

1 Ghanaian Mathematics Teachers' use of ICT in Instructional 2 Delivery

3 FAROUQ SESSAH MENSAH¹, FAROUQ SESSAH MENSAH² and FAROUQ SESSAH
4 MENSAH³

5 ¹ University of Cape Coast, Department of Mathematics and ICT Education

6 *Received: 14 December 2016 Accepted: 5 January 2017 Published: 15 January 2017*

7

8 **Abstract**

9 Purpose-The purpose of the study was to investigate the extent of ICT use among Ghanaian
10 mathematics teachers in their instructional delivery.Design/methodology/approach: A
11 cross-sectional survey design was adopted in the present study. A stratified sampling technique
12 was used to select 120 mathematics teachers from 24 public Senior High Schools (SHS) with
13 12 schools each located in the rural and urban areas respectively. The study employed
14 questionnaires in data collection.Findings: The findings of the study indicated the use of Word
15 Processing, Internet and Calculators as very high. The study also revealed that mathematics
16 teachers had favorable attitudes towards the use of ICT in teaching mathematics.

17

18 **Index terms**— teachers, mathematics, information communication technology, instructional delivery, senior
19 high school (SHS).

20 **1 Introduction**

21 catch phrase in education today is Information Communication and Technologies (ICT) use. The rapid growth
22 in ICT have brought remarkable changes in the twenty-first century, as well as affected the demands of modern
23 societies. The call to integrate ICT in education has become a major concern to many countries all over the
24 world. Until recently, the primary teaching resources available to teachers were the books in libraries. However,
25 ICT has provided a new kind of support for instruction through the development of facilities that supports the
26 teaching and learning process.

27 According to the Ministry of Education, Youth and Sports (MOEYS) and Ghana Education Service (GES)
28 ??2002), integrating technology in classroom instruction ensures greater motivation, increases selfesteem and
29 confidence, enhances good questioning skills, promotes initiative and independent learning, improves presentation
30 of information/outputs, develops problem solving capabilities, promotes better information handling skills,
31 increasing focus time on task, and improves social and communication skills.

32 Several studies have revealed that ICT plays important role in teaching and learning mathematics. For
33 instance, Becta (2003) assert that the use of technology in mathematics classroom allows the students to focus
34 on strategies and interpretation of answers rather than spend time on tedious computational calculations. ICT
35 use in mathematics instruction assists the learner in visualizing the process and concept role of symbols, which
36 reaches great heights in calculus ??Tall & Ramos, 2004). Ittigson and Zewe (2003) also opine that technology
37 improves the way mathematics should be taught and enhances students understanding of basic concepts. It
38 deemphasizes algorithmic skills resulting in an increased emphasis on the development of mathematical concepts.

39 Integrating ICT tools such as computers and scientific calculators in mathematics instruction have the potential
40 to change pedagogical approaches radically and to improve individual student learning outcome by transforming
41 the classroom social practices (Forgasz& Prince, 2004;Goos, 2005). It is therefore essential for Senior High School
42 (SHS) mathematics teachers to use ICT tools in teaching and also urge students to use ICT tools in learning
43 mathematics. This will enable the students to better understand the mathematical concepts taught.

3 STATEMENT OF THE PROBLEM

44 2 II.

45 3 Statement of the Problem

46 A Design/methodology/approach: A cross-sectional survey design was adopted in the present study. A stratified
47 sampling technique was used to select 120 mathematics teachers from 24 public Senior High Schools (SHS) with
48 12 schools each located in the rural and urban areas respectively. The study employed questionnaires in data
49 collection.

50 Findings: The findings of the study indicated the use of Word Processing, Internet and Calculators as very
51 high. The study also revealed that mathematics teachers had favorable attitudes towards the use of ICT in
52 teaching mathematics. The study further showed that most teachers were competent in the use of ICTs such
53 as Microsoft office word (???????? = ???. ??), PowerPoint(???????? = ???. δ ???"δ ??"), Excel (???????? = ???.
54 δ ???"δ ??"), and Calculators(???????? = ???. ??). The findings showed that there is a positive correlation between
55 mathematics teachers' use of ICT and competences (δ ???"δ ??" = ???. ??????, ?? < 0.05).

56 Research Limitations/Implications : In common with others, the study is limited to public SHS mathematics
57 teachers in the Central Region of Ghana. The results may differ if replicated in private SHS and other geographies.

58 Practical implications: A number of significant implications are drawn from this study, for example using, the
59 Curriculum Research Development Division (CRDD) of the Ghana Education Service in collaboration with the
60 related agencies in the Ministry of Education should carry out research to review critically the mathematics
61 curriculum and revise the existing syllabus to explicitly state what ICT tools must be used and how it should
62 be used in the teaching and learning process. Social Implication -The teaching institutions should endeavor to
63 make the necessary provisions for more females to pursue mathematics in their pre-service education and also
64 train them to develop the skills in ICT in order to integrate it in their instructional delivery.

