

1 The Relationship between Anxiety and Task Switching Ability

2 Amara Gul¹ and Glyn W. Humphreys²

3 ¹ The University of Birmingham

4 Received: 16 December 2013 Accepted: 5 January 2014 Published: 15 January 2014

5

6 Abstract

7 This study examined task switching ability as a function of anxiety. Participants with mild
8 anxiety switched between emotion and age classification among faces. There were few
9 important results: (i) Individuals with anxiety categorized facial emotion faster than facial age
10 (ii) There was a larger switch cost for age than the emotion categorization (iii) Anxiety was a
11 significant predictor of task switch costs. We discussed why anxious individuals showed a
12 deficit in cognitive control of facial attributes.

13

14 **Index terms**— task switching, emotion, face categorization, attention, cognition, anxiety.

15 1 Introduction

16 Anxiety is a physiological state causing adverse effects on the cognitive, somatic, behavioral and emotional
17 functioning of an individual (Seligman, Walker, & Rosenhan, 2001). Previous research has suggested that anxiety
18 is associated with cognitive and attentional bias, for example, difficulty in disengaging attention from emotional
19 stimuli among anxious individuals has been observed both for words and pictures (Yiend & Mathews, 2001; see for
20 review Bar-Haim et al., 2007; Fox et al., 2001; Fox et al., , 2002;;Sass et al., 2010) due to having an altered activity
21 in amygdalaprefrontal circuits (Bishop, 2007). Studies using spatial cueing paradigm also report that anxiety
22 impairs inhibition and attentional control as a result causes a decline in efficiency. For example, it is harder for
23 anxious individuals to disengage attention from invalid cues (providing misleading information) than non-anxious
24 individuals ??Poy, Eixarch, & Avila, 2004), especially in case when threat-related stimuli serve as invalid cues
25 (Fox et al., 2002). In an emotionl Stroop task, anxious individuals display interference on threat words (de-Ruiter
26 & Brosschot, 1994) which can be attributed towards the activation of emotion nodes in semantic memory and
27 facilitates the attention towards emotion congruent stimuli (Bower, 1981(Bower, , 1987)). Neural substrates of
28 anxiety related processes across all emotional faces are the activations in amygdala and anterior cingulate cortex
29 (Ball et al., 2012). The attentional deployment towards emotional stimuli is linked with deficit in performance
30 on several cognitive tasks such as emotional Stroop (Simpson et al., 2000;Williams, Mathews, & MacLeod,
31 1996;Dresler et al., 2009) and flanker task (Fenske & Eastwood, 2003). Such allocation of attention is high when
32 individuals perform cognitive tasks which are high in demand or negative emotional states such as anxiety exceeds
33 an optimal level ??Meinhardt & Pekron, 2003;Hanoch & Vitouch, 2004). As a result interference arises. The
34 attention deficit has been observed when individuals perform dual task ??Wood, Mathews, & Dalgleish, 2001)
35 possibly because of depletion of attentional resources for the other task to be performed.

36 Individuals with high and low anxiety differ in their attentional allocation to emotion-related information. High
37 anxious individuals showed a greater difficulty in disengaging attention from the spatial location of emotional
38 cues than low anxious individuals (Mogg, Holmes, Garner, & Bradley, 2008; Fox, Russo, & Dutton, 2002).
39 High anxious individuals show preferential attentional capture to emotional stimuli ??Broadbent & Boradbtent,
40 1988;Miskovic & Schmidt, 2012). It has also been stated that high anxiety is associated with low working memory
41 capacity (Darke, 1988;Ashcraft & Kirk, 2001) and impairs the ability to inhibit goal-irrelevant information
42 (Moriya & Sugiura, 2013). Bishop, Duncan, Brett, and Lawrence (2004) observed decreased activation of lateral
43 prefrontal cortex (LPFC) and rostral anterior cingulate cortex (ACCpart of brain's limbic system) in high anxious
44 individuals when presented with more threat related distracting stimuli than the control condition (i.e., fewer
45 threatrelated stimuli). The rostral ACC is involved in emotional processing and LPFC establishes cognitive

7 A) SWITCHING EXPERIMENT

46 control during attentionally demanding and higher cognitive tasks (for review Bush, Luu, & Posner, 2000; Drevets
47 & Raichle, 1998).

