

1 Global Journal of Human Social Science

2 Evaristo Mwaba Kapungwe¹

3 ¹ University of Zambia

4 Received: 11 December 2013 Accepted: 31 December 2013 Published: 15 January 2014

5

6 **Abstract**

7 The urban poor use heavy metal contaminated wastewater in production of crops to sustain
8 their livelihood in Zambia. Despite the inherent dangers of food crop contaminations and
9 potential health risks associated with consumption of heavy metal contaminated food crops, a
10 lot of people engaged in wastewater irrigation farming as a source of livelihood in peri urban
11 areas in Zambia. The study focused on the urban poor engaged in cultivation of crops using
12 heavy metal contaminated industrial wastewater and domestic sewage in order to sustain their
13 livelihoods in peri urban areas of Mufulira and Kafue towns in Zambia. To study investigated
14 the livelihoods of people engaged in crop production using heavy metal contaminated
15 wastewater. Two study field sites were selected in the peri-urban areas of Mufulira in the
16 Copperbelt Province and Kafue in Lusaka Province in Zambia. The snowball principle was
17 used to select informal crop cultivators at two study sites. A total of 31 crop cultivators were
18 sampled at New Farm study site in Mufulira from 26th April, 2007 to 14th November, 2007
19 whilst a total of 29 crop cultivators were sampled at Chilumba Gardens study site in Kafue
20 from 17th September, 2013 to 12th December, 2013. The interview schedules were
21 administered to selected crop cultivators. The results indicated that the majority of informal
22 crop cultivators had attained primary education and engaged in multiple livelihood activities
23 for self sustenance. The majority of crop cultivators were poor by Zambian Government
24 standards. There were multiple sources of labour while there were multiple markets for selling
25 of crops. The benefits of crop production include improved food security at the households
26 and income generation which contribute to accumulation of capital used to invest into other
27 economic activities apart from crop production. Consumption of heavy metal contaminated
28 food crops and informal access to the land cultivated were the major challenges. In conclusion
29 the

30

31 **Index terms**— multiple livelihood activities, wastewater irrigation farming, poverty, land tenure, peri urban
32 areas, zambia.

33 **M u l t i p l e L i v e l i h o o d s a n d W a s t e w a t e r I r r i g a t i o n F a r m i n g i n P e r i E v a r i s**
34 **t o M w a b a K a p u n g w e U n i v e r s i t y o f Z a m b i a , Z a m b i a**

35 The urban poor use heavy metal contaminated wastewater in production of crops to sustain their livelihood
36 in Zambia. Despite the inherent dangers of food crop contaminations and potential health consumption of heavy
37 metal contaminated food crops, a lot of people engaged in wastewater irrigation farming as a source of livelihood
38 in peri urban areas in Zambia. The study focused taminated industrial wastewater and domestic sewage in order
39 to sustain their livelihoods in peri urban areas of Mufulira and Kafue towns in Zambia. To study investigated the
40 livelihoods of people engaged in crop production using heavy metal urban areas of Mufulira in the Copperbelt
41 Province and Kafue in Lusaka Province in Zambia. The snowball principle was used to select A total of 31
42 crop cultivators were sampled at New Farm study site in Mufulira from 26th April, 2007 to 14th November, 2007

3 BACKGROUND

43 whilst a total of 29 crop cultivators were sampled at Chilumba Gardens study site in Kafue from 17th September,
44 2013 to 12th December, 2013. The interview schedules were administered to selected crop cultivators. multiple
45 livelihood activities, wastewater irrigation farming, poverty, land tenure, peri

46 1 Multiple Livelihoods and Wastewater Irrigation

47 Farming in Peri Urban Areas in Zambia:

48 2 Opportunities and Challenges

49 Evaristo Mwaba Kapungwe

50 Abstract-The urban poor use heavy metal contaminated wastewater in production of crops to sustain their
51 livelihood in Zambia. Despite the inherent dangers of food crop contaminations and potential health risks
52 associated with consumption of heavy metal contaminated food crops, a lot of people engaged in wastewater
53 irrigation farming as a source of livelihood in peri urban areas in Zambia. The study focused on the urban
54 poor engaged in cultivation of crops using heavy metal contaminated industrial wastewater and domestic sewage
55 in order to sustain their livelihoods in peri urban areas of Mufulira and Kafue towns in Zambia. To study
56 investigated the livelihoods of people engaged in crop production using heavy metal contaminated wastewater.
57 Two study field sites were selected in the peri-urban areas of Mufulira in the Copperbelt Province and Kafue in
58 Lusaka Province in Zambia.

59 The snowball principle was used to select informal crop cultivators at two study sites. A total of 31 crop
60 cultivators were sampled at New Farm study site in Mufulira from 26th April, 2007 to 14th November, 2007 whilst
61 a total of 29 crop cultivators were sampled at Chilumba Gardens study site in Kafue from 17th September, 2013 to
62 12th December, 2013. The interview schedules were administered to selected crop cultivators. The results indicated
63 that the majority of informal crop cultivators had attained primary education and engaged in multiple livelihood
64 activities for self sustenance. The majority of crop cultivators were poor by Zambian Government standards.
65 There were multiple sources of labour while there were multiple markets for selling of crops. The benefits of
66 crop production include improved food security at the households and income generation which contribute to
67 accumulation of capital used to invest into other economic activities apart from crop production. Consumption
68 of heavy metal contaminated food crops and informal access to the land cultivated were the major challenges.
69 In conclusion the informal crop cultivators engaged in multiple livelihood activities to sustain household needs
70 and accumulate capital. The mode of production of crops was low cost under informal non capitalist relations
71 of production systems while the mode of distribution was through the formally organised economy by sales at
72 the market. The opportunities of crop production included income generation and improved food security at
73 household of crop cultivators. The major challenges were consumption of heavy metal contaminated food crops,
74 poverty and informal access to the land cultivated. The results from this study were similar to findings from
75 other studies in developing countries. The research findings would further the development of programmes that
76 would improve livelihoods of urban poor. It is recommended relevant authorities can promote alternative

77 3 Background

78 studies in wastewater irrigation farming conducted in developing countries indicated that a lot of people were
79 engaged in production and selling of crops from waste water irrigation farming in peri-urban areas in towns
80 (Faruqui, 2002). The main drivers of the wastewater use in crop farming included lack of alternative cheaper
81 or safer water sources; the increased urban water demand; high demand for food in urban areas; poverty and
82 rural-urban migration (Raschid-Sally and Jayakody, 2008). According to ??uechler et al., (2002) wastewater use
83 for livelihood activities in urban and peri-urban areas is a reality that planners and policy makers must face.

84 The majority of people in sub-Saharan African countries are poor and live below the poverty datum line
85 ??Potts, 2002). There has been drastic fall in real income for the urban people and subsequent decline in the
86 standard of living in the last 20 years starting from the 1960's ??Potts, 2002). There was the gap between the
87 incomes and survival needs of urban household. In the absence of socio-welfare, the urban dwellers had to find
88 ways of adapting to the urban 'wages puzzle' ??Potts, 2002) which include increase in the urban agriculture
89 which included informal wastewater use in crop farming (Drechsel et al., 2011).