65 Originality/ value : The paper provides valuable insights, from the key educational stakeholders' perspectives,
66 into the use of ICT in instructional delivery. It has empirically shown the extent to which Ghanaian mathematics
67 teachers use ICT.

68 provisions to ensure that Senior High School (SHS) students get access to quality education which takes
69 into accounts the integration of ICT in instruction (MOESS, 2010). In view of this, education stakeholders
70 and policymakers have made a remarkable step towards the introduction of ICT in SHS that will contribute
71 to knowledge production, communication and information sharing among students and teachers in the school
72 system. For instance, there has been an ICT for Accelerated Development (ICT4AD) policy which seeks to
73 provide a framework in which ICT will be used to transform the educational sector, allowing all Ghanaians
74 to pursue quality life-long learning opportunities regardless of their geographical allocation (Republic of ??hana,
75 2003). Besides, the new educational reforms in Ghana, there is also high emphasis placed on the integration of
76 ICT in all subject areas (MOESS, 2010).

77 Also, there has been a sudden increase in computer laboratories at all levels of the school system and this
78 testifies to the potency of the use of ICT in education delivery (Yidana & Asiedu-Addo 2001). Furthermore,
79 ICT has currently become a compulsory (core) subject for every SHS student in Ghana. Preservice mathematics
80 teachers are trained to integrate ICTs in the teaching and learning of mathematics with practicing teachers been
81 trained through workshops (to promote acquisition of technological pedagogical content knowledge (TPACK)
82 (Mishra & Koehler 2006).

83 With such an increased emphasis on ICT and a large investment in its infrastructure, teachers are expected to
84 be competent and effective in using it. However, with teachers' increasing knowledge of and familiarity with ICT
85 and there being infrastructure to support it, many mathematics teachers are still not effectively and efficiently
86 integrating ICT into their teaching (Buabeng-Andoh, 2015).

87 Evidence from other countries in the world, however, reveals that such commitments and investments in ICT
88 in education do not lead to technology adoption ??Gulbahar, 2007). Rather, technology adoption in educational
89 settings is a complex process that is influenced by many other factors such as teacher-level, school-level, and
90 systemlevel factors (Balanskat, Blamire & Kefalla, 2006). Sherry and Gibson (2002) argued that technological,
91 individual, organizational, and institutional factors should be considered when examining technology adoption
92 in educational systems.

93 There has been quite a number of research to investigate Ghanaian mathematics teachers and students' use
94 of technology in teaching and learning and the factors that support or inhibit their effective integration into
95 classroom practices (Boakye and Banini, 2008; ??mollo, 2011, Agyei and Voogt, 2011). However, Mereku, Yidana,
96 Hodzi, Tete-Mensah, Tete-Mensah, and Williams (2009) asserted that for Ghana, and Africa as a whole, to be
97 able to fully integrate ICT into teaching and learning there is the need for frequent collection and analysis of data
98 on ICT usage. It was therefore essential to conduct an empirical study to investigate ICT use among Ghanaian
99 SHS mathematics teachers. Besides, the researcher also intended to investigate factors that influence ICT use in
100 teaching mathematics at the SHS level.

101 **4 III.**

102 **5 Purpose of the Study**

103 The purpose of this study was to determining the extent of ICT integration in the teaching of mathematics at
104 the SHS level in Ghana. Investigating ICT use in teaching and learning SHS mathematics was crucial because
105 this knowledge could provide guidance for ways to enhance technology integration and encourage greater use of
106 technology in teaching and learning mathematics.

107 **6 Research questions 1. To what extent do SHS mathematics
108 teachers use**

109 ICT in teaching and learning mathematics? 2. What are the attitudes of mathematics teachers towards the use
110 of ICT in teaching and learning of mathematics? 3. How competent are mathematics teachers in using ICT? 4.
111 What factors influence the use of ICT in teaching and learning of mathematics?

112 IV.

113 **7 Significance of the Study**

114 The study is significant because it provides insights into teachers ICT use at the SHS level that is sustainable
115 and transferable to other levels in educational ladder. The study provides empirical evidence on ICT use among
116 mathematics teachers at the SHS level in Ghana. This might provide guidance for policy makers and stakeholders
117 in education when structuring and introducing ICT integration policies in Senior High Schools. The study also
118 adds to knowledge by providing new evidence about ICT use among mathematics teachers in Ghana.

119 **8 a) Theoretical Framework**

120 In a bid to understand the ICT use among Ghanaian mathematics teachers, the Diffusion of Innovations theory put
121 forward by ??ogers (2003) guided the study. The Innovation Diffusion Theory seeks to explain how innovations
122 are taken up in a population. An innovation is an idea, behavior, or object that is perceived as new by its audience.
123 ICT use by mathematics teachers and students is an innovation whose use depends on several considerations.