48 A large body of literature suggested that anxiety impaired the volitional control of attention (which relies on
49 the prefrontal neuronal circuits), for example, when anxious individuals were presented with facial expressions
50 in peripheral field of vision and in response performed either pro or antisaccades, they exhibited more erratic
51 prosaccades to facial expressions when antisaccade was required (Wieser, Paul, & Muhlberger, 2009). Similar
52 results were found by Ansari, Derakshan, and Richards (2008) in a mixed antisaccade paradigm. Their
53 participants performed a single task (i.e., separate blocks of anti and prosaccade trials) and mixed task (i.e.,
54 anti and prosaccade trials in random order within a blocks). Low anxious participants showed a switch benefit in
55 antisaccade latencies within mixed task block when antisaccade trial was preceded by a switch trial compared to
56 the condition where antisaccade trial was preceded by a repeat trial. However, high anxious individuals exhibited
57 no improvement. The presence of anxiety can modulate the shifting ability (Jhonson, 2009). Goodwin and Sher
58 (1992) reported worse shifting ability of high anxious than low anxious individuals (slower and more error-prone
59 performance as measured by Wisconsin Card Sorting Task).

60 The above mentioned findings can be seen in the context of the attentional control theory (Eysenck, Derakshan,
61 Santos, & Calvo, 2007) derived from the processing efficiency theory (Eysenck & Calvo, 1992). Anxiety impairs
62 the central executive functions such as inhibition and shifting. It has an adverse effect on the goal-directed and
63 stimulus-driven attentional system. The cognitive performance is decreased due to an increased attention to
64 emotion-related stimuli and a reduced attentional control.

65 2 II.

66 3 The Present Study

67 Since the attentional bias in anxiety has widely been studied in distraction paradigms, but has not been
68 assessed in task switching paradigm, it is unclear how anxiety modulates attention during switching between face
69 categorization tasks. Task switching paradigm examines the central executive functions of inhibition, shifting and
70 updating of the working memory representations. In task switching experiments, participants switch between
71 two different tasks. Performance is faster on the trials when the task is repeated (repeat trials) than when it
72 is changed (switch trials) producing switch cost (larger latencies and higher error rates for switch vs. repeat
73 trials). Participant has to respond the alternate task-sets (Meiran, 2000; Rogers & Monsell, 1995), thus a cost
74 on response times (i.e., reaction times) arises from the significant delay in adoption of the new task-set (Mayr
75 & Keele, 2000) which involves simple activation of the task-set rule (Rubinstein, Evans, & Meyer, 2001) and
76 inhibition of the task-rule relevant to the competing task-sets (Mayr & Keele, 2000). In the present study, we
77 examined whether mild anxiety modulates task switching ability. Consistent with the argument that anxiety
78 impairs central executive functions such as inhibition, shifting and attentional allocation ??

79 4 b)

80 The switching experiment was designed with 32 facial photographs which portrayed happy and angry expressions.
81 The experiment was designed with Rogers and Monsell's (1995) alternating-run task switching paradigm where
82 the task changed every second trial. The order of the tasks was counterbalanced across participants. For half of
83 the participants the order of the tasks started from emotion while for other half of the participants the order of
84 the tasks started with the age task first. The experiment was designed in E-prime software (Schneider, Eschman,
85 & Zuccolotto, 2002, version1.2) and was presented on computer screen. Background colors of the screen served
86 as cue to the tasks. Participants made manual responses to the tasks using the key board. Total trials of the
87 experiment were 241.

88 5 c) Procedure

89 Participants were given description of the experiment, following they performed the experiment in a silent room.
90 They were said thanks for their participation and debriefed at end of the session.

91 IV.

92 6 Results

93 7 a) Switching Experiment

94 Response times (RTs) were excluded above 2.5 standard deviations from each participants' mean. RTs for the first
95 trial were discarded because no task switch took place. The switch costs (mean RTs switch minus repeat trials)
96 were calculated subsequently, mean RTs were submitted to a repeated measures analysis of variance (ANOVA)
97 with trial (switch vs. repeat), and task (emotion vs. age) as within subject factors.

