

1 Task Switching between Face Categorizations: an Advance 2 Preparation Effect

3 Amara Gul¹

4 ¹ The University of Birmingham

5 *Received: 9 December 2013 Accepted: 4 January 2014 Published: 15 January 2014*

6

7 **Abstract**

8 This study examined how advance preparation modulates our ability to switch between face
9 categorizations. The study included three switching experiments with different pairs of facial
10 categorization tasks. In experiment 1, subjects switched between gender and occupation
11 categorizations. Results showed a larger switch cost for the occupation task. In experiment 2,
12 participants categorized emotion and gender categorizations. Results yielded a larger switch
13 cost for the gender task. In experiment 3, subjects performed emotion and occupation
14 categorization task. There was a larger switch cost for the occupation task. The overall results
15 of experiments indicated that harder task yielded a larger switch cost than the easier task.
16 Moreover, these switch costs can be reduced with sufficient preparation time. This study is
17 the first investigation into advance preparation effect during switching between tasks of social
18 significance. We discuss why asymmetries reduce with an advance preparation during face
19 categorization tasks.

20

21 **Index terms**— task switching; emotion; advance preparation; face categorization.

22 **1 Introduction a) Face Categorization**

23 n observer perceives several attributes while looking at a face such as expressions of emotion, gender, identity.
24 Classic model of face processing by Bruce and Young (1986) suggests that face processing involves several
25 functionally independent processing modules. The model assumes that identification of a familiar face involves the
26 formation of a view independent structural description, which could be compared with all known faces stored in
27 Face Recognition Units, followed by the identification of particular person and retrieval of semantic information,
28 after which there is activation of the phonological codes. These codes underlie the name-related information of
29 the person. Bruce and Young suggest that the recognition of facial emotion and identity are operated through
30 distinct processes. Neuropsychological studies argue that emotion processing is automatic (Vuilleumier et al.,
31 2001(Vuilleumier et al., , 2002)) whereas non -emotion features are not automatically categorized (Quinn,
32 Mason, & Macrae, 2009). Facial emotion can be processed independent of face identity (Humphreys, Donnelly,
33 & Riddoch, 1993). Emotion is processed by specialized sub-cortical routes to amygdala which by pass cortical
34 processes involved in the identity coding ??Haxby, Hoffman, & Gobbini, 2000). Patients with prosopagnosia and
35 anomic aphasia successfully categorize gender, indicating that these processes rely on different mechanisms which
36 are required for face recognition (Clarke et al., 1997;Flude, Ellis, & Kay, 1989). In addition, face identification
37 and emotion discrimination can also dissociate (Parry, Young, Saul, & Moss, 1991). Given the differing patterns
38 of dissociation, we hypothesized that substantial effects of task switching may occur, when participants shift from
39 one face classification task to another.

40 **2 b) Task Switching**

41 Task switching is an experimental paradigm to examine cognitive control. Our daily routine requires the
42 processing of several tasks. In order to perform speeded switching, the cognitive control is required. In task

4 C) ERRORS

43 switching experiments, generally two tasks are presented. The trials where the task is switched called as switch
44 trials, whereas the trials where the task remains the same as on the previous trial are known as repeat trials. The
45 switch cost was measured as the difference in reaction times on switch and repeat trials. Jersild (1927) presented
46 the first task switching experiment with two conditions. The experimental condition involved switching between
47 two tasks while the control condition had a single task. Switch cost was measured as difference of performance
48 between these two conditions. In order to avoid such a confound Rogers and Monsell (1995) presented two tasks
49 in an alternating-run, for example a letter (L) and digit (D) categorization (LDLDLDLD?). This method allowed
50 computation of switch cost as a differential performance between switch and repeat trials. Each task yields a
51 specific rule. Switching requires an activation of the relevant task-rule and inhibition of the task-rule which is no
52 more relevant on the current trial (Mayr & Keele, 2000; Meiran, 1996). Cortical network of frontal and parietal
53 areas are strongly activated during task switching, thus advance preparation benefits are rather prominent on
54 switch trials (Ruge et al., 2005). By varying the interval between cue and stimulus, one can measure the time
55 utilized by cognitive system for an active preparation of the upcoming task. Switch cost is decreased with long
56 cue-stimulus intervals (CSI), for A Abstract-This study examined how advance preparation modulates our ability
57 to switch between face categorizations. The study included three switching experiments with different pairs of
58 facial categorization tasks. In experiment 1, subjects switched between gender and occupation categorizations.
59 Results showed a larger switch cost for the occupation task. In experiment 2, participants categorized emotion
60 and gender categorizations. Results yielded a larger switch cost for the gender task. In experiment 3, subjects
61 performed emotion and occupation categorization task. There was a larger switch cost for the occupation task.
62 The overall results of experiments indicated that harder task yielded a larger switch cost than the easier task.
63 Moreover, these switch costs can be reduced with sufficient preparation time. This study is the first investigation
64 into advance preparation effect during switching between tasks of social significance. We discuss why asymmetries
65 reduce with an advance preparation during face categorization tasks.

