which is opposite side but rather climate change impact could also a causal factor,
179 other activities like sewer and stormwater drainage construction and channeling were very likely the cause erosion
180 (retreat) where seawater found its way easily to weep out loose materials of sandbank beside the sewer channel
181 before 2004 Kilimani area there were many human activities practices; agriculture like paddy cultivation, sports,
182 and likes, sadly in 2010 the area changed totally when seawater invade the area and reach up to settled zones
183 during high tide with no agricultural activities nor sports and even reduction of a crosswalk along the shore,
184 changing the ecological system and new form of the inlet, mangroves, salt marsh, and tidal flat dominated the
185 area, in figure 7 someone can see how Kilimani changed from 1907 to 2020, and from 2004 to 2020.

186 8 i. Area of land accretion and retreat of Urban West

187 Unguja -Zanzibar Shoreline of Western Indian Ocean between 1846 to 2020. Accretion here is also meant deposits
188 or land reclamation through natural and human influences through projects development or any other activities
189 along the shoreline, the same way applies vice versa to retreat. As we noticed earlier that one of the characteristics
190 of the shoreline is that, when the stretch is long, it means either there is high erosional or deposition (retreat
191 or accretion). It has been revealed in this study that, in 174 years the shoreline has been changed in different
192 stages, for these years the geographical areas of Urban West sites experience more accretion rather than retreat,
193 geographical, spatial analysis, and projections of the overall accretion and retreat in figure ?? and 9 shows for
194 174 years is 1527693.85 m² (1.53 km²) and -936135.48 m² (-0.94 km²) receptively. The average accretion of
195 land from 1846 to 2020 is 8779.85m² /yr. (0.0088 km² /yr.) and retreat is -5380.09m² /yr. (-0.0054 km²
196 /yr.) as shown in figure ?? above. A major accretion is observed during the early 1900s to late 1987 in which
197 there was a major land transformation as shown in figure ?? below, as well as between 2010 to 2020. However,
198 a land retreat is higher from 1987 to 2004.

199 The process of accretion and retreat took place in a reversal from year to year, observed areas of high accretion
200 up to 2020 are Malindi, Mtoni, Darajani, Mnazi Mmoja, and Funguni, and the areas of the high retreat are some
201 parts of Kilimani, Mpigaduri, Mtoni and parts of Maisara shoreline. The accretion in urban cities is likely
202 associated with the development and technological advancement in many cities especially developed countries
203 [28] compared to the previous situation of a higher rate of erosion postulated by Bird (1984). However still
204 developing countries, SIDS, and rural coastlines facing a higher rate of recession.

205 9 Conclusion

206 There is a high impact of shoreline changes that are influenced by human activities rather than natural factors
207 while also hard structural mitigation and management for properties are more practiced compared to other
208 areas. Hard structural management always reduces sand deposits and seawater will find weaker and loose areas
209 to retreat and inundate forming an inlet or canal landward when inlets are formed mangroves and other coastal
210 vegetation will grow faster in a short period. A natural setting like small islands and islets acts as a barrier and
211 should be considered in coastal urban development and Island states as management and protection measures.
212 The extension of the city in shallow, long swash intermittent seafloor, closed shoreline coral and barrier reefs are
213 likely to have low impacts if the reclamation will only consider natural setting and not exceeding coralline strip
214 seaward side in consideration of mangrove site. Alternatively, the open and remote shorelines like small Islands
215 and Islets are more likely to have high impacts when there is too much interruption from the human. Mangroves
216 in urban areas are most important to slow the wave movement and balance especially when there is a major
217 land transformation on the shoreline, thus when it comes to shoreline management through hard structural and
218 engineering development at least a small portion of mangroves could be mitigated at these urban areas from the
219 retreat and sever erosion as well as maintaining ecological and aesthetic value. ^{1 2}