98 The main effect of trial was significant $F(1, 23) = 164.00, p < 0.001, \eta^2 = .87$. RTs were slower on switch
99 Volume XIV Issue VI Version I Emotion Task .01 (.00) .07 (.00) Age Task .09 (.00) .14 (.00)

100 **8 b) Relationship between Anxiety Scores and Switch Costs**

101 V.

102 **9 Discussion**

103 There were two main aspects of the study. The first was the relative ease of switching between emotion and a non-
104 emotion attribute of a face among mild anxious individuals. The second objective was to examine the relationship
105 between anxiety and task switching abilities specifically when tasks of social significance are involved.

106 Our results showed an asymmetry in switch costs with the effect on age decisions being larger than those
107 on emotion decisions, although the emotion was an overall easier task. Interestingly, this effect emerged only
108 among anxious individuals. This result supported the first hypothesis of the study. Switching between tasks of
109 unequal difficulty is not symmetric often produces larger switch costs for the easier of the two tasks and has been
110 attributed to the inhibition of the difficult task which is difficult to engage with while easier of the two tasks is
111 more automatically performed (e.g., showed that emotion decisions were faster than the age decisions on repeat
112 trials, we cannot attribute the asymmetry to the inhibition of the easier task because then the switch cost would
113 have shown an opposite pattern (i.e., larger for the emotion than the age task). Rather the switch costs depict
114 that the facial emotion is difficult to disengage from, thus switch costs are increased to the age task. As switching
115 requires a successful manipulation of attentional control to allocate resources to the relevant task (Eysenck et
116 al., 2007) and disengage the attention from the task which is irrelevant on the current trial, therefore in the
117 current perspective, it seems that there is a diminished ability of disengaging attention from emotion attribute
118 of the face, therefore performance on the non-emotion task has been suffered among anxious individuals. The
119 preferential processing/ enhanced attentional allocation (i.e., enhanced P 100- ?? 1994). The results in the
120 present study Regression analysis with anxiety scores as independent and switch costs (i.e., difference between
121 RTs on switch and repeat trials) as dependent variable showed a significant result $F(1, 23) = 31.83, p < 0.001, R^2 = 0.59$. Hence, the independent variable explained almost 59% of the variance of the switch costs. Standard
123 regression coefficients showed that anxiety scores, $\beta = 0.76, t = 5.64, p < 0.001$ made positive contribution toward
124 the explanation of switch costs. activity- Ball et al., 2012) to emotional faces has been observed in anxious
125 individuals during their performance of Stroop task and face matching tasks.

126 In addition, switch cost for the age was increased with the level of anxiety. The results indicate the difficulty
127 in switching attention from facial emotion to compute age, slowing the age decisions on switch trials in anxious
128 individuals. This tendency is increased with high anxiety scores. Consistent with these findings, it is convincing
129 to say that individuals with anxiety are unable to manipulate their attentional resources in order to exert an
130 efficient cognitive control. This conclusion is also supported by the previous research (e.g., which suggests that
131 anxiety reduces top-down control over emotional distractors evident in the reduced recruitment of the neural
132 network involving the cortical areas-ACC (anterior cingulate cortex) and LPFC (lateral prefrontal cortex) which
133 are engaged in cognitive control and reduces performance on tasks which involve shifting (e.g., Goodwin &
134 Sher, 1992) Our results are consistent with the previous research suggesting the deficit of attentional deployment
135 away from the emotional stimuli in anxious individuals, but at the same time it is important to note that the
136 previous studies have employed differential paradigms, for example the picture version of dot-probe paradigm
137 (MacLeod, Mathews, & Tata, 1986) where individuals are presented with two pictures (emotional/non emotional)
138 simultaneously followed by a simple probe to which a response has to be made. The efficiency of response to
139 the probe following the emotional picture compared with non-emotional picture determines the attentional bias
140 to the emotional picture. The similar results have been found in studies using spatial cuing task (e.g., Fox,
141 Russo, Bowles, & Dutton, 2001; Fox, Russo, & Dutton, 2002; Mogg, Holmes, Garner, & Bradley, 2008) where
142 a single emotional face is presented as a cue for a simple probe which can either appear on the same or on a
143 different location of the emotional face. The high anxious individuals take longer to disengage attention from
144 the emotional face. Here we used task switching paradigm where the participant has to make decisions of the
145 emotion/age of a single emotional face which alternates every trial. As the participants are engaged in a different
146 task every second trial while the face is alternated every trial-it provides a measure of cognitive control and
147 reflects the allocation of attentional resources.

148 The neurocognitive mechanisms of anxiety support a common amygdala-prefrontal circuitry during cognitive-
149 affective processing. The anxiety is characterized by the hyper-activation of the amygdala toward emotional
150 stimuli and a prefrontal underrecruitment to modulate the activation of amygdala at neural level. As a result
151 the cognitive system is biased due to the activation of emotion-related representations and a failure to implement
152 cognitive control to inhibit the emotion-related representation in order to activate the non-emotion representations
153 (Bishop, 2007). Anxiety is associated with deficits in working memory and inhibitory control (Eysenck & Calvo,
154 1992; Fox, 1994).

155 The results of the present study showed that attentional bias toward emotion interfered to compute age among
156 faces; as a result the switching ability suffered.

157 **10 VI. Limitations and Future Directions**

158 The present study employed a small number of non-clinical sample. Thus, future research must include
159 comparatively larger sample and clinically significant level of anxiety. Results of the present study have

10 VI. LIMITATIONS AND FUTURE DIRECTIONS

160 implications to understand affective disorders and to design therapeutic interventions for anxiety disorders. As a
161 conclusion, anxiety impairs cognitive control of emotional stimuli (i.e., greater engagement with emotion). As a
162 result, the non-emotion task endures greater switching cost than the emotion task. Mild anxiety predicts switch
costs.

Figure 1:

163

Figure 2:

Figure 3: Figure 1 :

1

reaction times (ms)	600 700 800 900 1000	Emotion
Mean	400 500	
	300	
	200	
Switch		Repeat

[Note: Age ($M=953.38ms$) than repeat ($M=623.00ms$) trials. Errors (M) and Standard Errors (SE) in Task switching Experiment Allport et al.]

Figure 4: Table 1 :

Figure 5:

164 [Cogn. Emot] , *Cogn. Emot* 6 p. .

165 [Hum and Neurosci] , *Hum , Neurosci* . 10.3389/fnhum.2013. 7 p. 840.

166 [Bishop et al. ()] , S Bishop , M Brett , A D Lawrence . 2004.

167 [Ball et al. ()] , T M Ball , S Sullivan , T Flagan , C A Hitchcock , A Simmons , M P Paulus , M B Stein . 2012.

168 [Shin et al. ()] ‘An fMRI study of anterior cingulate function in posttraumatic stress disorder’. L M Shin , P J Whalen , R K Pitman , G Bush , M L Macklin , L B Lasko . *Biol. Psychiatry* 2001. 50 p. .

170 [Ansari et al. ()] T L Ansari , N Derakshan , A Richards . *Effects of anxiety on task switching: evidence from the mixed saccade task. Cognitive, Affective, and Behavioral Neuroscience*, 2008. 8 p. .

172 [Yiend and Mathews ()] ‘Anxiety and attention to threatening pictures’. J Yiend , A Mathews . *The Quarterly Journal of Experimental Psychology*. 54 A 2001. (3) p. .

174 [Broadbent and Broadbent ()] ‘Anxiety and attentional bias: State and trait’. D Broadbent , M Broadbent . *Cognition and Emotion* 1988. 2 p. .

176 [Wood et al. ()] ‘Anxiety and cognitive inhibition’. J Wood , A Mathew , T Dalgleish . *Emotion* 2001. 1 p. .

177 [Eysenck et al. ()] ‘Anxiety and cognitive performance: attentional control theory’. M W Eysenck , N Derakshan , R Santos , M G &calvo . *Emotion* 2007. 7 p. .

179 [Eysenck and Calvo ()] *Anxiety and performance: the processing efficiency theory*, M W Eysenck , M G Calvo . 1992.

181 [Darke ()] ‘Anxiety and working memory capacity’. S Darke . *Cognition and Emotion* 1988. 2 p. .

182 [Ansari and Derakshan ()] ‘Anxiety impairs inhibitory control but not volitional action control’. T L Ansari , N Derakshan . *Cognition & Emotion* 2010. 24 (2) p. .

184 [Derakshan and Eysenck ()] ‘Anxiety, processing efficiency, and cognitive performance: new developments from attentional control theory’. N Derakshan , M W Eysenck . *European Psychologist* 2009. 14 p. .

186 [Fox et al. ()] ‘Attentional bias for threat: Evidence for delayed disengagement from emotional faces’. E Fox , R Russo , K Dutton . *Cognition & Emotion* 2002. 16 p. .

188 [Fox ()] ‘Attentional bias in anxiety: a defective inhibition hypothesis’. E Fox . *Cogn. Emot* 1994. 8 p. .

189 [Meinhardt and Pekrun ()] ‘Attentional resource allocation to emotional events: An ERP study’. J Meinhardt , R Pekrun . *Cognition & Emotion* 2003. 17 p. .

191 [Bush et al. ()] ‘Cognitive and emotional influences in anterior cingulate cortex’. G Bush , P Luu , M I Posner . *Trends. Cogn.Sci* 2000. 4 p. .

193 [Bower ()] *Commentary on mood and memory. Behavior Research and Therapy*, G H Bower . 1987. 25 p. .

194 [Monsell Driver (ed.)] *Control of cognitive processes: Attention and Performance XVIII*, In S Monsell, & J Driver (ed.) (Cambridge) MIT Press. p. .

196 [Rogers and Monsell ()] ‘Costs of a predictable switch between simple cognitive tasks’. R D Rogers , S Monsell . *Journal of Experimental Psychology: General* 1995. 124 (2) p. .

198 [Goodwin and Sher ()] ‘Deficits in setshifting ability in non-clinical compulsive checkers’. A H Goodwin , K J Sher . *Journal of Psychopathology and Behavioral Assessment* 1992. 14 p. .

200 [Fox et al. ()] ‘Do threatening stimuli draw or hold visual attention in subclinical anxiety’. E Fox , R Russo , R Bowles , K Dutton . *Journal of Experimental Psychology: General* 2001. 130 p. .

202 [Miskovic and Schmidt ()] ‘Early information processing biases in social anxiety’. V Miskovic , A L Schmidt . *Cognition & Emotion* 2012. 26 (1) p. .

204 [Mogg et al. ()] ‘Effects of threat cues on attentional shifting, disengagement and response slowing in anxious individuals’. K Mogg , A Holmes , M Garner , B P Bradley . 10.1016/j.brat.2008.02.011. *Behav Res Ther* 2008. 46 (5) p. .

207 [Jhonson ()] ‘Emotional attention setshifting and Its relationship to anxiety and emotion regulation’. D R Jhonson . *Emotion* 2009. 9 (5) p. .

209 [Dresler et al. ()] ‘Emotional Stroop task: effect of word arousal and subject anxiety on emotional interference’. T Dresler , K Mériau , H R Heekeren , E Van Der Meer . 10.1007/s00426-008-0154-6. *Psychol Res* 2009. 73 (3) p. .

212 [Rubinstein et al. ()] ‘Executive control of cognitive processes in task switching’. J S Rubinstein , D E Meyer , J E Evans . *Journal of Experimental Psychology: Human Perception and Performance* 2001. 27 (4) p. .

214 [Lovibond and Lovibond ()] ‘Manual for the depression, anxiety, and stress scale’. S H Lovibond , P F Lovibond . *Sydney: Psychology Foundation*, 1995. (nd Ed)

216 [Fenske and Eastwood ()] ‘Modulationof focused attention by faces expressing emotion: Evidence from flanker tasks’. M J Fenske , J D Eastwood . *Emotion* 2003. 3 p. .

218 [Bower ()] 'Mood and memory'. G H Bower . *American Psychologist* 1981. 36 p. .

219 [Bishop et al. ()] 'Neural processing of fearful faces: effects of anxiety are gated by perceptual capacity
220 limitations'. S J Bishop , R Jenkins , A D Lawrence . 10.1016/j.biopsych.2006.10.011. *Cereb. Cortex* 2006.

221 [Bishop ()] 'Neurocognitive mechanisms of anxiety: an integrative account'. S J Bishop . *Trends in Cognitive
222 Science* 2007. 11 (7) p. .

223 [Poy et al. ()] 'On the relationship between attention and personality: covert visual orienting of attention in
224 anxiety and impulsivity'. R Poy , M D Eixarch , C Ávila . *Personality and Individual Differences* 2004. 36 p. .

225 [Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli Nat. Neurosci]
226 'Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli'. *Nat. Neurosci* 7 p. .

227 [Schneider et al. ()] *Prime user's guide*, W Schneider , A Eschman , A Zuccolotto . 2002. Pittsburgh, PA:
228 Psychology Software Tools, Inc.

229 [Weisser et al. ()] 'Processing the attentional control theory in social anxiety: An emotional saccade task'. M J
230 Weisser , P Pauli , A &muhlb erg . *Cognitive, Affective, & Behavioral Neuroscience* 2009. 9 (3) p. .

231 [Brown et al. ()] 'Psychometric properties of the depression, anxiety, and stress scale (DASS) in clinical samples'.
232 T A Brown , B F Chorpita , W Korotitsch , D H Barlow . *Behavioral Research and Therapy* 1997. 35 (1) p. .

233 [Drevets and Raichle ()] 'Reciprocal suppression of regional cerebral blood flow during emotional vs. Higher
234 cognitive processing: Implications for interactions between emotion and cognition'. W C Drevets , M E
235 Raichle . *Cognition & Emotion* 1998. 12 p. .

236 [Meiran ()] *Reconfiguration of stimulus tasksets and response task-sets during task-switching*, N Meiran . 2000.

237 [Mathew and Macleod ()] 'Selection processing of threat cues in anxiety states'. A M Mathew , C Macleod .
238 *Behavior Research and Therapy* 1985. 23 p. .

239 [Selective effects of social anxiety, anxiety sensitivity, and negative affectivity on the neural bases of emotional face processing Ne
240 'Selective effects of social anxiety, anxiety sensitivity, and negative affectivity on the neural bases of emotional
241 face processing'. *Neuroimage* 59 p. .

242 [Seligman et al. ()] M E P Seligman , E F Walker , D L Rosenhan . *Abnormal psychology*, (New York) 2001.
243 W.W. Norton & Company. (4th ed.)

244 [Moriya and Sugiura ()] *Socially anxious individuals with low working memory capacity could not inhibit the
245 goal-irrelevant information*, J Moriya , Y Sugiura . 2013. Front.

246 [Bishop et al. ()] 'State anxiety modulation of the amygdala response to unattended threat-related stimuli'. S J
247 Bishop , J Duncan , A D Lawrence . *Journal of Neuroscience* 2004. 24 (46) p. .

248 [Mayr and Keele ()] 'Task-set switching and long-term memory retrieval'. U Mayr , S Keele . *Journal of
249 Experimental Psychology: Learning, Memory, and Cognition* 2000. 26 p. .

250 [Simpson et al. ()] 'The emotional modulation of cognitive processing: An fMRI study'. J R Simpson , D Ongu"
251 R , E Akbudak , T E Conturo , J M Ollinger , A Z Snyder , D A Gusnard , M E Raichle . *J Cogn Neurosci*
252 2000. 12 p. .

253 [De Ruiter and Brosschot ()] 'The emotional Stroop interference in anxiety: Attentional bias or cognitive
254 avoidance'. C De Ruiter , J F Brosschot . *Behaviour Research & Therapy* 1994. 32 p. .

255 [Williams et al. ()] 'The emotional Stroop task and Psychopathology'. J M G Williams , A Mathews , C Macleod
256 . *Psychological Bulletin* 1996. 120 (1) p. .

257 [Ashcraft and Kirk ()] 'The relationship among working memory, math anxiety, and performance'. M H Ashcraft
258 , E P Kirk . *Journal of Experimental Psychology: General* 2001. 130 p. .

259 [Bar-Haim et al. ()] 'Threat related attentional bias in anxious and non anxious individuals: a meta-analytic
260 study'. Y Bar-Haim , D Lamy , L Pergamin , M J Bakermans-Kranenburg , M H Van IJzendoorn . *Psychological
261 Bulletin* 2007. (1) p. .

262 [Sass et al. ()] 'Time course of attentional bias in anxiety: Emotion and gender specificity'. M S Sass , W Heller
263 , L J Stewart . *Psychophysiology* 2010. 47 p. .

264 [Hanoch and Vitouch ()] 'When less is more: Information, emotional arousal and the ecological reframing of the
265 Yerkes-Dodson law'. Y Hanoch , O Vitouch . *Theory Psychol* 2004. 14 p. .