66 example when switching between a digit and a letter task, reaction times (RTs) on switch and repeat trials
67 speeded up from short (150 ms) to long (600 ms) CSI (Rogers & Monsell, 1995; ?icholson et al., 2005). To
68 date, it is unclear whether advance preparation can modulate switching ability between different pairs of face
69 categorization tasks. Therefore, we selected faces as experimental stimuli. We manipulated CSI (Experiments
70 1-3) to dissociate the time taken to prepare for the upcoming task from the switch costs. The cue preceded the
71 stimulus at various time intervals to examine the advance preparation effects. We hypothesized that a reduction
72 in switch cost would arise with long CSI. 2). The CSI was set to 150, 700, 1000 ms presented randomly throughout
73 the experiment. The order of the CSI and tasks were completely counterbalanced across participants. Each trial
74 consisted of a fixation (+) displayed for 1000 ms, followed by the colored screen (black screen as a cue to gender
75 and blue screen as a cue to occupation categorization), then the face appeared in center of the screen. A manual
76 response was made to the face by pressing keys on the key board: 1=male, 2=female, 3=actor, 4=singer. The
77 stimuli were presented on a 14 inch laptop and remained on the screen until the response was made. Participants
78 were presented with 241 trials experimental trials.

79 iii. Procedure Upon arrival in the experimental room, participants were given an informed consent form to
80 review and sign. Upon consent, they were given a description of the procedure. Next, s/he was seated before
81 the laptop at a comfortable viewing distance. Participants were told that this was a reaction time experiment
82 and they must engage actively in preparation for the upcoming task as signaled by the colored screen. They
83 were instructed to respond to the faces by pressing the fixed keys on keyboard as quickly as possible without
84 sacrificing accuracy. On each trial, participants were presented with a face and they were required to judge
85 gender or occupation of the face in 241 experimental trials of the gender and occupation task. Following the
86 experiment, the results were saved and participants were debriefed and thanked for their participation.

87 3 b) Results

88 Response times (RTs) for the first trial were discarded because no task switch took place, then outliers were
89 removed and RTs were excluded above 2.5 standard deviations from each participants' mean. Mean RTs were
90 submitted to a repeated measures analysis of variance (ANOVA) with trial (switch vs. repeat) x task (gender vs.
91 occupation) x CSI (150 vs. 700 vs. 1000 ms) as within subject factors. The main effect of trial was significant F
92 (1, 23) = 148.12, $p < 0.001$, $MSE = 163641.73$, $?p2 = .86$. RTs were slower on switch than on repeat trials ($M = 1436$
93 vs. 856 ms). There was a reliable main effect of the task F (1, 23) = 101.00, $p < 0.001$, $MSE = 16480.47$, $?p2 = .81$.
94 RTs were faster on gender than the occupation task ($M = 1070$ vs. 1222 ms). Main effect of CSI was significant
95 F (2, 23) = 36.00, $p < 0.001$, $MSE = 260309.46$, $?p2 = .60$, CSI 150 ms $M = 1396$ ms, CSI 700 ms $M = 1061$ ms,
96 CSI 1000 ms $M = 981$ ms. There was a significant interaction between Trial x CSI F (2, 23) = 9.20, $p < 0.001$,
97 $MSE = 68031.51$, $?p2 = .28$. Switch cost decreased with larger CSI (CSI 150 ms $M = 707$ ms, CSI 700 ms $M =$
98 548 ms, CSI 1000 ms $M = 485$ ms). There was a significant interaction between Trial x Task F (1, 23) = 23.00,
99 $p < 0.001$, $MSE = 5251.37$, $?p2 = .49$. The switch cost for occupation was larger than the gender task t (???

100 4 c) Errors

101 Errors for the first trial were discarded because no task switch took place, then mean errors were submitted to a
102 repeated measures analysis of variance (ANOVA) with trial (switch vs. repeat) x task (gender vs. occupation) x

103 CSI (150 vs. 700 vs. 1000 ms) as within subject factors. The main effect of trial was significant $F(1, 23) = 25.48$,
104 $p < 0.001$, $MSE = .03$, $?p2 = .52$. Errors were higher on repeat than on switch trials ($M = .07$ vs. $.06$). There was
105 a reliable main effect of the task $F(2, 23) = 2.93$, $p < 0.05$, $MSE = .06$, $?p2 = .49$. Materials, displays, procedure and analysis were same as Experiment 1
106 except the tasks were explained as emotion (happy/neutral) and gender (male/female). A manual response was
107 made to the face by pressing keys on the key board: 1=male, 2=female, 3=happy, 4=neutral.

108 **5 b) Results**

109 **6 i. Reaction Times**

110 Mean RTs were submitted to ANOVA with trial (switch vs. repeat) x task (emotion vs. gender) x CSI (150
111 vs. 700 vs. 1000 ms) as within subject factors. The main effect of trial was significant $F(1, 23) = 144.00$,
112 $p < 0.001$, $MSE = 22478.86$, $?p2 = .86$, switch ($M = 969$ ms) repeat ($M = 757$ ms). There was a reliable main effect of
113 the task $F(2, 23) = 24.06$, $p < 0.001$, $MSE = 2420.06$, $?p2 = .51$. RTs were faster on emotion than the gender task
114 ($M = 849$ vs. 877 ms). Main effect of CSI was significant $F(2, 23) = 34.51$, $p < 0.001$, $MSE = 23943.14$, $?p2 = .60$,
115 CSI 150 ms $M = 955$ ms, CSI 700 ms $M = 864$ ms, CSI 1000 ms = 770 ms). There was a significant interaction
116 between Trial x CSI $F(2, 23) = 6.36$, $p < 0.01$, $MSE = 16483.27$, $?p2 = .21$ (CSI 150 ms $M = 260$ ms, CSI 700 ms
117 $M = 208$ ms, CSI 1000 ms $M = 167$ ms). There was a significant interaction between Trial x Task $F(1, 23) = 6.78$,
118 $p < 0.05$, $MSE = 2155.20$, $?p2 = .22$. The switch cost for gender task was larger than for the emotion task ($M = 226$
119 vs. 198 ms; $t(23) = 2.60$, $p < 0.05$). The interaction between Task x CSI was not reliable $F(2, 23) = .08$, $p = .92$,
120 $MSE = 2111.55$, $?p2 = .00$. Similarly, the higher order interaction between Trial x Task x CSI was not significant
121 [$F(2, 23) = .45$, $p = .63$, $MSE = 5441.76$, $?p2 = .01$, Fig. 2].

122 **7 c) Errors**

123 Mean errors were submitted to ANOVA with trial (switch vs. repeat) x task (emotion vs. gender) x CSI (150 vs.
124 700 vs. 1000 ms) as within subject factors. None of the main effects was reliable: trial F (Materials, displays,
125 procedure and analysis were same as Experiment 1 except the tasks were explained as emotion (happy/neutral)
126 and occupation (actor/singer). A manual response was made to the face by pressing keys on the key board:
127 1=actor, 2=singer, 3=happy, 4=neutral.

128 **8 b) Results**

129 **9 i. Reaction Times**

130 Mean RTs were submitted to ANOVA with trial (switch vs. repeat) x task (emotion vs. occupation) x CSI (150
131 vs. 700 vs. 1000 ms) as within subject factors. The main effect of trial was significant $F(1, 23) = 240.50$, $p < 0.001$,
132 $MSE = 81405.36$, $?p2 = .91$. RTs were slower on switch ($M = 1268$ ms) than on repeat ($M = 747$ ms) trials. There
133 was a reliable main effect of the task $F(1, 23) = 147.40$, $p < 0.001$, $MSE = 15379.02$, $?p2 = .86$. RTs were faster on
134 emotion than the occupation task ($M = 919$ vs. 1096 ms respectively). Main effect of CSI was significant $F(2,$
135 $23) = 35.47$, $p < 0.001$, $MSE = 173889.53$, $?p2 = .60$. RTs were faster with long CSI (CSI 150 ms $M = 1199$ ms, CSI
136 700 ms $M = 978$ ms, CSI 1000 ms $M = 845$ ms). There was a significant interaction between Trial x CSI $F(2, 23)$
137 = 15.81 $p < 0.001$, $MSE = 40886.99$, $?p2 = .40$, CSI 150 ms $M = 637$ ms, CSI 700 ms $M = 521$ ms, CSI 1000 ms $M = 405$
138 ms]. There was significant interaction between Trial x Task $F(1, 23) = 6.37$, $p < 0.05$, $MSE = 6008.25$, $?p2 = .21$.
139 The switch cost for occupation was larger than the emotion task $t(23) = 2.52$, $p < 0.05$, $M = 544$ vs. $M = 498$
140 ms respectively. The interaction between Task x CSI was not reliable $F(2, 23) = 1.60$, $p = .21$, $MSE = 14754.08$,
141 $?p2 = .06$. The higher order interaction between Trial x Task x CSI was not reliable $F(2, 23) = 1.11$, $p = .33$,
142 $MSE = 7559.61$, $?p2 = .04$, Fig. 3.

