

1 Making use of CO₂ Capture for Saving Earth and Human-A
2 Comparison of "Carbon Capture and Storage-CCS" and "Carbon
3 Capture and Storage Energy-CCSE"

4 Jiamin Jin¹

5 ¹ Shanghai Research Institute of Materials, Shanghai, China

6 Received: 11 December 2019 Accepted: 1 January 2020 Published: 15 January 2020

7

8 **Abstract**

9 Two technical routes of "Carbon Capture and Storage-CCS" with "Carbon Capture and
10 Storage Energy-CCSE" or "Smoke Storage Energy-SSE" have compared. The results show
11 that there are many problems in CCS, such as high cost, limited application, and the
12 application research has not done as yet, limited storage zone and safety hazard. Therefore,
13 author considers that CCS is not a feasible technical route. On CCSE or SSE, It shows that
14 there are many advantages. For example; The CO₂, considered waste, becomes the main raw
15 material for gas production. Theoretical calculation shows that energy stored is 3.52 times
16 that of energy consumption. unlimlted storage place, no safety risks, protect the environment,
17 conservation of resources.[CO₂ -Coal+ Firewood -Electric Gas Generators] three together can
18 save the earth. Let men live a peaceful and happy life.

19

20 **Index terms**— CCS carbon capture electric gas generator gasification.

21 **1 Introduction**

22 The weather is getting warmer and the extreme climate is frequent, which seriously threatens the survival and safety
23 of human beings. The CCS has become a focus of research and an international strategy to reduce greenhouse
24 gas emissions. The United Nations has met many times for this purpose, particularly in Paris. The International
25 Energy Agency(IEA) has repeatedly issued updated the CCS technology routes to guide countries around the
26 world. Zhang Dong xiao, president of China's Institute of Clean Energy at Peking University, believes that
27 CCS is expected to be the world's largest single technology for reducing carbon emissions. At present, the CCS
28 technology is still in the research stage, and Some scholars believe that the combination of burial and application
29 is only the feasible technical route, but the purification application of carbon dioxide is a global problem, to
30 30-50% is still to be raised. So say, the CCS technology route is not yet fully mature? At present, there are
31 56 projects in operation or planning in the US, EU and China, and three industrial-scale CCS projects were in
32 operation around the world. On August 6.2012, China's first carbon dioxide storage to the underground salt
33 water layer full process demonstration project was completed and put into operation for more than a year, it has
34 accumulated more than 40,000 tons of carbon dioxide, it is considered to be technology breakthrough progress
35 in CCS technical field. The IEA's call for 200 CCS projects to be put into operation by 2020, and by 2050, 3000
36 projects will have to be put into. Thus, the international community's concerns about climate change are anxious
37 and impatient.

38 **2 II. Problems in CCS Technical Routes**

39 CCS technology routes from a power plant in the United States. The current situation is that CCS technology
40 routes are fully adopted globally. The International Energy Agency(IEA) has repeatedly stressed that CCS
41 technology routes are an green house gas emission reduction solution.

5 III. CARBON CAPTURE AND STORAGE ENERGY-CCSE OR SMOKE STORAGE ENERGY-SSE

42 The CCS has been described in detail in the paper "Progress and Problems in Carbon Dioxide Capture and
43 Sealing Technology " written by Li Xuejing, Qiao ??ing[5]. This article is only briefly describe and supplement.

44 a) There are still some problems to be studied in CCS technology route

45 [CO 2 -Coal+ Firewood -Electric Gas Generators] three together can save the earth. Let men live a peaceful
46 and happy life.

47 I wrote four articles on the CCS for years ??1, ??, ??, ??]. It doesn't seem to get attention. The purpose of
48 this article is to further clarify the author's views, it is hope for attention.

49 On CCSE or SSE, It shows that there are many advantages. For example; The CO 2 , considered waste,
50 becomes the main raw material for gas production. Theoretical calculation shows that energy stored is 3.52 times
51 that of energy consumption. unlimlted storage place, no safety risks, protect the environment, conservation of
52 resources.