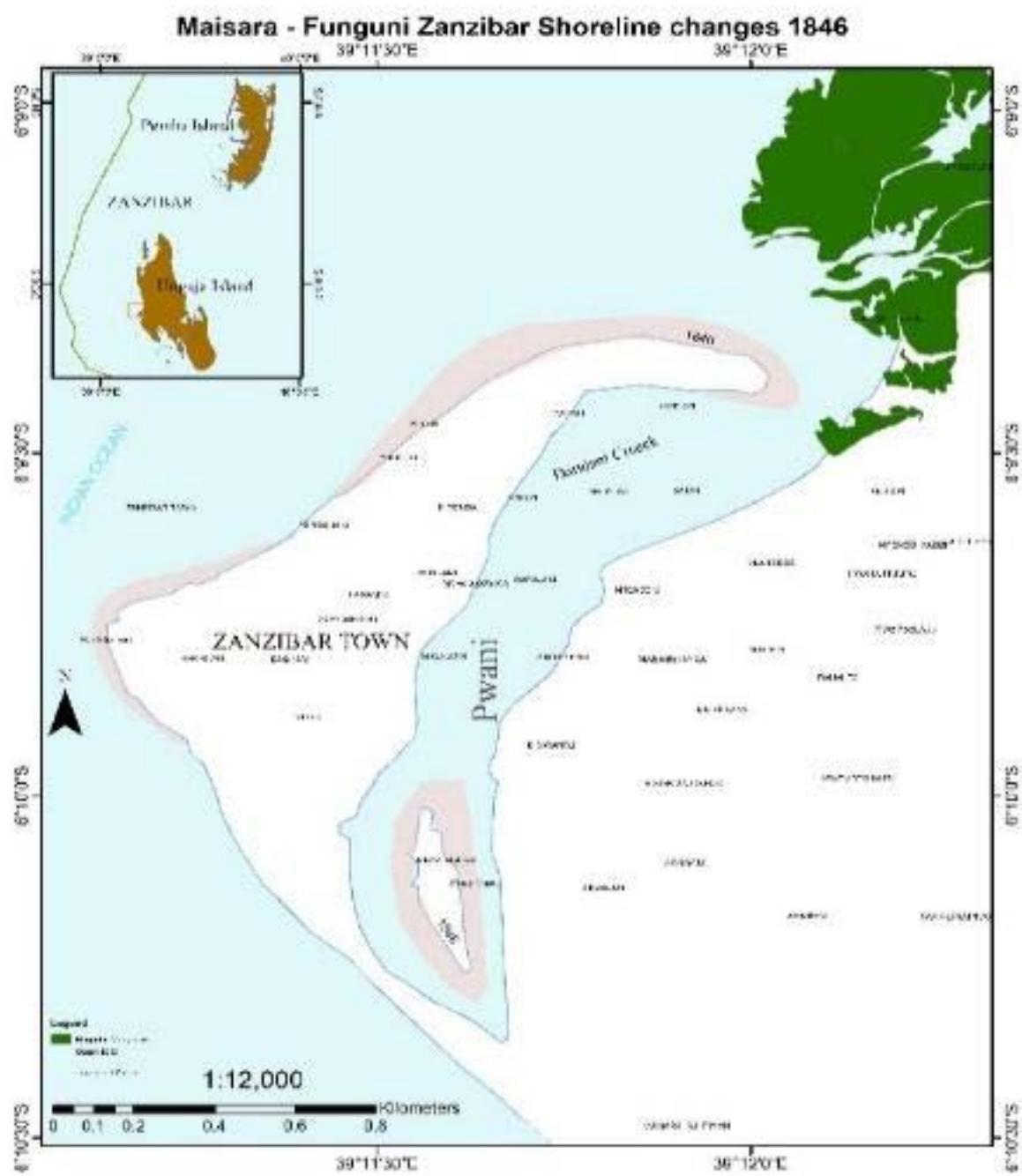
¹ An Integrated GIS Method -The Influence of Human Activities on Shoreline Change in Western Indian Small Island States: A Two Centuries Analysis of Urban West Unguja -Zanzibar Shoreline