143 **10 c) Errors**

144 (150 vs. 700 vs. 1000 ms) as within subject factors. The main effect of the task was significant $F(1, 23) = 23.00$,
145 $p < 0.001$, $MSE = .07$, $?p2 = .49$. Errors were higher on occupation than the emotion task ($M = .06$ vs. $.03$). The
146 main effect of trial was not reliable $F(1, 23) = 1.23$, $p = .23$.

147 **11 Discussion**

148 This study showed an asymmetric switch costs between different face categorizations. In experiment 1,
149 gender categorization was faster than the occupation categorization. Occupation categorization yielded larger
150 switch costs than the gender categorization. In experiment 2, emotion categorization was faster than gender
151 categorization. Gender categorization produced larger switch cost than the emotion categorization. In experiment
152 3, emotion categorization was faster than the occupation categorization. The occupation categorization had larger
153 switch costs than the emotion categorization. These results supported the first hypothesis of the study. Emotion
154 is processed automatically (Vuilleumier et al., 2001). It captures attention and produces rapid brain response
155 (Whalen et al., 1998) while face gender is not categorized automatically (Quinn, Mason, & Macrae, 2009).
156 Neuropsychological studies suggest that emotion and identity categorization depend on distinct processes (e.g.,
157 Humphreys, Donnelly, & Riddoch, 1993). Emotion categorization relies on occipital to superior temporal stream

11 DISCUSSION

158 with an activation in amygdala while gender categorization involves occipital to inferotemporal stream with an
159 active contribution of the anterior temporal regions (Haxby, Hoffman, & Gobbini, 2000). As a result switch cost
160 is emerged, however the magnitude of the switch costs differ across different pairings of face categorizations. The
161 task-set of the difficult task takes longer to be configured than the task-set of an easier task. Difficult task suffers
162 in switching conditions and yield a larger switch cost.

163 The switch cost was reduced with larger CSI. Our results supported the second hypothesis of the study. These
164 findings are consistent with previous studies (Kiesel et al., 2010) demonstrating that sufficient preparation results
165 in shorter switch costs. However, it is important to note here that the preparatory mechanism operates equally
166 across emotion and non-emotion attribute of the faces, therefore emotional expressions of the faces are not special
167 beneficiaries of this mechanism. These results have implications for understanding of pathological behaviour, as
168 for example, task switching is difficult in patients following frontal lobe damage (Stabrum et al., 2000). The
169 present work demonstrated that executive control in task switching can be improved with sufficient preparation.
170 This has implications for training more generally and specifically for individuals with executive dysfunctions and
prosopagnosia.

Figure 1:

171

Task x
CSI F (2, 23) =3.00, p=.08, MSE=.001, ?p2=.10; Task
x Trial F (2, 23) =1.52, p=.23, MSE=.00, ?p2=.06.
III. Experiment 2: Gender
and Emotion
Task Switching
a) Method
i. Participants
24 postgraduate stu-
dents (13 female and 11
male, ages 22-25 years, M= 23.08 years) took part solely in experiment 2.
20 Volume
XIV
Issue V
Version
I
(A)

Figure 2:

?p2=.03; trial x CSI F (2, 23) =0.03, p=.96, MSE=.00,
?p2=.00; trial x task x CSI F (2, 23) =0.30, p=.74,
MSE=.00, ?p2=.01.

IV. Experiment 3: Occupation and
Emotion Task Switching

Figure 3:

None of
the interactions were significant Task x Trial F (1, 23)
=.09, p=.75, MSE=.00, ?p2=.00; Task x CSI F (2, 23)
=1.05, p=.35, MSE=.00, ?p2=.04; Trial x CSI F (2, 23)
=1.24, p=.29, MSE=.00, ?p2=.05; Task x Trial x CSI F
(2, 23) =2.00, p=.18, MSE=.00, ?p2=.07.

V.

Figure 4:

11 DISCUSSION

172 [Ruge et al. ()] 'Advance preparation and stimulus-induced interference in cued task switching: further insights
173 from BOLD fMRI'. H Ruge , M Brass , I Koch , O Rubin , N Meiran , D Y Von Cramon . *Neuropsychologia*
174 2005. 43 (3) p. .