90 The rate of poverty is relatively high in urban areas in Zambia ??GRZ, 1998; ??RZ, 2004). In order to
91 sustain their standard of living, poor people in urban areas engage in informal activities such as peri-urban
92 agriculture (Hampwaye et al., 2007Hampwaye, 2013) including wastewater irrigation farming (Kapungwe, 2011).
93 The urban poor use heavy metal contaminated wastewater in production of crops to sustain their livelihood
94 in Zambia (Simukanga et al., 2002;Marshall et al., 2004;Kapungwe, 2011). Despite the inherent dangers of
95 food crop contaminations and potential health risks associated with consumption of heavy metal contaminated
96 food crops, a lot of people were engaged in wastewater irrigation farming as source of livelihood at the two
97 study sites (Kapungwe, 2011;Kapungwe, 2013a). The benefits of using wastewater in crop irrigation in Zambia
98 included increased in crop yield, income generation and improved food security at the household ??Mtonga,
99 2001 Holden andKapungwe, 2007). The study focused on the urban poor engaged in cultivation of crops using
100 heavy metal contaminated industrial wastewater and domestic sewage in order to sustain their livelihoods in peri
101 urban areas of Mufulira and Kafue towns in Zambia. To study investigated the livelihoods of people engaged in

102 crop production using heavy metal contaminated wastewater. It was hypothesised that there was no significant
103 relationship between the cropping systems and livelihoods of crop cultivators.

104 **4 II.**

105 **5 Theoretical Framework**

106 In this study the livelihood model developed by ??arney (1998 a, b) were used to analyse the livelihoods of the
107 urban poor engaged into crop production using the heavy metal contaminated wastewater in peri-urban areas of
108 Mufulira and Kafue towns in Zambia. According to Carney (1998 a, b), the livelihood comprises the capabilities,
109 assets and activities done to earn a living. The livelihood activities can be either on farm or off-farm activities.
110 Capacities refer to the ability of the community to take part in decision making, the acquired indigenous technical
111 knowledge that makes the community to have the resilient to respond to environmental stress and socio-economic
112 changes. The five livelihood assets (Carney, 2002;Carney, 1998a;b) ??re: i. Natural resources include the natural
113 resources such as water, land and air. ii. Human resources include skills, knowledge and health status of the
114 people. iii. Financial resources include income, saving and credit. iv. Physical resources include the tools and
115 equipment. v. Social resources include the socio-organisation such as institutions, legislations and policy People
116 continue to build on assets endowments so that they can enjoy sustainable livelihoods ??Little and Edward, 2003).
117 For the urban poor property rights to land, water together with labour, form the most common endowments
118 used to produce for home consumption as well as for cash that allow the family or individual to pay for other
119 needs such as education, health and shelter (FAO, 2002). It is argued that property rights to land and water are
120 the most powerful resources available to people to increase and extend their collection of assets beyond land and
121 labour to full portfolio necessary for sustainable livelihoods (FAO, 2002).

122 It is argued that improving livelihoods can help people to become less vulnerable to poverty (Bradbear, 2004).
123 This is achieved by helping the people to gain access to a range of assets and supporting their capacity to
124 build these assets into successful livelihood activities (Bradbear, 2004). Furthermore, people who have limited
125 cash or financial savings often have the capacity to ameliorate against the socio-economic stress and minimise
126 disposal of household assets significantly by being members of organisations that provide assistance when they
127 experience financial problems (Bradbear, 2004;Saasa and Carlson, 2002). Therefore, assessment of trends in the
128 assets, capabilities and activities over time can indicate if livelihoods are deteriorating or improving (Little and
129 Edwards, 2003) among the urban poor.

130 **6 III.**

131 **7 Study Areas a) Location of study areas**

132 Two study field sites were selected in the periurban areas of Mufulira in the Copperbelt Province and Kafue in
133 Lusaka Province in Zambia (Figure ??). Mufulira is located between latitudes 12o 30' South and 12o 40' South
134 and between longitudes 28o 10' East and 28o 20' East. Kafue is located between latitudes 15o 45' South and
135 15o 50' South and extends from longitude 28o 05' East to 28o 15' East. The New Farm study site in Mufulira is
136 located along the Kansuswa River adjacent to Kantanshi Stabilization Ponds in the triangle shaped area between
137 the Kansuswa River and tailing dams (Figure ??). The Chilumba Gardens study site in Kafue is located along
138 Kasenje and Shikoswe Rivers in the Kafue Estate Industrial area between Zambia and Soloboni Compounds
139 behind Nitrogen Chemicals of Zambia (Figure ??). IV. Socio-Economic Characteristics of the two Study Sites

140 The crop cultivators at the study sites engaged in crop production as an informal activity because they were
141 not officially recognised by the relevant authorities (Kapungwe et al., 2007). The crop cultivators were both full
142 time and part time. The dominant crop grown was sugarcane interspersed with vegetables and maize while there
143 were seven distinct cropping systems at the study sites (Kapungwe, 2011). There was heavy metal contamination
144 of wastewater, soil and crops at the study sites (Kapungwe, 2013a). Previous preliminary findings indicated that
145 the informal crop cultivators engaged in multiple livelihood activities to sustain their living at the two study
146 sites (Holden and Kapungwe, 2007;Kapungwe, 2011). The Kansuswa Peasant Farmers Association at New Farm
147 in Mufulira and the Chilumba Peasant Farmers Association at Chilumba Gardens in Kafue allocated times of
148 watering by different crop cultivators and controlled the selling of crops (Holden and Kapungwe, 2007;Kapungwe
149 et al., 2007). The summary of socio-economic characteristics of the study sites as shown in Table 1.

150 **8 Methodology a) Sampling techniques**

151 The snowball principle was used to select informal crop cultivators at two study sites. The snowball principle
152 which is a non-probability sampling technique was usually used by researchers to identify potential subjects in
153 studies where subjects are difficult to locate. The potential respondents were approached and only those people
154 who showed willingness to take part in the research were selected as respondents. The people who were willing
155 to take part in research were interviewed until a reasonable number of respondents were interviewed. The initial
156 respondents had to willingly and freely take part in the interview. Then researcher had to seek guidance from
157 the initial respondent on who could be suitable and willing to be interviewed freely without suspicion until a
158 reasonable number of respondents were reached. A total of 31 crop cultivators were sampled at New Farm in

10 RESULTS AND DISCUSSIONS A) DEMOGRAPHIC CHARACTERISTICS OF CROP CULTIVATORS

159 Mufulira from 26th April, 2007 to 14th November, 2007. whilst a total of 29 crop cultivators were sampled
160 at Chilumba Gardens in Kafue from 17th September, 2013 to 12th December, 2013. The interview schedules
161 were administered to selected crop cultivators. The questions in the interview schedule included questions on
162 livelihood and farming activities b) Data analysis

163 The frequencies and percentages were used to analyse the responses from questions in the interview schedule.
164 The Chi-square statistical test was used to ascertain the association between livelihoods and socioeconomic
165 characteristics of informal crop cultivators.