53 The CCS technical route consists of three parts: carbon capture, transport, and burial, in which the cost of
54 carbon capture accounts for 2/3 of the total cost. In the view of some scholars, be near economically, it is not
55 advisable to keep all carbon dioxide in storage; Therefore, the burying and applying it together is the only feasible
56 technology route. But the purification of CO 2 is a global problem that has not solved as yet. That is to say, it
57 is not feasible to bury and apply simultaneously? Making use of CO 2 Capture for Saving Earth and Human -A
58 Comparison of "Carbon Capture and Storage-CCS" and "Carbon Capture and Storage Energy-CCSE"

59 b) High cost According to the Internet report that power plants that use CCS technology have consumed
60 30-50% more energy than those that do not use CCS technology. Burial a ton of carbon dioxide, which costs \$52.
61 Electricity bills per kilowatt-hour rose by \$0.01-\$0.05.

62 3 c) Limited burial site

63 The storage of carbon dioxide includes geological and marine storage. Some scholars believe that the saltwater
64 layer beneath the Ordos Basin in China can contain tens of billions of tons of carbon dioxide, and the zone is
65 more common in China. However, the author believes still that this can only be said to be limited storage zones.
66 It cannot last forever to stored in the long history of human life.

67 4 d) There are safety risks

68 The safety hazard should be the most important. Whether it's geological or marine, there's always a carbon
69 dioxide leak. After 100 or 1,000 years, if unpredictable geological hazards occur in the burial site, and a large
70 amount of carbon dioxide is released, humans will be wiped out. For the sake of future generations, we have to
71 stop.

72 The above analysis shows that there are still many problems to be studied in the CCS technical route.
73 Therefore, the international community turned to the CCS technical route, and we had to think deeply.

74 5 III. Carbon Capture and Storage Energy-CCSE or Smoke 75 Storage Energy-SSE

76 The production processes of CCSE or SSE are as follows:

77 Raw materials (CO 2 + Carbonaceous raw material)? electric gas generator ? cooling tower ? dust removal ?
78 desulfurization ? gas storage tank.

79 In the preceding article[3], raw materials, production processes, production equipment and safety for CCSE etc.
80 have been described. The SSE is first proposed in this paper. The following points need to be added:a) Theoretical
81 side Related Carbon Gasification Reactions: C+CO 2 =2CO -162297kj/kg.mol(-38790kcal/Kg.mol) (1) 2CO+O
82 2 =2CO 2 +570865kj/kg.mol(136440kcal/kg.mol) (2) C+O 2 =CO 2 +408568kj/kg.mol(97650kcal/kg.mol)(3)

83 The(1)formula is famous Boudouard reactive formula. It is endothermic reaction. The heat absorbed by carbon
84 gasification reaction plus the heat released from the full combustion of carbon is equal to the heat released from
85 the combustion of carbon monoxide.?that is, (1)+(3)=(2). This fully conforms to the energy conservation law.

86 When we compares the heat released from the combustion of carbon monoxide with the heat absorbed by the
87 carbon gasification reaction, i.e.(2)/(1)=3.517 or 570865/162297=3.517. Theoretical calculations show that the
88 carbon gasification reaction has absorbed a lot of heat, but it has stored 3.52 times the amount of heat absorbed.
89 This 3.52 makes it clear that it is very cost-effective to convert electricity into chemical energy to use electricity
90 and carbon gasification reaction.

91 3.52 is the result of theoretical calculations, taking into account heat loss such as furnace wall, but also not
92 less than 3.4.

93 Please, people, remember firmly the 3.52 in the heart. 3.52 is important and reliable data. because the carbon
94 gasification reaction is a very important industrial reaction. It's thermodynamics, kinetics, reaction mechanism,
95 catalytic reaction and catalysis mechanism have studied in detail. In the industrial production, the use of this
96 reaction to produce products already has a long history. Example; the blast furnace iron making, it can be
97 said to rely entirely on this reaction, because the possibility of direct contact of solid carbon with oxide iron are
98 almost zero, hundreds of millions of tons of iron rely entirely on this gasification reaction . The production of
99 spongy iron in the flint kiln is also entirely dependent on this gasification reaction . etc. Remember 3.52, we will

100 inevitable find that there are many unreasonable initiatives in the current industrial production. Example: A
101 pumped-storage power station. The energy consumption to raise the water of the lower reservoir to the upper
102 must be greater than the electrical energy produced by hydraulic. It is a negative increase, and can not compare
103 to a 3.52 increase.