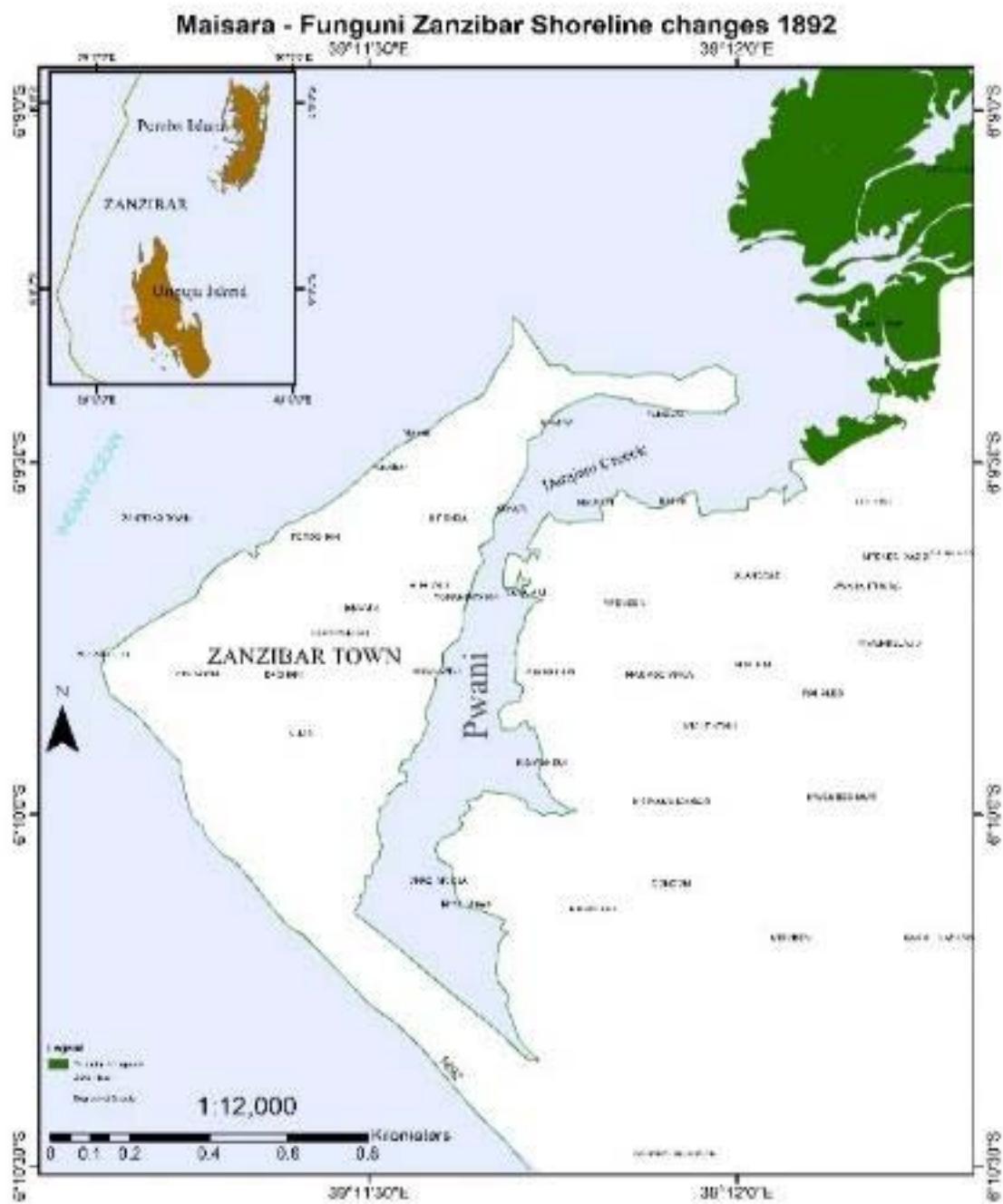
² © 2022 Global JournalsBAn Integrated GIS Method -The Influence of Human Activities on Shoreline Change in Western Indian Small Island States: A Two Centuries Analysis of Urban West Unguja -Zanzibar Shoreline

Figure 1:

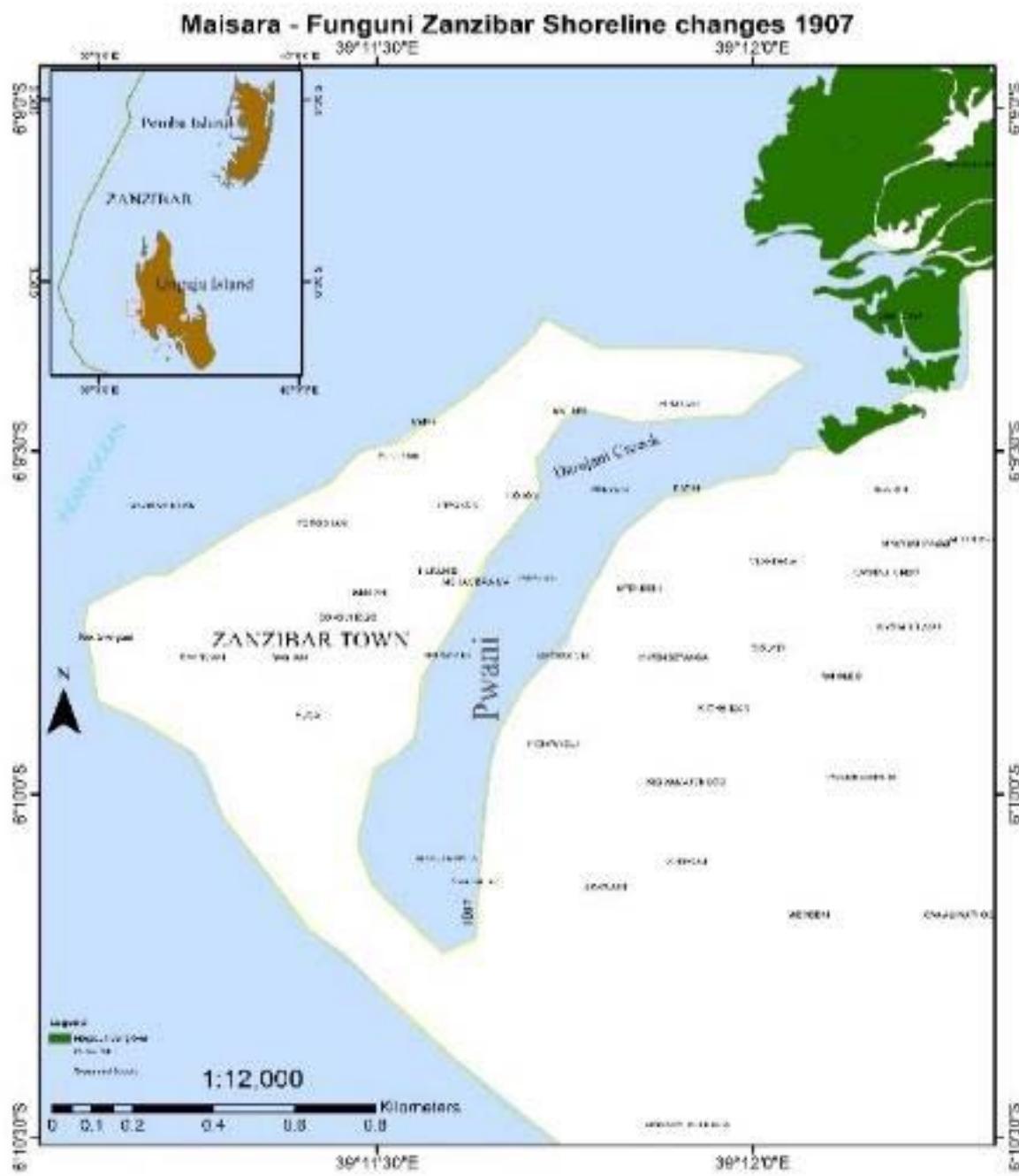
Figure 2: Figure 1 :

2131




Figure 3: Figure 2 : 13 ()Figures 1

3


Figure 4: Figure 3 :

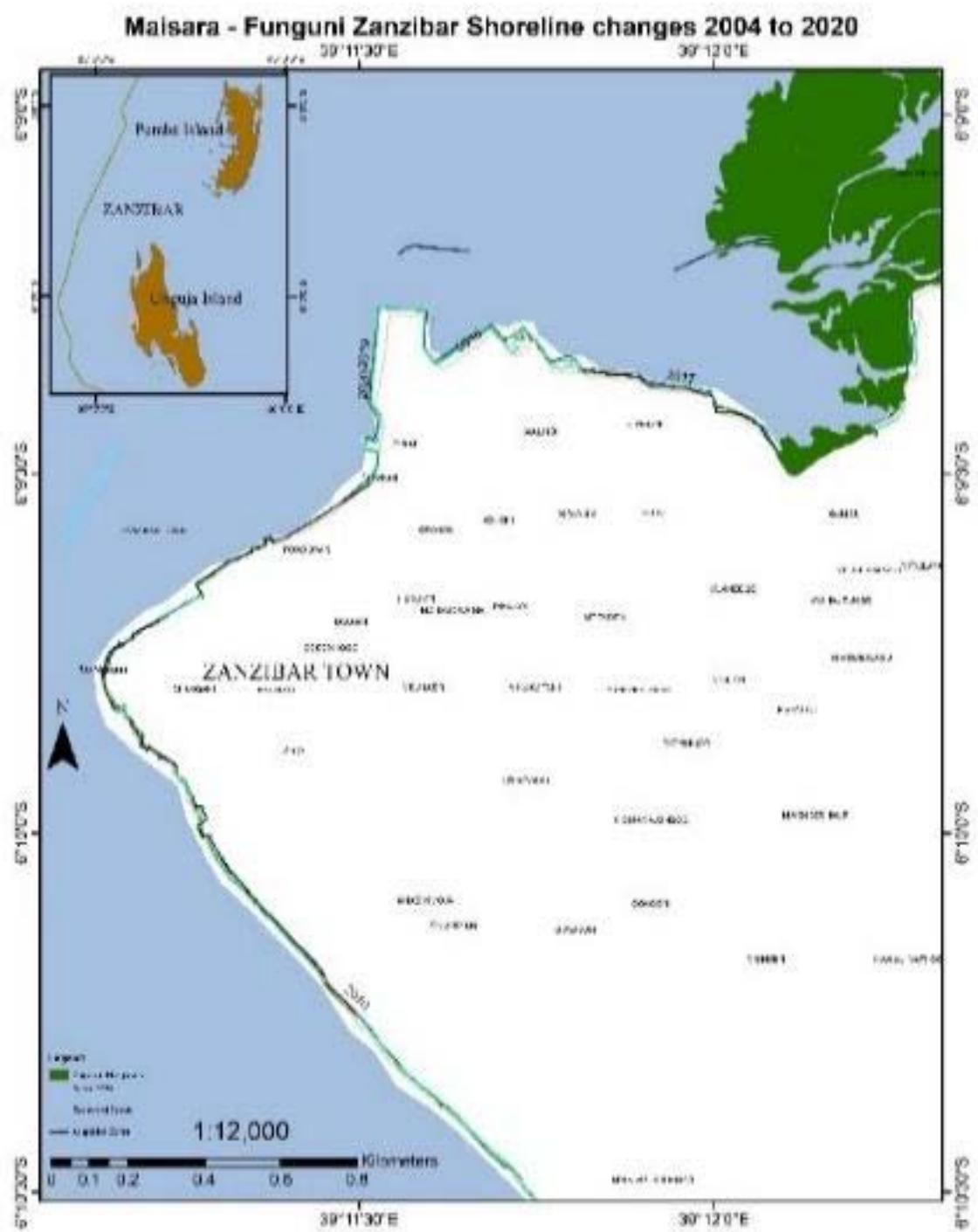

5

Figure 6:)Figure 5 :

6

Figure 7: Figure 6 :

1

Volume XXII Issue I

Version I

Dataset	Year	Scale	Author/Publisher/Organization
Map Plan	1846		Guillain 1846
Map Plan	1892	1:10,000	Baumann 1892
Topographic Map	1907	1: 63,360	Zanzibar PWD No./44 M-8 of 1907
Topographic Map	1987	1: 125,000	United Nation No. 3344 of 1987
Aerial Photograph	2004		Department of Survey, Zanzibar 2004- 2005
Landsat Image	12/27/2010	2000ft	Google Map 2020 datasat
Landsat Image	02/24/2016	2000ft	Google Map 2020 datasat
Landsat Image	07/27/2017	2000ft	Google Map 2020 datasat
Landsat Image	10/11/2018	2000ft	Google Map 2020 datasat
Landsat Image	07/24/2019	2000ft	Google Map 2020 datasat
Landsat Image	02/26/2020	2000ft	Google Map 2020 datasat

[Note: 12/]

Figure 9: Table 1 :

220 .1 Acknowledgement

221 This work was performed to fulfill and meet the requirement of the Doctoral of Philosophy study of the Universiti
222 Brunei Darussalam (UBD), the work and data are part of the study results. The authors would like to acknowledge
223 the support from the Government of Brunei under UBD Graduate scholarship and the Department of Geography,
224 Environment, and Development in the Faculty of Art and Social Science. The authors would also like to thank
225 the Revolutionary Government of Zanzibar for providing images, maps, and other relevant information without
226 forgetting the Zanzibar community for their special supports.

227 [L ()] , L . *Inf. Syst* 1998. 58 (3) p. .

228 [Adriatic ()] , Adriatic . 10.1007/s12665-018-7963-8. *Environ. Earth Sci* 2018. 77 (23) p. 0.

229 [Li et al.] *A Coastal GIS for Shoreline Monitoring and Management -Case Study in Malaysia*, R Li , C W Keong
230 , E Ramcharan , B Kjerfve , D Willis . (Surv)

231 [Armaroli et al. ()] ‘An integrated study of shoreline variability using GIS and ARGUS techniques’. P Armaroli
232 , Y Ciavola , M Balouin , Gatti . *J. Coast. Res* 2006. (39) p. .

233 [Duvat ()] ‘Beach erosion management in Small Island Developing States: Indian Ocean case studies’. Duvat .
234 10.2495/CP090141. *WIT Trans. Ecol. Environ* 2009. 126 p. .

235 [Chaibi and Sedrati ()] ‘Coastal erosion induced by human activities: The case of two embayed beaches on the
236 Moroccan coast’. M Chaibi , M Sedrati . *J. Coast. Res* 2009. 56 p. .

237 [Grasses et al.] ‘Coastal flooding and erosion under a changing climate: Implications at a low-lying coast (Ebro
238 delta)’. V Grasses , M Gracia , J García-León , J P Lin-Ye , Sierra . 10.3390/w12020346. *Water (Switzerland)*
239 12 (2) p. 2020.

240 [Belal and Moghanm (2011)] ‘Detecting urban growth using remote sensing and GIS techniques in Al Gharbiya
241 governorate, Egypt’. A A Belal , F S Moghanm . 10.1016/j.ejrs.2011.09.001. *Egypt. J. Remote Sens. Sp. Sci*
242 Dec. 2011. 14 (2) p. .

243 [Samanta and Paul ()] ‘Geospatial analysis of shoreline and land use/land cover changes through remote sensing
244 and GIS techniques’. S Samanta , S K Paul . 10.1007/s40808-016-0180-0. *Model. Earth Syst. Environ* 2016. 2
245 (3) p. .

246 [Sytnik et al.] *Historical shoreline trend analysis and drivers of coastal change along the Ravenna coast*, O Sytnik
247 , L Río , N Greggio , J Bonetti . NE.

248 [Ali and El-Magd (2016)] ‘Impact of human interventions and coastal processes along the Nile Delta coast, Egypt
249 during the past twenty-five years’. E M Ali , I A El-Magd . 10.1016/j.ejar.2016.01.002. *Egypt. J. Aquat. Res*
250 Mar. 2016. 42 (1) p. .

251 [Arthurton et al. ()] ‘Late quaternary coastal stratigraphy on a platform-fringed tropical coast -A case study
252 from Zanzibar, Tanzania’. R S Arthurton , A H Brampton , C Z Kaaya , S K Mohamed . *J. Coast. Res* 1999.
253 15 (3) p. .

254 [Obura ()] Obura . *Coral Reef Status Report for the Western Indian Ocean*, 2017. 2017.

255 [Mustelin ()] *Practical measures to tackle climate change: coastal forest buffer zones and shoreline change in
256 Zanzibar*, J Mustelin . 2009. Tanzania.

257 [Watkiss and Bonjean (2012)] *Projections of Climate Change and Sea Level Rise for Zanzibar*, P Watkiss , M
258 Bonjean . May. 2012. p. 22.

259 [Li et al. (2012)] ‘Quantitative analysis of urban expansion using RS and GIS, a case study in Lanzhou’. X Li ,
260 L Liu , X Dong . 10.1061/(ASCE)UP.1943-5444.0000078. *J. Urban Plan. Dev* Jan. 2012. 137 (4) p. .

261 [Nyandwi (2015)] *Reassessment of the nature of beach erosion north of Dar es Salaam, Tanzania*, N Nyandwi .
262 December. 2015. p. .

263 [Obura ()] *Reviving the Western Indian Ocean Economy: Actions for a Sustainable Future*, D Obura . 2017.

264 [Kaneko et al. ()] ‘Sustainable living with environmental risks’. N Kaneko , M Kobayashi , S Yoshiura .
265 10.1007/978-4-431-54804-1. *Sustain. Living with Environ. Risks* 2015. p. .

266 [Ngusaru ()] *Tanzania Coastal Management Partnership: The Present State of Knowledge of Marine Sciences
267 in Tanzania -Synthesis Report*, A Ngusaru . 5047 TCMP A. 2000.

268 [Watkiss (2012)] *The Economics of Climate Change in Zanzibar*, P Watkiss . July. 2012. p. .

269 [Arthurton ()] ‘The Fringing Reef Coasts of Eastern Africa-Present Processes in Their Long-term Context’. R
270 Arthurton . 10.4314/wiojms.v2i1.28424. *West. Indian Ocean J. Mar. Sci* 2003. 2 (1) p. .

271 [Nyandwi ()] ‘The Major Cause of Observed Erosion Surge on the Beaches North of Dar Es Salaam City’. N
272 Nyandwi . *Tanzania J. Sci* 2010.

273 [Selander ()] ‘The Periplus of the Erythraean Sea: A Network Approach’. E H Selander . 10.12773/arwh.2016.4.2.191.
274 *Asian Rev. World Hist* 2016. 4 (2) p. .

9 CONCLUSION

275 [Rgoz ()] *the Revolutionary Government of Zanzibar the First Vice President' S Office Zanzibar Climate Change*
276 *Strategy*, Rgoz . 2014.

277 [Luijendijk et al. ()] 'The State of the World's Beaches'. A Luijendijk , G Hagenaars , R Ranasinghe , F Baart ,
278 G Donchyts , S Aarninkhof . 10.1038/s41598-018-24630-6. *Sci. Rep* 2018. 8 (1) p. .

279 [Tourism in Small Island Developing States (SIDS): Building a more sustainable future for the people Islands (2014)]
280 *Tourism in Small Island Developing States (SIDS): Building a more sustainable future for the people Islands*,
281 Aug. 2014. (Madrid) (UNWTO)

282 [Mahongo et al. ()] 'Wind Patterns of Coastal Tanzania: Their Variability and Trends'. S B Mahongo , J Francis
283 , S E Osima . *West. Indian Ocean J. Mar. Sci* 2011. 10 (2) p. .

284 [Zanzibar in figures 2016 OCGS ()] 'Zanzibar in figures 2016'. *OCGS* 2019.

285 [ZANZIBAR STATISTICAL ABSTRACT 2016 OCGS ()] 'ZANZIBAR STATISTICAL ABSTRACT 2016'.
286 *OCGS* 2017.