166 9 VI.

167 10 Results and Discussions a) Demographic characteristics of 168 crop cultivators

169 The results indicated that both males and females engaged in crop production which indicated a fair proportional
170 representation of male and female engaged in wastewater irrigation farming (Table 2). The results from this
171 study confirmed the findings in the study by Hampwaye et al., (2007) on seasonal farming in City of Lusaka,
172 Zambia where both females and males engaged in crop production. The results indicated that the majority of
173 crop cultivators at the two study sites had attained either primary or secondary education (Table ??). The
174 results indicated that the majority of respondents have large families which they supported (Table 4). The
175 results indicated that the average the household size was seven persons with the minimum of three persons and
176 maximum of eighteen persons at New Farm while the average the household size six persons with the minimum
177 of two persons and maximum of thirteen persons at Chilumba Gardens which implied that the crop cultivators
178 had a lot of people dependants. The results from this study were similar to findings in the study by Hampwaye
179 et al., 2007 in rain fed farming areas of Lusaka where an average household size ranged from seven persons up
180 to maximum of fifteen persons. The results indicated that the majority of respondents resided in high density
181 residential areas and unplanned settlements at the two study sites (Table 5). The urban residential areas were
182 potential sources of labour for crop production and provided readily available markets for crops. The results
183 indicated that the average number of years of residence in a particular residential area by respondents was
184 twenty two years with the minimum of five years to maximum of thirty eight years at New Farm in Mufulira
185 while at Chilumba Gardens in Kafue the average number of years of residing in the residential area by the
186 respondents was twenty four years with the minimum of one year to maximum of forty seven years The results
187 indicated that the crop cultivators and members of their household were engaged in diverse of livelihood activities
188 to earn a living at the two study sites (Table 6 and Table 7). The livelihood activities included on-farm activities
189 such as crop production and the off-farm activities included formal employment, livestock rearing and business
190 especially selling merchandise in grocery stalls (Tuntemba). The majority of the crop cultivators (54%) and
191 their members of the households (21.4%) engaged in crop production as source of livelihood on full time basis
192 at New Farm whiles a total of 65.5% of the crop cultivators and 44.4% of members of the households engaged
193 in crop production as source of livelihood on full time basis at Chilumba Gardens. Some of the informal crop
194 cultivators engaged in formal employment took part in crop production on part-time basis at New Farm (3.2%)
195 and Chilumba Gardens (3.4%) which indicated that the informal crop cultivation provides an alternative means
196 of supplementing income from wage labour for most of the urban poor who were engaged in formal employment
197 which was similar to findings in the study by Saasa (1982) in seasonal farming in Kaunda Square residential
198 area in Lusaka, Zambia and the study by Mac Gaffey (1983) in Kivu, North Eastern of Democratic Republic
199 of Congo (DRC). the crop cultivators practising wastewater irrigation and seasonal farming were engaged in
200 multiple livelihood activities for self sustenance because it was likely that the people engaged in the two types of
201 farming had similar socio-economic backgrounds.

202 It was hypothesised that there was no significant relationship between the cropping systems and livelihoods of
203 crop cultivators. The Chi-square test indicated that: a) there was no significant association between livelihood
204 activities and cropping systems at Chilumba Gardens ($\chi^2 = 33.163$ df=30, $P > 0.05$) b) there was a significant
205 association between selling at market and cropping systems at New Farm ($\chi^2 = 38.08$, df=22, $P < 0.05$). All of
206 respondents involved in selling at market were engaged in sugarcane mono cropping system. It can therefore
207 be argued that the probable reasons which account for the fact that the crop cultivators involved in selling at
208 markets were engaged in sugarcane mono cropping system included:

- 209 ? low labour and inputs requirements;
- 210 ? high returns on sugarcane; and
- 211 ? less time spent attending to sugarcane production activities.

212 From the foregoing explanation, it can be argued that there was a significant relationship between cropping
213 systems and livelihood activities. The results indicated that the crop cultivators practised the cropping systems
214 such as sugarcane mono cropping which apparently contribute to sustenance of households through accumulation
215 of capital to invest into other economic activities apart from crop production. The results from this study were
216 similar to the findings from the study on wastewater irrigation in Hubli-Dharwad, India ??Bradford et al., 2003).

217 11 c) Reasons for engaging in crop production

218 The results indicated that the wastewater irrigated farming has been going for a long period of time. The results
219 indicated that the average number of years of crop production by the respondents was 18 years with the minimum
220 of 2 year to maximum of 41 years at New Farm in Mufulira while at Chilumba Gardens in Kafue the average
221 number of years of crop production by the respondents was 13 years with the minimum of 1 year to maximum of
222 30 years. The results from this study were similar to findings in the study by Hampwaye et al., (2007) in Lusaka
223 where the average length of time for cultivation was nine years with maximum of forty years.

224 The respondents indicated several reasons for starting crop growing which included lack of basic needs and
225 income generation (Table 8). The reasons for starting crop growing using wastewater were similar to findings
226 in the studies in seasonal farming in Zambia (Hampwaye et al., 2007; ??ulenga, 1991;2001). According to the
227 study by Hampwaye et al., (2007) in Lusaka, Zambia where the majority of crop cultivators indicated income
228 generation. Earlier studies by Mulenga, ??1991, ??001) in Lusaka and Chipata, Zambia identified several reasons
229 which included poverty, high population growth, strategic position of peri-urban areas in relation to urban markets
230 and deteriorating economy associated with economic structural adjustment.

231 12 d) Multiple of labours for crop farming

232 The results from this study revealed three sources of labour comprising hired labour, members of household
233 and crop cultivators(Table 9) while the methods of payment for hired labour included money and kind such
234 giving workers crops (Table 10) which implied that there was lack of separation of labour and means of crop
235 production. Those in formal employment tended to their field plots during the weekend and when off duty while
236 other household members or workers tended to field plots during the weekdays. The results indicated that the
237 hired people were a source of labour for crop production in wastewater irrigation farming which was similar to the
238 findings of the study by Raschid-Sally and Jayakody (2008) on wastewater irrigation farming in other developing
239 countries.

240 Volume XIV Issue II Version I 20 (B) The results indicated that the informal crop cultivators and members
241 of household provides a widely available alternative source of labour in order to avoid proletarianization through
242 hired labour which implied that the crop commodities were produced at low cost under the non-capitalist relations
243 of production and there was lack of separation of labour and means of crop production which was similar to
244 findings in the study by Mac Gaffey (1983) in Kivu, North Eastern of Democratic Republic of Congo (DRC) and
245 the study by Raschid-Sally and Jayakody (2008) on wastewater irrigation farming in other developing countries.