124 The theory, as mentioned above, purports to describe the patterns of usage, explain the mechanism, Year 2017
125 Volume XVII Issue VIII Version I (G)

126 and assist in predicting whether (and how) a new invention will be successful making it a more fitting theory
127 in this context. Achieving complete success (if at all) in the adoption of a new innovation might usually take
128 a considerably long time and sometimes this adoption is met with a lot of resistance from certain quarters of
129 the society in which the innovation is to be diffused. Niccolo Machiavelli (1513) succinctly explains: "There is
130 nothing more difficult to plan, more doubtful of success, nor more dangerous to manage than the creation of
131 a new order of things?" The "old order" of things in academic insofar as knowledge dissemination goes is the
132 teacher standing in front of a class facing the students and imparting knowledge (Kuh 2001). The teacher in this
133 old order is the "all-knowing" custodian of knowledge and the student the passive receiver or in some instances
134 just a knowledge repository. In this old order, the use of chalk and talk method, variously referred to as the
135 exposition method of teaching, has been the predominant way of this kind of knowledge dissemination.

136 The use of ICT in teaching and learning therefore is a relatively new innovation in this regard within the
137 educational sector and indeed a fundamental change in the way SHS teachers and student conduct their core
138 activities qualifying it to be "the new order of things" ??Rogers 2003). SHS are known to be systems that are
139 virtually hard to change. This is not only because of their inherent characteristic of bottomheaviness but also for
140 the fact that the latter usually find themselves stuck in path dependencies and historical legacies that they try to
141 uphold and protect making change in the way they conduct their core activity an evolution and not a revolution;
142 a process rather than an event ??Clark 1983). Notwithstanding this characteristic of being resistant to change,
143 there has been a proliferation of ICTs in most if not all campuses around the world (Selwyn 2007; Adam 2003).

144 **9 b) Conceptual Framework**

145 According to Ogula, (1998) conceptual framework is a description of the main independent and dependent
146 variables of the study and relationship among them. The study was conceptualized on the variables used in the
147 objectives. This study isolated teacher and school factors as the main factors that may influence integration of
148 ICT in teaching and learning of mathematics in particular (Becta, 2004). Teacher related factors are those that
149 directly influence teachers' use of ICT in the teaching-learning process and include: teachers' knowledge and
150 skills in the use of ICT, attitudes of teachers towards teaching using ICT and teacher's experience, among others.
151 School factors on the other hand, refer to factors influenced by the institution. They include: support given to
152 teachers by the school management which has a bearing on access to ICT facilities, school ICT policy, technical
153 support in terms of availability of experts, spare parts and software required to keep the ICT tools functioning.
154 Government policies influence both the adoption of new technologies by the teachers and the schools, which in
155 turn, will affect the extent of integration of ICT in teaching and learning of mathematics. Figure ?? summarises
156 the conceptual framework for this study Adoption of ICT in teaching and learning will depend on both the

157 teacher and school factors. For instance, if a teacher has the necessary skills and knowledge on how to integrate
158 ICT in pedagogical practice, then he or she will be willing to try out this innovation and with time, he or she
159 becomes confident in using ICT in teaching. Moreover, the teacher's pedagogical beliefs will influence the teaching
160 strategy adopted when teaching a given lesson. The attitude of the teachers towards integrating ICT in classroom
161 instruction could be influenced by the level of support by the school management. This study investigated how
162 teacher and school related factors influence the use of ICT in the teaching and learning of mathematics.

163 10 Methodology a) Research design

164 The study used a cross-sectional survey to collect information on ICT use among SHS mathematics teachers
165 and the factors that influence its' usage. Lavrakas (2008) opines that cross-sectional data are usually collected
166 from respondents making up the sample within a relatively short time frame (field period). In a cross-sectional
167 study, time is assumed to have random effect that produces only variance, not bias. Creswell (2012) argues
168 that cross-sectional survey design has the advantage of measuring current attitudes or practices. Cross-sectional
169 survey was preferred as a method of data collection over others in this particular study due to the fact that many
170 questions were asked and it was possible to reach the entire SHS mathematics teachers within a short period of
171 time ??Fowler, 2002).

172 11 b) Population

173 The population of the study comprised of all public Senior High School (SHS) Mathematics Teachers in the
174 Central region of Ghana. Central region was chosen for this study because on of the researchers has been
175 teaching in the region for the past seven years and is familiar with the academic environment in the region.
176 Mathematics teachers were used in the study because the mathematics curriculum in particular emphasizes the
177 use of ICT in the teaching and learning process.

178 12 c) Sample and sampling technique

179 Stratified sampling technique was used to select 120 mathematics teachers from the Central region of Ghana.
180 According to Mason, Lind and Marchal (1999) a stratified random sampling is when the population is first divided
181 into subgroups, called strata. A sample is then selected from these subgroups and then the sample for the study
182 is thus selected from the stratum. Stratified sampling technique was used in this study because most of the SHS
183 in Central region are located in both rural and urban districts. Therefore to be able to get equal representatives
184 of SHS from both rural and urban settings, stratified sampling technique was employed. The distribution of the
185 sampling procedure is presented in Table 1. After a careful review of appropriate literature, questionnaire was
186 chosen as the instrument to collect data to answer the questions set for this study. Questionnaire was chosen
187 because it took less time to administer them and also ensured the anonymity of respondents (Fraenkel & Wallen,
188 2000).

189 13 VI.

190 14 Data Analysis

191 All the questionnaires were checked to ensure they had all been correctly filled. Then the data collected was coded
192 appropriately and then analysed using Statistical Package for Social Sciences (SPSS) version 20.0. Descriptive
193 statistics including percentages, means and frequency tables were employed in the analysis. This was used to
194 find out the extent to which SHS mathematics teachers use ICT in teaching mathematics, mathematics teachers
195 IC competence and the attitudes of teachers towards the use of ICT in teaching of mathematics.

196 To identify the factors that influence ICT usage in teaching of mathematics, Pearson Product Moment
197 Correlation was used to find the relationships between dependent variable and independent variables. This
198 is one of the two mainly used measures of association or correlation among variables in educational research
199 (Cohen et al., 2011).

200 15 VII.

201 16 Results and Discussion

202 17 a) Background Information of Mathematics Teachers

203 The background information regarding the mathematics teachers is presented in Table 2. The result of the study
204 it indicated that 72.5% and 27.5% of the mathematics teachers in the sampled schools were males and females
205 respectively (see Table 2). This skewed ratio is a reflection of the low population of girls pursuing mathematics
206 at the tertiary level of education. Pertaining to the age of the teachers as shown on Table 2 Total 24 120

207 subject is important because it could contribute to good content mastery by the teacher. This study showed
208 that all mathematics teachers in the sampled schools are professionally qualified with 67.5% and 21.7% having
209 Bachelors and Masters Degrees respectively. This is an important aspect since according to Allison (1997) skilled
210 and knowledgeable workforce is closely linked with successful implementation of technology. The study showed

211 that 60.0% of the teachers in the study sample have interacted with computers for between one and six years
212 while 40.0% have computer experience of more than six years (Table 2). From Table 2, a good proportion (77.5%)
213 of the teachers in the sampled schools have been trained on use of computers. Some of the teachers were trained
214 during their pre-service teacher training since computer studies are offered in teacher training institutions and
215 universities as a service subject. The study showed that 85.0% of the mathematics teachers in the sampled schools
216 have been trained on how to integrate ICT in the teaching and learning of mathematics.

217 **18 b) Extent of ICT integration in Teaching and Learning of 218 Mathematics**

219 The first research question raised in this study was to find out the extent to which SHS mathematics teachers use
220 ICT in teaching and learning of mathematics. To answer this question, the mathematics teachers' use of ICT in
221 teaching mathematics was examined. The mean ratings were interpreted using the guide; $2.25 < ?? < 3.0$ (Very
222 high), $1.5 < ?? < 2.25$ (high), $0.75 < ?? < 1.5$ (moderate) and $0 < ?? < 0.75$ (low).

223 Use of word processing, Internet and Calculators were rated very high (mean ratings = 2.33, 2.73, and
224 2.41 respectively). This is consistent with the findings of Becker, Ravitz and Wong (1999) who established that
225 word processing and World Wide Web (WWW) browsing software were the most commonly used applications
226 by teachers regardless of the subject they taught. The use of PowerPoint, Excel, Computer and Mobile Phones
227 were rated high (mean ratings = 1.76, 1.94, 1.99 and 2.10 respectively). The use of the other ICT tools, including
228 Projector and Educational CDs were rated moderate (mean ratings = 1.32, and 1.31 respectively). This could
229 mean that teachers are yet to realise that Projector and Educational CDs s were useful ICT tools that could
230 be used in the teaching and learning of mathematics. The use of Radio, Television, Digital Camera and Video
231 camera were rated low (mean ratings = 0.22, 0.41, 0.34 and 0.44 respectively).

232 **19 c) Attitudes of Mathematics Teachers towards the Use of 233 ICT in Teaching and Learning**

234 The second research question raised in this study was to find out the attitudes of mathematics teachers towards
235 the use of ICT in teaching of mathematics. To answer this question, the mean scores Ghanaian Mathematics
236 Teachers' use of ICT in Instructional Delivery of positive and negative statements were calculated. The mean
237 scores (??) ranged from $3 < ?? < 5$ for favorable feelings and $1 < ?? < 3$ for unfavorable feelings for positive
238 statements and vice versa for negative statements. Tables 4 shows the mean ratings for both positive and negative
239 statements. From Table 4, the mean ratings for all the positive statements were in the range $3 < ?? < 5$ while
240 those for the negative statements were in the range $1 < ?? < 3$. This implies that mathematics teachers in the
241 sampled schools have favorable attitudes towards the use of ICT in teaching mathematics. However, this positive
242 attitude towards use of ICT in teaching mathematics is not reflected in actual use of ICT especially in lesson
243 delivery. This revelation is inconsistent with other findings which have reported that teachers' actual ICT use
244 is related to their perceptions ??Altun, Alev&Yigit, 2009;Keengwe & Onchwari, 2008;Lau & Sim, 2008). This
245 finding, on the other hand, is in confirmation with Eugene (2006) who explored the effect of teachers' beliefs
246 and attitudes towards the use of ICT in classrooms. The study revealed that there was inconsistency between
247 teachers' beliefs and their actual use of technology in classroom. Teachers' beliefs and teaching practices were
248 found not to match. The inconsistency between teachers' actual use of ICT and perception can be attributed to
249 inadequate supply of ICT resources, lack of access to the right kinds of technology, inadequate ICT pedagogical
250 training and insufficient administrative support.

251 **20 d) Mathematics Teachers' ICT Competency**

252 The third research question raised in this study was to find out mathematics teachers' ICT competence. To
253 answer this question, the mathematics teachers' ICT competence in teaching mathematics was examined. The
254 mean score (??) for competence was calculated based on the items in the questionnaire and interpreted based on
255 the guide; $3.4 < ?? < 4$? excellent, $2.4 < ?? < 3.4$? very good, $1.4 < ?? < 2.4$?good, $0.4 < ?? < 1.4$?fair and
256 $0 < ?? < 0.4$? poor. Table 5 shows the results.

257 The study showed that most of the teachers perceive themselves as very good in use of software such
258 as Microsoft office word (????????? = 2.9), PowerPoint(????????? = 2.6), Excel (????????? = 2.6), and
259 Calculators(????????? = 3.1). They also rated themselves as being very good in use of computer (?????????
260 = 2.4. The result is in agreement with Jegede et al., (2007), and Lau and Sim (2008) who found teachers to be
261 more proficient in word processing than the other computer applications. This could mean that teachers lack
262 skills in other computer application programmes. Evidence reveals that teachers' mastery in ICT skills is critical
263 to successful integration of ICT into teaching ??Rosenfield et al., 2005). Most of the teachers are fairly competent
264 in use of the computer as an ICT tool. However, most of them seem to be less skilled in the use of essential
265 ICT tools such as digital and video cameras, and projectors which could be used together with a computer when
266 integrating ICT in teaching mathematics. Most of the teachers rated themselves as 'very good' in using Internet
267 (????????? = 3.4) which is an important ICT tool. Using Internet, teachers can access up to date information
268 on various concepts in mathematics and ways of teaching some concepts perceived to be challenging by teachers.

23 B) RECOMMENDATIONS

269 Internet can facilitate collaboration among mathematics teachers and hence creating a platform where they share
270 ideas on how to teach mathematics better. Generally, the mathematics teachers in the sampled schools are fairly
271 competent in the use of various ICT tools.

272 21 e) Factors Influencing the use of ICT in Teaching of

273 The last research question raised in this study was to find out the factors influencing the use of ICT in teaching
274 mathematics. To answer this question, the correlation between ICT use and the factors that influence its' usage
275 were examined. The main factors which came out as responsible for influencing teachers in the use of ICT in
276 teaching were: perception, competency, teaching experience, access to ICT facilities and experience in computer
277 use. Table 6 shows correlation matrix based on the teachers responses ($?? = 120$). The findings showed that
278 there is a positive correlation between mathematics teachers' use of ICT and competences ($?? = 0.421$, $?? <$
279 0.05). Newhouse (2002) found that many teachers who lacked the knowledge and skills to use computers were
280 not enthusiastic to use them in teaching. The analysis revealed a low positive correlation between mathematics
281 teachers' perceptions and ICT use, although not statistically significant. The study further revealed a positive
282 correlation between mathematics teachers' access to ICT tools and use of ICT ($?? = 0.372$, $?? < 0.05$). This is
283 in support of Empirica's (2000) European study which found that lack of access is the largest barrier to using
284 ICT in teaching.

285 The study also showed positive relationship (although not statistically significant) between computer
286 experience and ICT use. Petrogiannis (2010) examined 396 kindergarten teachers' perceived preparedness for
287 computer use in the pre-school classes and the potential difference between computer experienced and non-
288 experienced teachers. They concluded that computer experienced teachers were more ready to use ICT in their
289 classes than non-experienced teachers.

290 Finally, the study revealed inverse correlation between ICT use and teaching experience although not
291 statistically significant. This finding supports Van Braak et al., (2004), Inan and Low ther (2010), Roberts
292 et al., (2003) assertions that ICT use falls with teaching experience and that younger teachers integrated ICT
293 into their teaching more than experienced teachers. This study also revealed inverse correlation between teaching
294 experience and competence. Therefore, the veterans' less use of computers could be attributed to limited computer
295 competence (Bingimlas, 2009).

296 22 VIII. Conclusions and Recommendations a) Conclusions

297 This study investigated the extent of ICT integration in the teaching mathematics. In addition, the study
298 established a number of factors that influence the integration of ICT in teaching mathematics in the sampled
299 schools in the Central region of Ghana.

300 On the extent of ICT integration in teaching of mathematics, this study revealed that ICT use in instructional
301 delivery was minimal despite the fact that most of the mathematics teachers in the sampled schools had been
302 trained to integrate ICT in their profession. ICT will benefit both the learners and teachers if it is made use of
303 during lesson planning, lesson delivery and in assessment. For this to be realised, all the factors identified should
304 be taken into account, especially provision of relevant training on how to integrate ICT in lesson delivery. The
305 following factors were identified to influence ICT integration in the teaching of mathematics.

306 The possession of the necessary skills and knowledge in use of ICT is an important consideration that
307 determines the extent of ICT integration in teaching mathematics. Although a good proportion of the
308 mathematics teachers in the sampled schools rated themselves as 'good' in the use of ICT tools, they moderately
309 employed ICT in the teaching and learning process. This could mean that mathematics teachers lack the skills
310 to integrate ICT in actual lesson delivery.

311 The attitude of teachers towards use of ICT in teaching mathematics influence ICT use in teaching
312 mathematics. Mathematics teachers were found to have positive attitudes towards use of ICT in teaching
313 although this was not reflected in actual use. The mismatch between the actual use of ICT by mathematics
314 teachers and positive attitude could be due to other barriers such as lack of inadequate ICT facilities, lack of
315 time, inadequate skills among others.

316 The study revealed inverse relationship between teaching experience and ICT use. This implies that the older
317 the teacher, then the less they are likely to integrate ICT in their lessons. The study further established inverse
318 relationship between teaching experience and competence. This means that the older teachers are less competent
319 in use of ICT and therefore they use less of it in their lessons. This could be due to the fact that when the
320 older teachers were being trained in colleges, use of computers had not picked up in educational institutions and
321 therefore they did not get the opportunity to interact with computers.

322 23 b) Recommendations

323 A number of recommendations were made in this study. Some of the recommendations are for action by
324 stakeholders in education while others are for further research. ? The Heads of the institutions should make
325 budgetary allocations annually to maintain, replace and expand ICT facilities and resources in the schools in
326 order to promote effective integration in the teaching and learning process. ? The Ministry of Education should
327 endeavor to equip both rural and urban SHS with well-furnished computer laboratories to enable both the teachers

328 and students to get high access to technology resources. ? The teaching institutions should endeavor to make the
329 necessary provisions for more females to pursue mathematics in their pre-service education and also train them
330 to develop the skills in ICT in order to integrate it in their teaching.

331 **24 d) Recommendations for Further Research**

332 It is suggested that this study should be replicated to include Form one students in Ashanti region.

333 ? It is recommended that this study should be replicated to include private SHS in the Central region of
Ghana.¹

1

Source: Field Data, 2017

d) Instrument

Figure 1: Table 1 :

2

Variable	Category	Frequency	%
Gender	Male	87	72.5
	Female	33	27.5
	Total	120	100.0
Age	20-30 years	58	48.3
	31-40 years	50	41.7
	41-50 years	11	9.2
Teaching Experience	51-60 years	1	0.8
	Total	120	100.0
	Less than one year	9	7.5
Professional Qualification	1 - 3 years	25	20.8
	4 - 6 years	42	35.0
	7 - 10 years	31	25.8
Experience using Computers in	11 years and above	13	10.8
	Total	120	100.0
	Diploma	13	10.8
Training on Computer Use	Bachelor's degree	81	67.5
	Masters	26	21.7
	Total	120	100.0
Training on ICT	Less than one year	4	3.3
	1 - 3 years	12	10.0
	4 - 6 years	56	46.7
Integration in Mathematics	7 - 10 years	31	25.8
	11 years and above	17	14.2
	Total	120	100.0
Training on	Yes No	93 27	77.5 22.5
Computer Use	Total	120	100.0
Training on ICT	Yes	102	85.0
Integration in Mathematics	No	18	15.0
	Total	120	100.0

Source: Field Data, 2017

Figure 2: Table 2 :

334

¹© 2017 Global Journals Inc. (US) Ghanaian Mathematics Teachers' use of ICT in Instructional Delivery

24 D) RECOMMENDATIONS FOR FURTHER RESEARCH

3

ICT Tools	N	Mean (?????? = ??)	Std.	Devia- tion
Word (or equivalent software)	120	2.33	0.96	
PowerPoint (or equivalent software)	120	1.76	1.02	
Excel (or equivalent software)	120	1.94	1.07	
Calculators	120	2.73	0.73	
Projector	120	1.32	1.09	
Internet	120	2.41	0.92	
Educational CDs	120	1.31	1.03	
Radio	120	0.22	0.54	
Television	120	0.41	0.85	
Computer	120	1.99	0.99	

Figure 3: Table 3 :

4

ICT Tools

Figure 4: Table 4 :

5

Extent of Knowhow in use of	N	Mean (?????? = ??)
Extent of Knowhow in use of Word (or equivalent software)	120	2.9
Extent of Knowhow in use of PowerPoint (or equivalent software)	120	2.6
Extent of Knowhow in use of Excel (or equivalent software)	120	2.6
Extent of Knowhow in use of Calculators	120	3.1
Extent of Knowhow in use of Projector	120	1.7
Extent of Knowhow in use of Internet	120	3.4
Extent of Knowhow in use of Computer	120	2.4
Extent of Knowhow in use of Digital camera	120	1.6
Extent of Knowhow in use of Video camera	120	1.4
Overall mean = ???. ????		
		Source: Field Data, 2017

Figure 5: Table 5 :

6

1 2 3 4 5 6

Figure 6: Table 6 :

Year 2017
195-221 3. 39 2. Volume XVII Issue VIII Version I (G)

Figure 7:

335 [Ghana. Education and Information Technologies] , *Ghana. Education and Information Technologies* 16 (4) p. .
336 [Routledge] , Routledge . Milton Park, Abingdon, Oxon OX14 4RN. 2.
337 [Jaworski] , Ed Jaworski . *Journal of Mathematics Teacher Education* 8 (6) p. .
338 [Greece] , Greece . *Journal of Information Technology Impact* 10 (2) p. .
339 [Mason et al. ()] , R D Mason , D A Lind , W Marchal , G . 1999.
340 [Cohen et al. ()] , L Cohen , L Manion , K Morrison . 2011. (Research methods in education. 7th edition)
341 [Muriithi ()] *A framework for integrating ICT in Teaching and learning process in Secondary Schools in Kenya*,
342 P Muriithi . 2005. Master of Science thesis submitted at University of Nairobi school of Computing and
343 informatics
344 [Ogula ()] *A handbook on Educational Research*, P A Ogula . 1998. Nairobi: New Kemit Publishers.
345 [Goos ()] *A sociocultural analysis of development of pre-service and beginning teachers' pedagogical identities as*
346 *users of technology*, M Goos . 2005.
347 [Becta ()] 'A vision for e-learning'. *Becta . ferl Offline*, (Autumn) 2004. 17 p. 4.
348 [Altun et al. ()] 'An investigation of pre-service science teachers' views about their technical and pedagogical
349 skills in the use of ICT'. T Altun , N Alev , N &yzigit . *Proceedings of the 9th International Educational*
350 *Technology Conference*, (the 9th International Educational Technology ConferenceAnkara) 2009. p. .
351 Hacettepe University
352 [Kuh ()] *Assessing what really matters to student learning inside the national survey of student engagement.*
353 *Change: The Magazine of Higher Learning*, G D Kuh . 2001. 33 p. .
354 [Bingimlas ()] 'Barriers to the successful integration of ICT in teaching and learning environments: A review
355 of the literature'. K A Bingimlas . *Eurasia Journal of Mathematics* 2009. 5 (3) . (Science & Technology
356 Education)
357 [Benchmarking access and use of ICT in European schools 2006: Final report from Head-teacher and Classroom Teacher surveys
358 'Benchmarking access and use of ICT in European schools 2006: Final report from Head-teacher and
359 Classroom Teacher surveys in 27 European countries'. *Empirica* 2006. European Commission.
360 [Keengwe and onchwari ()] 'Computer technology integration and student learning: Barriers and promise'. J
361 Keengwe , G &onchwari . *Journal of Science Education and Technology* 2008. 17 p. .
362 [Forgasz and Prince ()] 'Computers for secondary mathematics: Who uses them and how?'. H Forgasz , N Prince
363 . <http://aare.edu.au/01pap/for01109.htm16> *Survey research methods*, F J Fowler (ed.) (Thousand
364 Oaks, CA) 2004. March 2, 2016. 2002. Sage Publications. (3rd ed.)
365 [Creswell ()] J Creswell , W . *Educational Research: Planning, Conducting and Evaluating Quantitative and*
366 *Qualitative Research*, (Boston) 2012. Pearson Education, Inc. (th edn)
367 [Rogers ()] *Diffusion of Innovations 6th edition*, E M Rogers . 1995. New York: NY Press.
368 [Lavrakas ()] *Encyclopedia of survey research methods*, P J Lavrakas . 2008. Sage Publications.
369 [Lau and Sim ()] 'Exploring the extent of ICT adoption among secondary teachers in Malaysia'. C T Lau , C H
370 Sim . *International Journal of Computing and IT research* 2008. 2 (2) p. .
371 [Inan and Lowther ()] 'Factors affecting technology integration in K-12 classrooms: A path model'. F A Inan ,
372 D L Lowther . *Educational Technology Research & Development* 2010. 58 (2) p. .
373 [Maithya and Ndebu (2011)] *Factors influencing effective use of ICT in teacher education: A Case of Kenya*
374 *Technical Teachers College. Quality Education for Societal Transformation*, R Maithya , S Ndebu . 2011. July
375 20-22, 2011, 20, 618. Nairobi, Kenya.
376 [Fraenkel and wallen ()] *How to design and evaluate educational research*, J R Fraenkel , W E &wallen . 2000.
377 [Buabeng-Andoh ()] 'ICT implementation and practices: factors influencing students' pedagogical use of ICT in
378 Ghanaian secondary schools'. C Buabeng-Andoh . *International Journal of Information and Communication*
379 *Technology Education (IJICTE)* Clark, R. E. (ed.) 2015. 1994. 11 (2) p. . (Educational technology research
380 and development)
381 [Agyei and Voogt ()] *ICT use in the teaching of mathematics: Implications for professional development of pre-*
382 *service teachers in*, D D Agyei , J Voogt . 2011.
383 [Omollo ()] *Information and communication technology infrastructure analysis of Kwame*, K L Omollo . 2011.
384 Nkrumah University of Science and Technology and University of Ghana
385 [Moeys Ges ()] *Introduction of information and communications technology in education. A Policy Framework*,
386 Moeys & Ges . 2002.
387 [Roberts et al. ()] 'Making the Invisible Visible and Again: Highlighting technology in an integrated curriculum
388 for pre-service teachers'. S K Roberts , C J Hutchinson , M Little . *Journal of Computing in Teacher Education*
389 2003. 19 p. .

24 D) RECOMMENDATIONS FOR FURTHER RESEARCH

390 [Mereku et al. ()] *Pan-African research agenda on the pedagogical integration of ICT: Phase 1 Ghana report*, D
391 K Mereku , I Yidana , W Hodzi , I Tete-Mensah , W Tete-Mensah , J B Williams . 2009. Winneba. University
392 of Education

393 [Rosenfeld and Martinez-Pons ()] *Promoting classroom technology use. The Quarterly*, B Rosenfeld , M Martinez-
394 Pons . 2005.

395 [Jegede et al. ()] 'Relationships between ICT competence and attitude among Nigerian tertiary institution
396 Lecturers'. P O Jegede , O D Odusola , M O Ilori . *Educational Research and Review* 2007. 2 (7) p. .

397 [Statistical Techniques in Business and Economics] *Statistical Techniques in Business and Economics*, (Boston)
398 McGraw-Hill Companies, Inc. (10th ed)

399 [Boakye and banini ()] *Teacher ICT readiness in Ghana. ICT and changing mindsets in education*, K B Boakye
400 , D A &banini . 2008. Bamenda, Cameroon: Langaa.

401 [Teaching syllabus for mathematics (Senior High School Accra: Curriculum Research and Development Division (CRDD) ())]
402 'Teaching syllabus for mathematics (Senior High School'. Accra: *Curriculum Research and Development*
403 *Division (CRDD)*, 2010.

404 [Mishra and Koehler ()] 'Technological pedagogical content knowledge: A framework for teacher knowledge'. P
405 Mishra , M J Koehler . *Teachers college record* 2006. 108 (6) p. 1017.

406 [Ittigson and zewe (ed.) ()] *Technology in the mathematics classroom*, R J Ittigson , J G &zewe . L. A. (ed.)
407 2003.

408 [Gülbahar ()] 'Technology planning: A roadmap to successful technology integration in schools'. Y Gülbahar .
409 *Computers & Education* 2007. 49 (4) p. .

410 [Balanskat et al. ()] *The impact of ICT on education-a review of existing studies analysing the impact of ICT*,
411 A Balanskat , R Blamire , S &kefalla . 2006.

412 [Petrogiannis ()] *The relationship between perceived preparedness for computer use and other psychological
413 constructs among kindergarten teachers with and without computer experience in*, K Petrogiannis . 2010.

414 [Becker et al. ()] *University of California Centre for Research on Information Technology and Organizations*,
415 H J Becker , J L Ravitz , Y T Wong . [http://www.crito.uci.edu/tlc/findings/computeruse/
416 html/startpage.htm](http://www.crito.uci.edu/tlc/findings/computeruse/html/startpage.htm) 1999. Irvine, California. (Teachers and teacherdirected student use of computers and
417 software)

418 [Becta (2003)] *What the research say about using ICT in maths*, Becta . <http://www.becta.org.uk> 2003.
419 November 13. 2016. (UK: Becta ICT Research)