104 As compared with CCSE, it is inevitable thinking that it is much more reasonable to build an electric gas
105 generator than to build a pumping station.

106 The rubbish incinerator, which has been popularized in global, uses kerosene or natural gas to burn
107 rubbish? This action, which consumes both energy and resources, and pollutes the environment, it is very
108 unreasonable. If the rubbishes are putted into the electric gas generator, It stores both energy and gets clean gas
109 after over high temperatures.

110 Besides, electric energy is first used for lighting, electric motor, heating and so on. Author thinks it is also
111 unreasonable. If the electricity is first used in an electric gas generator, electricity is converted into chemical
112 energy, it stores 3.4 times the energy absorbed by gas. At present, the electricity produced in global is 26 billion
113 degrees, If we multiply by 3.4, it's 88.4 billion. The situation of electricity shortage can be solved quickly, and the
114 electric gas generator not only consumes a lot of garbage and carbon dioxide, but it also protecting environment,
115 and protecting resources.

116 Therefore, the author thinks that the application of electric should be: Electric?Electric gas genera-
117 tor?Application and Storage. Controlling the proportion of application and storage can control the carbon
118 dioxide content in the air and control the climate.

119 **6 b) Raw Material**

120 In addition to coal, firewood; carbon-containing raw materials, such as peat, used rubber, dried algae, domestic
121 waste, medical waste, waste plastics etc. can be used as raw materials to produce gas.

122 Author thinks that a lot of energy is stored in firewood, We should make full use of the firewood for carbon
123 gasification.

124 c) The purity of CO 2 and centrifugal gravity concentration On the gas production, it's demand is not strict
125 on the purity of CO 2 . Even if the smoke is directly introduced into the gas furnace. The calorific value of
126 gas produced is also higher than the city gas. Because the carbon dioxide content in the city gas is always
127 around 5%, and the gas produced by the electric gas generator, the carbon dioxide content can be zero. A large
128 amount of nitrogen only plays a dilution role, no with effect on conversion energy consumption or little effect.
129 The advantage of SSE is that it can reduce emissions quickly and saved a costly carbon capture process.

130 However, if the smoke were to be recycled to use, the nitrogen content in the smoke will inevitably rise gradually,
131 the calorific value of the gas will become lower and the production will be unstable. Proper enrichment is therefore
132 necessary. ??able 1: The specific gravity of several gases (g/cm3).

133 **7 N2**

134 CO2 NO2 SO2 0.00125 0.00198 0.00198 0.00293

135 The idea of centrifugal gravity concentration is that the specific gravity of CO 2 is 1.58 times that of N 2 ,
136 and the specific gravity varies a lot. The current technology can separate U 235 and U 238 , and it expects that
137 the separation of N 2 and CO 2 can increase the concentration of CO 2 . How much can be improved?it is to be
138 determined experimentally. Fortunately the demand for the purity of CO 2 for gas production is not strict, only
139 for stability.

140 If the cost with compression separation method is not too high, of course it is best. , the gas produced with
141 high concentrations of CO 2 has a high calorific value.

142 **8 d) Airflow direction on the CO 2**

143 In the previous paper ??3], it shows that the direction of CO 2 flow and solid material flow are the same direction,
144 from low temperature to hightemperature, the advantage of this flow direction is that the content of CO 2 in the
145 gas can reach zero, the second is the harmful volatile matter produced in the raw material after high temperature
146 refining, its are completely decomposed, and the result is clean gas. The shortcoming is that the outlet gas
147 temperature is higher, it must be cooled by cooler to improve the thermal efficiency. Of course, the direction
148 of the CO 2 flow can also flow in the opposite direction to the raw material, it is like blast furnace smelting,
149 from high to low temperature. The advantage is higher thermal efficiency. However, the deficiency is that the
150 harmful components in the gas must be treated separately outside the furnace, and the carbon dioxide in the
151 gas cannot be completely converted to CO because of the reaction equilibrium. Carbon monoxide produced in
152 the high temperature zone, to the low temperature zone, under the action of the catalyst, the reverse reaction
153 occurs, and CO is decomposed into CO 2 and carbon.