246 13 e) Multiple markets for selling of crops

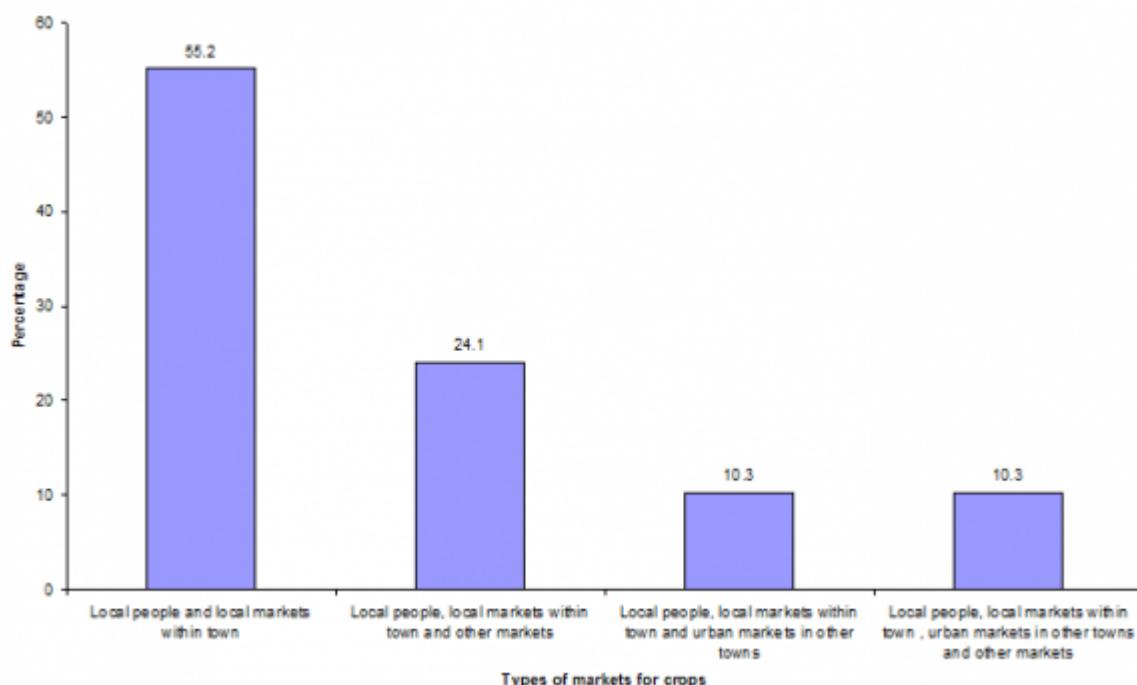
247 The crops were sold to multiple markets which included the local people in residential areas; local markets
248 within town, urban markets in other towns and any other market (Figure ?? and Figure ??). The crops were
249 consumed at the community or township level through the sales of crops in the local markets and other markets.
250 The results indicated that the heavy metal contaminated crops were consumed by other members of the public
251 and people in distant places such as Lusaka from Chilumba Gardens in Kafue and Kitwe from New Farm in
252 Mufulira. The residential areas provide the readily available markets for crop produced in wastewater irrigation
253 farming areas which was similar to the findings from study by Raschid-Sally and Jayakody (2008) on wastewater
254 irrigation farming in other developing countries. The crops were sold at the local markets and any other markets
255 which imply that the crops were sold at high prices in the capitalist markets hence the mode of distribution
256 was through the formally organised economy by sales at the market which was similar to findings in the study
257 by Mac Gaffey (1983) in Sample number (n=31) The respondents indicated that they used food crops for both
258 domestic consumption (Table 11 Table 12 and Figure 6) and income generation through sale of crops (Table
259 13 and Table 14). Crops are consumed at household level which indicated that the heavy metal contaminated
260 crops were consumed by the crop cultivators and members of their households. It can be argued that there is the
261 likelihood of potential health risks associated with consumption of heavy metal contaminated food crops grown
262 in wastewater irrigation farming systems in peri urban areas in Zambia. There were variations in terms of the
263 proportion of total income of the households which came from the sale of crops (Table 15). The contribution
264 of urban crop production to household income varied considerably which ranged from 100%, 75%, 16.7%, and
265 10% of household income respectively. These figures of income contribution to household are similar to findings
266 from studies in urban agriculture in Zambia which indicated the proportion of 75%, 50% and 25% in Lusaka City
267 Council (2005 cited in Hampwaye et al., 2007) while the proportion ranged from 48% to 53% as contribution to
268 annual household income in Ndola, Kitwe and Kabwe (Hampwaye, 2013). The results from this study were similar
269 to findings from the studies by Hampwaye et al., 2007 and Hampwaye, 2013 in seasonal farming and the study by
270 Mtonga, 2001 in wastewater irrigation in Zambia where crop cultivators indicated that they used crops for both
271 domestic consumption and income generation. The results on the total income per year from livelihood activities
272 are shown in Table 16. Results from this study indicated that the total income per year by crop cultivator
273 was estimated at US\$ 1,021=67 while the average total income per year was US\$ 1,000=00 from the livelihood
274 activities done by the members of their household at New Farm in Mufulira (the exchange rate was one US
275 Dollar equivalent to four Zambian Kwacha in 2007). The total income per year by crop cultivators at Chilumba
276 Gardens in Kafue was estimated at US\$ 977=85 while the average total income per year was US\$ 904=00 from

277 the livelihood activities done by the members of their household (the exchange rate was one US Dollar equivalent
278 to five Zambian Kwacha in 2013). Some of the income was generated from crop production activities. The
279 total average income per year from sale of crops was US\$ 815=91 (one United States Dollar to four Zambian
280 Kwacha in 2007) with the minimum figure of US\$50=00 and the maximum figure of US\$ 2,000=00 at New Farm
281 while the total average income per year from sale of crops was US\$ 906=40=00 (One United States Dollar to
282 five Zambian Kwacha in 2013) with the minimum of US\$100=00 and maximum of US\$ 2800=00 at Chilumba
283 Gardens in Kafue. The total income per month as compared to non-taxable income threshold, basic needs and
284 food basket showed that their living conditions were below the poverty datum line (Table 17) specified by the
285 Zambian Government Central Statistical Office (Zambia Daily Mail, 2008a) which indicated that the majority of
286 the crop cultivators were poor. The results from this study confirmed the perception that the majority of crop
287 cultivators engaged in wastewater irrigation farming were seemingly poor in developing countries (Marshall et
288 al., 2004; Raschid-Sally and Jayakody, 2008). The results from this indicated that wastewater urban agriculture
289 provides livelihoods to the lowest income groups in the society in Zambia which was similar to findings from
290 wastewater irrigated farming in Hyderabad City, Andhra Pradesh, India (Buechler et al., 2002). The foregoing
291 explanation supports the view of urban agriculture as a coping strategy to challenging urban living conditions
292 which is similar to findings from the studies by Jaeger and Hackabay, (1986), Mulenga, The land cultivated by
293 crop cultivators was characterised by a complex multiple land tenure system. There was official ownership of the
294 land by the private companies, local councils and commercial farmers who have the official title deeds issued by
295 the Ministry of Lands. The cultivated land legally belongs to Mufulira Farms and Mufulira Municipal Council at
296 New Farm in Mufulira while at Chilumba Gardens in Kafue the cultivated land officially belongs to the Nitrogen
297 Chemicals of Zambia and Kafue District Council. On other the hand there was the unofficial ownership of land
298 by the individual crop cultivators which is attained by the exchange of user rights through money, gift and
299 inheritance (Table 18). It was apparently that the crop cultivators informally accessed the land cultivated at the
300 two study sites. There were conflicts of interests between the formal owners of land and the crop cultivators who
301 informally accessed land through inheritance, buying the land from others and being given as a gift. The kinship
302 relationship among the crop cultivators is evident in the way the people transfer the user rights of cultivable
303 land through inheritance, gifts from relatives and buying from other crop cultivators. The crop cultivators have
304 developed the sub culture based on the customary traditional values of land tenure even though they did not
305 officially own the land which they cultivate.

306 It can be argued that informal access to land by crop cultivators at the two study sites was an impediment
307 to long term investment into farm infrastructures such as construction of permanent irrigation furrows and
308 discouraged crop cultivators from practicing conservation farming. The findings confirmed results from the
309 studies on seasonal farming in Zambia ??Jaeger and Hackabay, 1986;Steckley and ??uleba, 2003 Hampwaye et
310 al., 2007) and wastewater irrigated farming in developing countries (Obuobie et al., 2003;2006) including Zambia
311 (Kapungwe, 2011).

312 14 VII.

313 15 Conclusion


314 In conclusion the poor informal crop cultivators engaged in multiple livelihood activities to sustain household
315 needs and accumulate capital. The mode of production of crops was low cost under informal non capitalist
316 relations of production systems while the mode of distribution was through the formally organised economy
317 by sales at the market. The opportunities of crop production included income generation and improved food
318 security at household of crop cultivators. The major challenges were consumption of heavy metal contaminated
319 food crops, poverty and informal access to the land cultivated. The results from this study were similar to findings
320 from other studies in developing countries. The research findings would further the development of programmes
321 that would improve livelihoods of urban poor. It is recommended relevant authorities can promote alternative
322 income generation livelihood activities which can sustain the living standard of the crop cultivators engaged in
323 heavy metal contaminated wastewater irrigation farming in Zambia.

324 16 VIII.

123

Figure 1: Figure 1 :Figure 2 :Figure 3 :

45

Figure 2: Figure 4 :Figure 5 :

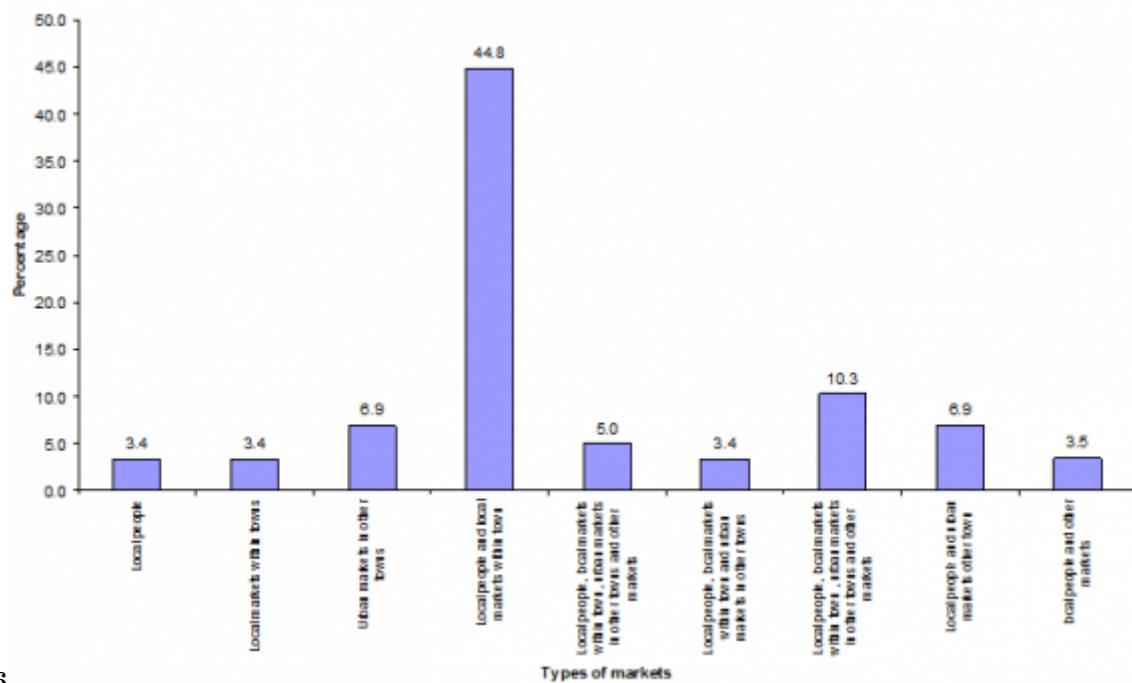
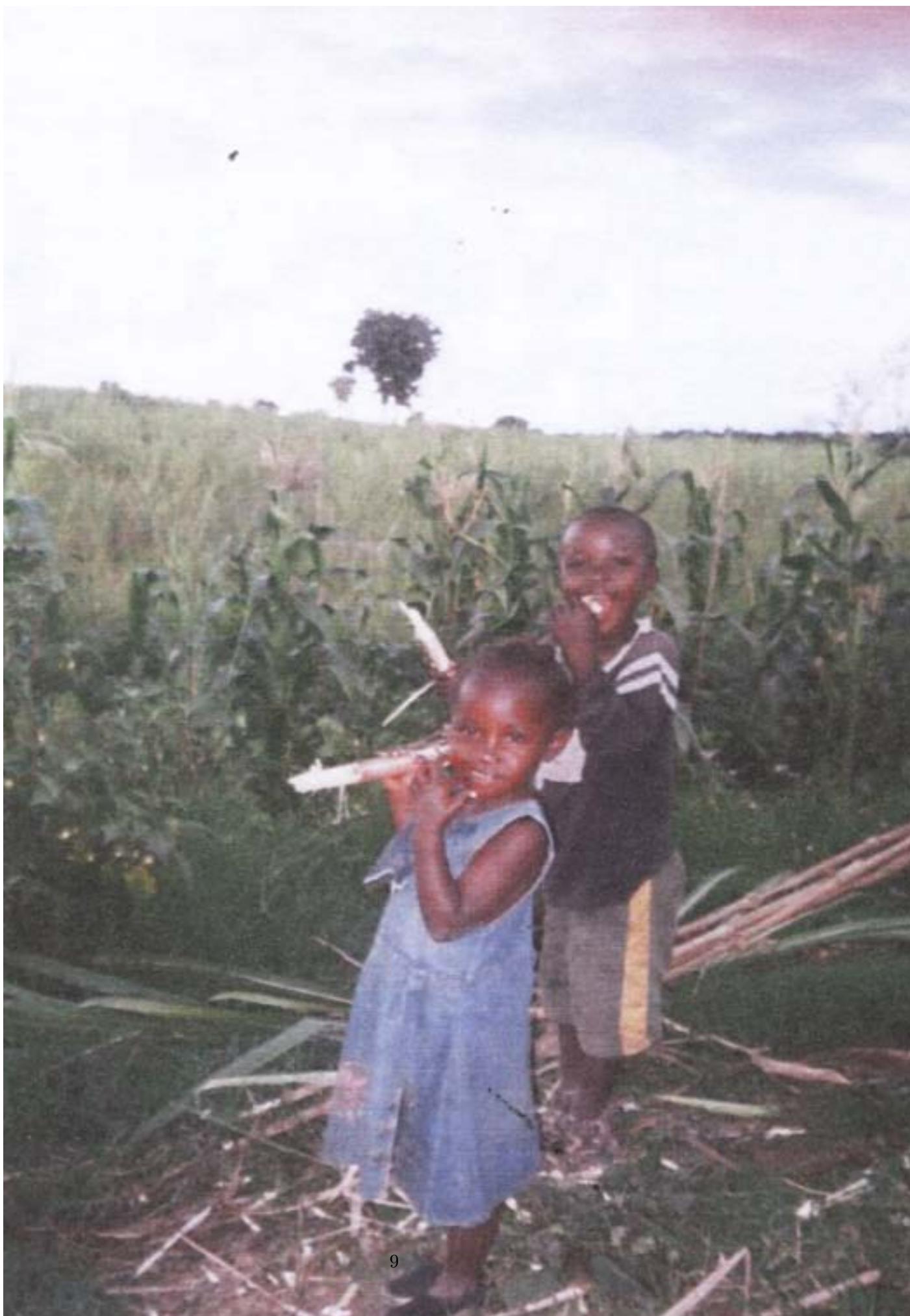



Figure 3: Figure 6 :

1

Characteristics	New Farm in Mufulira	
Livelihood activities	Crop production Livestock rearing Formal employment Grocery stall such as Tutemba	
Types of crops	Field crops Indigenous vegetables Exotic vegetables	
	Sugarcane**, maize Common beans, Cowpeas, Pumpkins** Sweet potatoes, Aprior rape, Aubergines, Groundnuts, Common okra**, b Mponda (Bottled gourd) Tomatoes**, Rape, Carrots, Chinese cabbage,	
Types of cropping systems	Swiss chard** Onions, Cabbage, , Green pepper, Irish potatoes Sugarcane mono cropping Maize mono cropping Vegetable growing Sugarcane-vegetable cropping Maize-vegetable cropping Sugarcane -maize-vegetable cropping Sugarcane-maize cropping Domestic wastewater	
Type of wastewater	Onions, Cabbage, b Fwakafwaka (Mustard spinach)	
Registered organisation	c Komatsuna Sugarcane mono cropping Maize mono cropping Vegetable growing Sugarcane-vegetable cropping Maize-vegetable cropping Sugarcane -maize-vegetable cropping Sugarcane-maize cropping Industrial effluents The Chilumba Peasant Farmers Association	
Number of informal farmers	150-200 members	
Type of informal farmers	Part time/full time	
900-1200 members Part time/full time		

[Note: a Bemba vernacular language, b Chinyanja vernacular language, c Japanese ** heavy metal contamination recorded Source: Holden and Kapungwe, 2007; Kapungwe et al., 2007; Kapungwe, 2011; Kapungwe, 2013a; Kapungwe, 2013b V.]

Figure 5: Table 1 :

2

Sex of respondents	New Farm in Mufulira No.	Percentage (%)	Chilumba Gardens in Kafue No.	Percentage (%)
Female	16	51.6	18	62.1
Male	15	48.4	11	37.9
Total	31	100.0	29	100.0

Source: Field data, 2007, 2013

Table 3 : Education level

Education level	New Farm in Mufulira No.	Percentage (%)	Chilumba Gardens in Kafue No.	Percentage (%)
Secondary	16	51.2	8	27.6
Primary	11	35.5	15	51.7
None	3	9.7	3	10.3
Others: tertiary	1	3.2	3	10.3
Total	31	100.0	29	100.0

Source: Field data, 2007, 2013

Figure 6: Table 2 :

4

Number of people in the household	New Farm in Mufulira No.	Percentage (%)	Chilumba Gardens in Kafue No.	Percentage (%)
1-2 people	0	0	1	3.7
3-8 people	20	64.5	19	70.4
9-15 people	10	32.3	7	25.9
above16 people	1	3.2	0	0
Total	31	100.0	27	100.0

Source: Field data, 2007, 2013

Figure 7: Table 4 :

5

New Farm in Mufulira			
1 Kansuswa		1	9.1
1 Kantanshi		2	18.2
2 Kawama west		8	72.1
Total		11	100.0
Chilumba Gardens in Kafue			
2 Mutendere		9	31.0
2 Soloboni		20	69.0
Total		29	100.0
1 high density residential areas			
2			

Figure 8: Table 5 :

6

Livelihood activities

	New Farm in Mufulira	Chilumba Gardens in K
	No. Percentage (%)	No. Percentage (%)
Crop production	17 54.8	19 65.5
Crop production and livestock rearing	4 12.9	1 3.4
Crop production and grocery stall (Tuntemba)	4 12.9	3 10.3
Crop production and selling at Market	2 6.5	3 10.3
Crop production and others: bicycle repair, selling local beverage (munkoyo)	2 6.5	0 0
Crop production, livestock rearing and grocery stall (Tuntemba)	0 0	1 3.4
Crop production, livestock rearing and formal employment	1 3.2	1 3.4
Crop production and formal employment	1 3.2	1 3.4
Total	31 100.0	29 100.0

Source: Field data, 2007, 2013

Figure 9: Table 6 :

Livelihood activities

	New Farm in Mufulira Chilumba Garden		No. Percentage (%) No. Percentage (%)	
None	15	53.6	7	24.1
Crop production	6	21.4	13	44.8
Selling at market	3	10.7	0	0
Grocery stall (Tuntebma)	1	3.6	0	0
Employment	1	3.6	0	0
Crop production and livestock rearing	0	0	3	10.3
Crop production and selling at market	0	0	4	13.4
Grocery stall and selling at market	0	0	1	3.4
Crop production and formal employment	0	0	1	3.4
Street vending and other activities	1	3.6	0	0
Other activities:	1	3.6	0	0
Total	28	100.0		100.0

Source: Field data, 2007, 2013

It can be argued that the crop cultivators practising wastewater irrigation engaged in multiple livelihood activities for self sustenance which confirmed the findings from studies on seasonal farming in Zambia (Jaeger and Huckabay, 1986; Simukanga et al., 2002; Lusaka City Council, 2005 cited in Hampwaye, 2007, Hampwaye 2013), wastewater irrigation farming in Zambia (Kapungwe, 2011) and other developing countries (Mubvami and Toriro, 2008; Obuobie et al., 2003, 2006

[Note: ;Buechler et al., 2002). It can be argued that]

Figure 10: Table 1 :

Reasons for crop growing

	New Farm in Mufulira		Chilumba Gardens		
	n	No. Percentage (%)	n	No. Percentage (%)	
Lack of formal employment	31	4	12.9	29	2 7.7
Income generation	31	7	22.6	29	16 61.6
Poverty reduction	31	1	3.2	29	3 11.5
Earn a living	0	0	0	29	5 19.5
Drop out of school	31	3	6.5		
Hunger problem	31	3	9.7		
Introduced to farming by friends	31	3	9.7		
Introduced to farming by relatives	31	1	3.2		
Orphaned	31	1	3.2		
Lack of basic needs	20	12	60.0		
Hobby and interest	11	2	18.2		

Source: Field data, 2007, 2013

Figure 11: Table 8 :

9

Source of labour for crop farming	New Farm in Mufulira		Chilumba Gardens in Kafue	
	No.	Percentage (%)	No.	Percentage (%)
Household members only	3	10.7	17	58.6
Hired people only	10	35.7	1	3.4
Household members and hired labour	14	50.0	11	37.9
Other sources	1	3.6	0	0
Total	28	100.0	29	100.0

Source: Field data, 2007, 2013

Figure 12: Table 9 :

10

Methods of payment for hired labour	New Farm in Mufulira		Chilumba Gardens in Kafue	
	No.	Percentage (%)	No.	Percentage (%)
Money only	23	88.46	10	37.0
Kind only	2	7.69	1	3.7
Money and kind	1	3.84	4	14.8
Others:	0	0	12	44.4
Total	26	100.0	27	100.0

Source: Field data, 2007, 2013

Figure 13: Table 10 :

11

Proportion consumed	of vegetables		New Farm in Mufulira Chilumba Gardens in Kafue	
	No.	Percentage (%)	No.	Percentage (%)
Three quarters (75%)	2	8.0	2	6.9
Half (50%)	2	8.0	3	10.3
Quarter (25%)	0	0	1	3.4
Less than quarter (<25%)	9	36.0	23	79.3
Others	10	40.0	0	0
I do not know	2	8.0	0	0
Total	25	100.0	29	100.0

Source: Field data, 2007, 2013

Figure 14: Table 11 :

12

Proportion consumed	New Farm in Mufulira	Chilumba Gardens in Kafue	Percentage (%)
Half (50%)	1	4.8	0
Quarter (25%)	0	0	1
Less than quarter (<25%)	5	23.8	19
Others	11	52.4	0
I do not know	4	19.0	0
Total	21	100.0	20

Source: Field data, 2007, 2013

Figure 15: Table 12 :

13

Proportion of vegetables sold	New Farm in Mufulira No. Percentage (%)	Chilumba Gardens in Kafue No. Percentage (%)
Three quarters (75%)	7 28.0	23 82.1
Half (50%)	1 4.0	3 10.7
Quarter (25%)	0 0	1 3.6
Less than quarter (25%)	1 4.0	1 3.6
Others	13 52.0	0 0
I do not know	3 12.0	0 0
Total	25 100.0	28 100.0

Source: Field data, 2007, 2013

Figure 16: Table 13 :

14

24
Volume XIV Issue II Version I
(B)

Proportion of sugarcane sold	New Farm in Mufulira No. Percentage (%)	Chilumba Gardens in Kafue No. Percentage (%)
Three quarters (75%)	4 14.8	23 100.0
Others	20 74.1	0 0
I do not know	3 11.1	0 0
Total	27 100.0	23 100.0

Source: Field data, 2007, 2013

Figure 17: Table 14 :

15

Proportion of total income of the households	New Farm in Mufulira		Chilumba Gardens in Kafue	
	No.	Percentage (%)	No.	Percentage (%)
All income (100%)	5	16.7	0	0
Three quarters (75%)	3	10.0	23	82.1
Half (50%)	1	3.3	2	7.1
Quarter (25%)	0	0	1	3.6
Less than quarters (<25%)	1	3.3	0	0
Others (10%)	5	16.7	2	7.1
I do not know	15	50.0	0	0
Total	30	100.0	28	100.0

Source: Field Data, 2007, 2013

g) Living conditions of crop cultivators

Figure 18: Table 15 :

16

Amount in US\$	New Farm in Mufulira		Chilumba Gardens in Kafue	
	1 Crop cul- tivators	1 House- hold mem- bers	2 Crop cul- tivators	2 House- hold mem- bers
Maximum	2000=00	1500=00	3000=00	2600=00
Mean	1021=75	1000=00	977=85	904=00
Minimum	250=00	375=00	70=00	120=00

1 exchange rate of one US Dollar equivalent to four Zambian Kwacha in 2007)

2 exchange rate of one US Dollar equivalent to five Zambian Kwacha in 2013)

** Missing values

Source: Field data, 2007, 2013

Figure 19: Table 16 :

17

standards in Zambia

Figure 20: Table 17 :

18**Methods of acquisition of field plots**

	New Farm in Mufulira	Chilumba Gardens in Kafue
	Number	Percentage
	of field plots	(%)
Gift only	5	6.17
Bought only	19	23.46
Inheritance only	11	13.58
Bought and inheritance	17	20.99
Gift and bought	5	6.17
Bought and others	7	8.64
Gift and others	5	6.17
Inheritance and others	4	4.94
Bought, inheritance and others	6	7.41
Others: renting of field plots	2	2.47
Total	81	100.0
		186
		100.0

Source: Field data, 2007, 2013

Figure 21: Table 18 :

325 .1 Acknowledgement

326 This study was undertaken concurrently with the DfID (Department for International Development, UK) R8160
327 project entitled "Contaminated irrigation water and food safety for urban and peri-urban poor: appropriate
328 measures for monitoring and control from field research in India and Zambia".

329 project provided the logistical and financial support to the researcher.

330 [Dhaka and Leicestershire] , Bangladesh Dhaka , Leicestershire . University of Loughborough

331 [(2013)] , 10.5539/jgg.v5n4p106OnlinePublished. <http://dx.doi.org/10.5539/jgg.v5n4p106> November
332 22. 2013. 5 p. .

333 [Carney ()] (ed) *Sustainable rural livelihoods- What contribution can we make*. London: Department of Interna-
334 tional Development, D Carney . 1998a.

335 [Obuobie et al. ()] *Access to land and water for urban vegetable farming in Accra*, E Obuobie , G Danso , P
336 Drechsler . 2003. Urban Agriculture Magazine. 11 p. .

337 [Saasa and Carlson ()] *Aid and Poverty Reduction in Zambia: Mission Unaccomplished*, O Saasa , J Carlson .
338 2002. Uppsala: Nordic Africa Institute.

339 [Bradbear ()] *Beekeeping and Sustainable Livelihoods: Diversification Booklet No.1*. Rome: Food and Agricultural
340 Organisation of United Nations, N Bradbear . 2004.

341 [Hampwaye ()] 'Benefits of urban agriculture: reality or illusion?'. G Hampwaye .
342 10.1016/j.geoforum.2013.03.008. R7-R8. <http://dx.doi.org/10.1016/j.geoforum.2013.03.008>
343 Geoforum 2013. 49.

344 [Marshall et al. ()] *Contaminated irrigation water and food safety for the urban and peri-urban poor: Appropriate
345 measures for monitoring and control from field research in India and Zambia*, B Marshall , T Bowyer-Bower
346 , B H Chishala , E M Kapungwe , M Agrawal , R Agrawal , D Lintelo , J Holden , M Macwani , J Volk ,
347 V Krishnan , R Sharma . 2004. (Main Inception Report: Department for International Development (DFID)
348 project No.R8160. London: Department for International Development (DFID-UK)

349 [Raschid-Sally and Jayakody ()] *Drivers and characteristics of wastewater agriculture in developing countries-
350 results from global assessment*, L Raschid-Sally , P Jayakody . 2008. IWMI.

351 [Steckley and Muleba ()] *Facilitating land access for the Copperbelt's peri urban farmers*, G Steckley , M Muleba
352 . 2003.

353 [Kapungwe (2013)] 'Heavy metal contaminated water, soils and crops in peri urban wastewater irrigationfarming
354 in Mufulira and Kafue in, Zambia'. E M Kapungwe . Dio:10.5339/jgg.v5n2p55. <http://dx.doi.org/jgg.v5n2p55> Journal of Geography and Geology 2013a. April 18, 2013. 5 (2) p. .

356 [Gaffey ()] 'How to survive and become rich amidst devastation: The second economy in Zaire'. Mac Gaffey , J
357 . African Affairs 1983. 238 (82) p. .

358 [Simukanga ()] 'Impacts of mining effluents on the water quality, sediments, soils and crops in the Mwambashi
359 Catchment area of the Copperbelt of Zambia'. Simukanga . Ministry of Tourism, (Lusaka) 2002. 2002.
360 (Environment and Natural Resources Pilot Environmental Fund)

361 [Carney (ed.) ()] *Implementing the sustainable rural livelihoods approach*, D Carney . D. Carney (ed.) 1998b.

362 [Saasa ()] 'In the Shadow of Lusaka: Land and People under pressure of urban growth'. M N Saasa . *Studies
363 in Zambian Society Number* Van Den Berg, L. (ed.) 1982. 6. University of Zambia (Uses of vacant land in
364 Kaunda Square-Munali area of Lusaka)

365 [Kapungwe ()] 'Industrial land use and heavy metal contaminated wastewater used for irrigation in peri-urban
366 Zambia'. E M Kapungwe . *Singapore Journal of Tropical Geography* 2011. 32 (1) p. .

367 [Little and Edwards ()] *Integrated Livestock-Fish Farming Systems*. Rome: Food and Agriculture Organisation,
368 D C Little , P Edwards . 2003.

369 [Obuobie et al. ()] *Irrigated urban vegetable production in Ghana: characteristics, benefits and risks*, E Obuobie
370 , B Keraita , G Danso , P Amoah , O Cofie , L Raschid-Sally , P Drescher . 2006. Accra: International Water
371 Management Institute.

372 [Jesuit Centre for Theological Reflection (JCTR) basic needs basket Jesuit Centre for Theological Reflection (2012)]
373 'Jesuit Centre for Theological Reflection (JCTR) basic needs basket'. 12/02/14. [376 \[Fao \(\)\] *Land tenure and rural development*, Fao . 2002. Rome.](http://consumersdiaries.wordpress.com/consumer-news/JesuitCentreforTheologicalJesuitCentre
374 for Theological Reflection 2012. August, 2012.</p></div><div data-bbox=)

377 [Buechler et al. ()] *Livelihoods and wastewater irrigated agriculture: Musi River in Hyderabad City*, S Buechler
378 , G Devi , L Raschid . 2002b. Andhra Pradesh, India. Urban Agriculture Magazine. 8 p. .

379 [Living Conditions Monitoring Survey in Zambia Lusaka: Central Statistical Office ()] 'Living Conditions Mon-
380 itoring Survey in Zambia'. Lusaka: Central Statistical Office 1998. 1998. (Government of Republic of Zambia)

381 [Living Conditions Monitoring Survey Report Lusaka: Central Statistical Office ()] 'Living Conditions Monitoring Survey Report'. *Lusaka: Central Statistical Office*, 2004. 2002-2003. (Government of Republic of Zambia)

384 [Jaeger and Huckabay (ed.) ()] *Lusaka and its Environs: A Geographical Study of a Planned Capital in Tropical Africa*, Zambia Geographical Association, Handbook Series No, D Jaeger , J D Huckabay . G.F. Williams (ed.) 1986. Lusaka. University of Zambia (The Garden City of Lusaka: Urban Agriculture)

387 [Drechsel et al. ()] *Recovery and reuse of resources: Enhancing urban resilience in low-income countries. Urban Agriculture Magazine*, P Drechsel , O O Cofie , B Keraita , P Amoah , A Evans , Amerasinghe , P . 2011. 25 p. .

390 [Potts et al. ()] *Regional urbanisation and urban livelihoods in the context of globalisation*, D Potts , Potts , T Bower-Bower . 2004. London: Pearson Education. (Eastern and Southern Africa: Development challenges in a volatile region)

393 [Carney ()] *Sustainable Livelihoods Approaches: Progress and Possibilities for*, D Carney . 2002.

394 [Sustainable rural livelihoods-What contribution can we make. London: Department of International Development] *Sustainable rural livelihoods-What contribution can we make. London: Department of International Development*,

397 [Mtonga ()] *The effects of wastewater irrigation*, J Mtonga . 2001.

398 [Kapungwe ()] 'Traditional irrigation practices, high crop diversification and multiple agricultural cycles in wastewater irrigation farming in peri urban areas'. E M Kapungwe . *Zambia Journal of Geography and Geology* 2013b.

401 [Hampwaye et al. ()] *Urban agriculture as local initiative in Lusaka, Zambia. Environment and Planning C: Government and Policy*, G Hampwaye , E Nel , C M Rogerson . 2007. 23 p. .

403 [Page ()] 'Urban Agriculture in Cameroon: anti-politics machine in the making?'. B Page . *Geoforum* 2002. 33 p. .

405 [Faruqui ()] *Wastewater treatment and reuse for food and water security. Urban Agriculture Magazine*, N I Faruqui . 2002. 8 p. .

407 [Mubvami and Torrio ()] *Water supply and urban agriculture in Bulawayo*, T Mubvami , P Torrio . 2008. *Urban Agriculture Magazine*. 20 p. .

409 [Holden and Kapungwe ()] *Zambian Livelihoods at Three Urban Agriculture Localities. Contribution 2007-001 to DFID Project R8160 "Contaminated irrigation water and food safety for the urban and peri-urban poor: Appropriate measures for monitoring and control from field research in India and Zambia*, J A Holden , E M Kapungwe . 2007a. (London: Department for International Development (DFID-UK)

413 [Kapungwe et al. ()] *Zambian Urban Agriculture Cropping Methods. Contribution 2007-002 to DFID Project R8160 "Contaminated irrigation water and food safety for the urban and peri-urban poor: Appropriate measures for monitoring and control from field research in India and Zambia*, E M Kapungwe , J A Holden , B H Chishala . 2007. London. (Department for International Development (DFID-UK)