175 [Kiesel et al. ()] 'Control and Interference in Task switching-Review'. A Kiesel , M Steinhauser , M Wendt , M
176 Falkenstein , K Jost , A M Phillip , I Koch . 10.1037/a001984-2. *Psychological Bulletin* 2010. 136 (5) p. .

177 [Rogers and Monsell ()] 'Costs of a predictable switch between simple cognitive tasks'. R D Rogers , S Monsell .
178 *Journal of Experimental Psychology: General* 1995. 124 (2) p. .

179 [Parry et al. ()] 'Dissociable face processing impairments after brain injury'. F M Parry , A W Young , J S Saul
180 , A Moss . 10.1080/01688639108401070. *Journal of Clinical & Experimental Neuropsychology* 1991. 13 p. .

181 [Vuilleumier et al. ()] 'Effects of attention and emotion on face processing in the human brain: An event-related
182 fMRI study'. P Vuilleumier , J L Armony , J Driver , R J Dolan . *Neuron* 2001. 30 p. .

183 [Humphreys et al. ()] 'Expression is computed separately from facial identity, and it is computed separately from
184 for moving and static faces: Neuropsychological evidence'. G W Humphreys , N Donnelly , M J Riddoch .
185 10.1016/0028-3932(93)90045-2. *Neuropsychologia* 1993. 31 p. .

186 [Flude et al. ()] 'Face Processing and Name Retrieval in an Anomic aphasic: Names Are Stored Separately from
187 Semantic Information about Familiar People'. B M Flude , A W Ellis , J Kay . 10.1016/0278-2626. *Brain and
188 Cognition* 1989. 11 p. .

189 [Clarke et al. ()] 'Face recognition and postero-inferior hemispheric lesions'. S Clarke , A Lindermann , P Maeder
190 , Borruat , Francois-Xavier , G Assal . 10.1016/S0028-3932(97)00083-3. *Neuropsychologia* 1997. 35 (12) p. .

191 [Quinn et al. ()] 'Familiarity and person construal: Individuating knowledge moderates the automaticity of
192 category activation'. K A Quinn , M F Mason , C N Macrae . 10.1002/ejsp.596. *European Journal of Social
193 Psychology* 2009. 39 p. .

194 [Whalen et al. ()] 'Masked presentations of emotional facial expressions modulate amygdala activity without
195 explicit knowledge'. P J Whalen , S L Rauch , N L Etcoff , S C McInerney , M B Lee , M A Jenike . *Journal
196 of Neuroscience* 1998. 18 p. .

197 [Jersild ()] *Mental set and shift. Archives of Psychology*, A T Jersild . 1927.

198 [Vuilleumier et al. ()] 'Neural response to emotional faces with and without awareness: Eventrelated fMRI in a
199 parietal patient with visual extinction and spatial neglect'. P Vuilleumier , J L Armony , K Clarke , M Husain
200 , J Driver , R J Dolan . *Neuropsychologia* 2002. 40 p. .

201 [Schneider et al. ()] *Prime user's guide*, W Schneider , A Eschman , A Zuccolotto . 2002. Pittsburgh, PA:
202 Psychology Software Tools, Inc.

203 [Meiran ()] 'Reconfiguration of processing mode prior to task performance'. N Meiran . *Journal of Experimental
204 Psychology: Learning, Memory & Cognition* 1996. 22 p. .

205 [Stablim et al. ()] 'Rehabilitation of executive deficits in closed head injury and anterior communicating artery
206 aneurysm patients'. F Stablim , ' Umiltà , C Mogentale , C Carlan , M Guerrini , C . *Psychological Research*
207 2000. 63 p. .

208 [Allport and Wylie ()] 'Task switching: Positive and negative priming of task-set'. A Allport , G Wylie . *Attention,
209 space and action: Studies in cognitive neuroscience*, G W Humphreys, J Duncan, & A M Treisman (ed.)
210 (Oxford, England) 1999. Oxford University Press. p. .

211 [Mayr and Keele ()] 'Task-set switching and long-term memory retrieval'. U Mayr , S Keele . *Journal of
212 Experimental Psychology: Learning, Memory, and Cognition* 2000. 26 p. .

213 [Haxby et al. ()] 'The distributed human neural system for face perception'. J V Haxby , E A Hoffman , M I
214 Gobbini . 10.1038/71152. *Trends in Cognitive Sciences* 2000. 4 p. .

215 [Bruce and Young ()] 'Understanding Face recognition'. V Bruce , A Young . 10.1111/j.2044-8295.1986.tb02199.x.
216 *Br J Psychol* 1986. 77 (3) p. .