154 **9 e) Desulfurization**

155 A "Desulfurization" process is marked in the production process, but the author considers that this process needs
156 to be verified by experiments. The reason is that at high temperature, the carbon is a very strong reducing agent,
157 and the oxidizing gases, such as CO 2 , SO 2 , NO 2 and H 2 O in the smoke, will be reduced or decomposed

13 CONCLUSION

158 into sulfur, nitrogen and hydrogen by carbon, and after cooling, they cannot be reoxidized in the presence of a
159 large amount of carbon monoxide. But if the gas produced contains a lot of carbon dioxide, there is also the
160 possibility of re-oxidation. Therefore, at the beginning, the desulfurization process is properly retained.

161 The smoke is directly introduced into the furnace, the desulfurization and denitrationunit process of the power
162 plant, can be revoked.

163 10 f) Equipment to be researched in CCSE or SSE i. Electric 164 gas generator

165 Furnace types can be varied, blast furnace type, rotary furnace type, boiling type? horizontal, vertical?

166 The authors prefer the rotary furnace type, The final choice needs to be decided by the furnace expert.

167 The Electric gas generator is the only main equipment of CCSE or SSE, it is also a innovative equipment. In
168 fact, it is a heating furnace, which is characterized by large power. A ton of CO 2 can produce 1000 m 3 CO.
169 Each producing 1 m 3 CO requires about 1 degree of electricity, that is, 1 ton of CO 2 conversion to CO requires
170 1000 degrees of electricity.

171 11 ii. Centrifugal gravity concentrate equipment

172 The author thinks that there can be two methods for centrifugal gravity separation, one is by centrifuge principle,
173 the other is by using the ancient windmill principle to separate. Which one of the two is better, it should be
174 determined according to the experiment.

175 IV.

176 12 Supply of Power

177 Currently, the world's total carbon dioxide emissions are 35.2 billion tons. The largest is China, 10.9 billion
178 tons, followed by the United States and 5.1 billion tons, with China and the United States making up half of the
179 world's total emissions. The world's electricity generation is 26 trillion degrees, with China accounting for 25.49%
180 and the United States 15.66%. We already know that a ton of carbon dioxide to carbon monoxide requires about
181 1000 degrees of electricity, and 352 billion tons of CO 2 to CO. far exceed the global total power generation.
182 But there is no need to worry, because the amount of CO 2 absorbed by plants is very much, and How much to
183 capture remains to be determined by experts.

184 V.

185 13 Conclusion

186 Two technical routes, CCS and CCSE or SSE, have compared. The CCS stores "CO 2 " that are thought to be
187 waste. But in CCSE or SSE technology routes, the CO 2 becomes into raw materials, into commodities. The
188 CCS technical routes are both difficult and costly. The CCSE or SSE technology routes store energy and store
189 3.52 times more energy than it absorbs. Therefore, CCSE or SSE is feasible. The CCS is a exhaust the manpower
190 and drain the treasury.

191 We have to vigorously develop electric gas generator for achieve rural coal gasification. We have to consider
192 reorganizing the direct combustion turn to indirect combustion for improving heat efficiency. we have to make
193 full use of natural resources for achieve natural balance,

194 The combination of CO 2 -firewood and garbageelectricity, can save the earth.

195 The author believes that the ancient, primitive and most convenient direct combustion mode is very
196 unreasonable. If it is changed to hydropowergasification-application mode, or fire power-gasification at the same
197 time, it is not only to double the energy, but it is also to protect the environment, to protect resources, human
198 beings do not have to worry about coal and other resources exhausted, live a peaceful and happy life.

199 We can say that only carbon dioxide can save the earth. The use of CO 2 to convert the vast amount of energy
200 stored in plants and animals into chemical energy for human use will enable mankind to live a permanent and
peaceful and happy life.

Figure 1: