

1 Residues of Mining: A Retrospective View

2 Dr. Ramananda Goswami¹

3 ¹ Royal Global School

4 Received: 8 December 2013 Accepted: 3 January 2014 Published: 15 January 2014

5

6 **Abstract**

7 This paper focuses on the various issues related to the coal mining in India. Coal mining
8 contributes largely towards economic development of the nation although it has a great
9 impact upon the human health. It also has its impact on socio-cultural aspect of the workers
10 and people residing in and around coal mining areas. Thus a holistic approach for taking up
11 to mining activities, keeping in mind concerns for adjoining habitats and ecosystem, is the
12 need of the hour. This requires identification of various sites where minerals exist and various
13 factors ranging from appropriate angle of slope of overburden dumps, safe disposal drains, and
14 safe techniques to various silt control structures etc.

15

16 **Index terms**— pollution, environment, greenhouse, technology, eco-system.

17 This paper focuses on the various issues related to the coal mining in India. Coal mining contributes largely
18 towards economic development of the nation although it has a great cultural aspect of the workers and people
19 residing in and around coal mining areas. Thus a holistic approach for taking up to mining activities, keeping
20 in mind concerns for adjoining habitats and ecosystem, is the need of es identification of various sites where
21 minerals exist and various factors ranging from appropriate angle of slope of overburden dumps, safe disposal
22 drains, and safe Introduction t is globally accepted that coal mining adversely affects local and global environment.
23 Dangerous levels of air and water pollution have been recorded in coal mining areas. Mining adversely affects
24 local environment in that it destroys vegetation, causes extensive soil erosion and alters microbial communities.
25 Although coal mining does affect global environment through release of coal-bed methane, which is about 30
26 times as powerful as greenhouse gas as carbon dioxide 1 . Coal mining thus adversely impacts on air quality
27 standards. Underground mining causes depletion of groundwater at some places, as well as subsidence etc.
28 resulting in degradation of soil and land. Subsidence of the soil beyond permissible limits requires filling of
29 the subsidence area. The displacement and resettlement of affected people including change in culture, heritage
30 and related features, criminal and other illicit activities on account of sudden economic development of the
31 area can be said to be the adverse social and cultural impact 2 Author: Post Graduate Teacher in Geography,
32 Royal Global School, Guwahati, Assam, India. e-mail: ramanandageo@rediffmail.com . Some of the beneficial
33 impacts of mining projects are changes in employment pattern and income opportunity, infrastructural change and
34 community development. Development in communication, transport, educational system, commerce, recreation
35 and medical facilities etc. are some positive impacts. It is thus clear that coal mining leads to environmental
36 damage, while economic development and self-reliance call for the increased mining activities of the available
37 mineral resources. Though there is no alternative to the site of mining operations, options as to the location and
38 technology of processing can really minimize the damage to the environment. Before going to the post mining
39 stage, the environmental impacts of the operational stage can briefly be discussed.

40 **1 II.**

41 **2 Sources of ata & Methodology**

42 The air in the opencast mine including its surrounding zone is affected due to various mining operations. If
43 effective dust suppression measures are not taken the air quality deterioration in the operational stage of an

5 NOSE POLLUTION IN COAL MINES IN INDIA

44 opencast mine may become appreciable. However, for environment, health and operational efficacy the dust
45 suppression is taken care by the mine management.

46 The natural water system in the project area as well as its surrounding zone is affected due to various reasons
47 like mine water discharge, erosion from dump etc.

48 The impact on land in the operational phase is direct and visible. The mined-out area, the overburden or
49 reject dumps, the infrastructural built-up area all affect the land during the operational stage. Unless proper
50 reclamation is possible by backfilling, the land impacts during the operational stage remain visible and glaring.
51 Most of the land management can be done only in the post-mining stage. However, at present thrust is for
52 concurrent or early backfilling and physical reclamation of the mined areas or OB dumps during the operational
53 phase itself.

54 The flora and fauna in the forest areas face the direct impact of the mining operation. The diversion of forest
55 land for the mines and OB dumps clearly affect the floral system in the area. The fauna in the area normally
56 migrate because most of the coal mines in the forest area are surrounded by contiguous forests.

57 3 b) Impacts of Open Cast Mines on Environmental (Post- 58 Mining Stage)

59 The following are the impacts on the environmental descriptors in the post-mining stage as can be envisaged at
60 present. After closure of the mining operation the activities causing air pollution are minimized. The activities
61 of reclamation and rehabilitation of the areas may generate just a meager quantity of dust. This is not likely to
62 have any impact on the ambient air quality.

63 The impact on water quality after the closure of the mining operation will also get reduced appreciably. The
64 pumping of the mine water is likely to the mine water is likely to stop due to reduced activities. The quality
65 of mine water, even if pumping is continued for some reason will be always within the acceptable limits. The
66 pollution due to arete dumps will also slowly reduce with improved vegetative cover on these arete dumps. The
67 problem of acidity or alkalinity will also appreciable reduces with no exposure of fresh rock surfaces in the mined
68 area. It is therefore stated that rehabilitation of the dumps is a must for controlling the water pollution.

69 Land is a major problem even in the postmining stage. The following land uses will result upon completion of
70 the mineral extraction.

71 Mined-out area (voids) Internal dump areas External dump areas Infrastructural areas Residential areas. Out
72 of the above, the residential areas may be suitable developed so that aesthetically and also environmentally they
73 remain acceptable. However, other four post-mining land uses need proper rehabilitation so that they match
74 with the ambient scenario and are acceptable to the society as a whole.

75 The impact on flora and fauna after completion of the mining operation would remain insignificant. However,
76 a possible impact can always be envisaged with proper planning of the land use and proper harvesting of the
77 water and soil resources within or near the project area. The proper rehabilitation of the mining areas and
78 rational utilization of water and soil resources will help to enrich the growth of flora and thereby advent of the
79 migration fauna. This could be useful post-mining scenario.

80 IV.

81 4 Site Development and Land Use Plan

82 A site development and land use plan should be prepared to encompass pre-operational, operational and post-
83 operational phases of a mine. It should clearly indicate the planned post-operational land use of the area, with
84 details of the measures required to achieve the intended purpose. The general survey for the purpose must take
85 into account not only the broad features of the actual or proposed mining operations, nut also the surrounding
86 terrain conditions. The important components of this survey include: (iii) Characteristics of the local eco-system;
87 (iv) Climate of the area; Relevant terrain information that will help in arête dumping, tailings disposal, etc., with
88 least effects on the local land-water system, including-(a) geo-morphological analysis (topography and drainage
89 pattern), (b) Geological analysis (structural features-faults, joints, fractures, etc.), (c) Hydro-geological analysis
90 (disposition of permeable formations, surface-ground water links, hydraulic parameters, etc.), (d) Analysis of the
91 natural soil and water to assess pollutant absorption capacity, and (e) Availability and distribution of top-soil;
92 Once the mining operations are over, the land should be rehabilitated for productive uses like agriculture, forestry,
93 pasturage, recreation, wild life habitats and sanctuaries.

94 V.

95 5 Nose Pollution in Coal Mines in India

96 The noise is now being recognized as a major health hazard; resulting in annoyance. Partial hearing loss and
97 even permanent damage to the inner ear after prolonged exposure is general phenomena. The problems of
98 underground are of special importance because of the acoustics of the confined space. The ambient noise level of
99 the underground mining area is affected by the operation of the cutting machines, tub/conveyor movement and
100 blasting of the coal. The movement of coaling machines and transport unitsconveyor, tubs and transfer points
101 caused audible noise which becomes disturbing underground because of the poor absorption by the walls 3 VI.

102 **6 Noise Pollution Due to Mining Activities**

103 .
104 The most note generating equipment underground are the haulage, ventilators-main, auxiliary and forcing
105 fans, conveyor transfer points, cutting and drilling machines. The ambient noise level due to different operations
106 in underground mines varies within 80-1040 dB (A). In a mine of Raniganj and Jharia the noise level near fan
107 house, conveyor system shearer and road headers are reported to be within 92-93 dB (A). The values increased
108 in many Indian mines because of poor maintenance of the machines and exceeded the permissible limit of 90 dB
109 (A) for 8 hours per day exposure 4 Location of survey . The result of a noise survey for a coal mine conducted by
110 DGMS is summarized in the following table which indicates noise over 90 dB by the drills, breaking and crushing
111 units and transport system underground. The mechanized mines have lower noise problem in comparison to the
112 old conventional mines operational mines operating with haulage and coal cutting machines. The results show
113 that (Table 2) covering wholly manual, partly mechanized with coal cutting machines and partly mechanized
114 with SDL loading showed reduction in the noise level underground.

115 **7 Noise Pollution Due to Blasting**

116 The blasting in underground cause's high frequency sub audible noise measured in terms of air over pressure. The
117 magnitude of air pressure is found to be 164 dB (1) at 30m distance reduced to 144 dB (1) at a distance of 70m.
118 Test results of some of the sites are summarized in the following table. The total noise menace due to blasting
119 underground is the result of the audible and sub audible noise. The sub audible noise responsible for vibration
120 causes vibration of the surface features and in case of thin overburden cracks in surface structures. This societal
121 reaction of Jharia Town Development Forum over blasting forced the pick mining in some of the situations. The
122 reaction of blasting is reported in the following forms.

123 ? Damage of old structures due to vibrations.
124 ? Public nuisance vis-à-vis disturbance of sleep.
125 ? Disturbance of sewerage and water supply line.

126 The amplitude of vibration due to blast wave is observed to be reduced with increase in the height of the
127 building and hence drop in the level of nuisance in the upper floors. The investigation in some of the mines
128 revealed that in case of machine cut the blasting in the lower section generated more vibration than that of the
129 upper portion. The restriction of total charge is essential to minimize the vibration due to blasting underground.
130 The P5 explosive generates low vibration in comparison to P3 grade of explosives 5 VIII.

131 **8 Toxic Arete Treatment**

132 . The noise control measures in general are categorized in three groups: personal protective measures, engineering
133 control measures and administrative measures. The engineering control measures are the most effective as they
134 are based on sophisticated techniques like Retrofit approach for installation of noise control treatment on mining
135 equipment. Designing of inherently quite mining equipment is also included in this technique which aims to
136 control and reduce the noise emission successfully. The preferred cost effective system for the underground
137 mining has been the personal protective system -ear muffs for the operator of the noise producing units.

138 Nearly 25-35% of rain water drained back to ocean through reveres and streams; the major source of potable
139 water for local population. Except particulate impurities (coal dust/soil/clay) and bacteriological or biological
140 impurities; the river water are normally fit for consumption. Normal filtering and disinfectants made the water
141 acceptable and had been used in India and elsewhere. Ground water on the other hand is not fit for consumption
142 unless treated for hardness. The quality of mine water of Jharia and Raniganj Coalfield obtained from the
143 underground mines are summarized in the following table ?? Table ?? : Mines Water Quality Sources: CMPDI,
144 Survey Report, 2009 Note : All parameters are in mg/l unless specified otherwise NA stands for not analyzed.

145 The water pollution problem in the mining areas is broadly classified into the following major heads depending
146 upon the nature of coal and dump, effluents and rock formation:

147 ? Acid mine drainage in case of high sulfur coal ? Eutrophication and Deoxygenating due troth of algae
148 because of sulfur.

149 **9 ? Heavy metal pollution**

150 High level of dissolved solids such as bicarbonates, chlorides and sulfates of sodium calcium, magnesium, iron
151 and manganese are introduced to water while passing through aquifuge and aquiclude made permeable due to
152 sagging and industrial usage without treatment. This makes the water hard, unfit for drinking, other impurities
153 in a few selected mines of Jharia and Raniganj coalfield. Low level nitrates and phosphates served as nutrients
154 to algae; rapid growth of which caused deoxygenating of water, and lowering of dissolved oxygen. This are likely
155 to occur when the underground water are accumulated in water pools. Use of such water for irrigation might
156 improve production and yield of crop.

157 10 IX.

158 11 Heavy Metal Pollution

159 Heavy metals like lead, zinc, arsenic and cadmium are detected in traces in the mine water, mainly because
160 of leaching of aquifuge, aquiclude and igneous intrusions and effluent of oil and grease from the machines
161 underground. The toxic substances generally in the confined state within the rock mass are exposed to dynamic
162 setting of soil water system when they start polluting mine water. The list of the toxic elements and their
163 impact is summarized as follows: The presence of a large number of trace elements in coal is attributed to species
164 of carbonaceous swamps or contemporaneous sedimentation with holmic acids solubilizing and binding these
165 elements. Trace elements may have come through inflowing these element might have come through inflowing
166 ground water during calcification. The magma tic and fluid might have resulted epigenetic mineralization and
167 enrichment of trace metals. The elements like As, Cd, Hg, Pb and Zn are the inorganic fraction of coal while Cr,
168 Cu and Sb are present in mineral in organic form. The concentration of trace elements in Raniganj and Jharia
169 coalfield is summarized below.

170 In the process of mining these elements are released or mixed to the inflowing water and ultimately to water
171 channel. Quality of water, however, is the main casualty of the scenario when hardness of the water increases
172 up to 700 mg/l inclusive of 300-500 mg/l permanent hardness which necessitates special treatment. The other
173 impurities like heavy metals and oxygen balance of the underground water in most of the Indian coalfields are
174 well within the accepted limit.

175 The ground movement impact on hydrosphere are manifested in the form of increased storage and charging
176 character, lowering and disturbance of the water table, loss of streams or water pools. Some of them have
177 improved the water availability to the flora and fauna and biomass in general and improved the environment
178 and ecology while a few caused temporary damage to the environment and ecology with the development of the
179 fracture planes and opening of the cracks. The positive impact of the ground movement over the hydraulic regime
180 are however, diluted due to repeated mining of the seams one after the other. With each seam working, the cycle
181 of negative impact are repeated, water table loaded and level of pollution increased time and again. It takes time
182 -a couple of years again before the regime are restored to normalcy.

183 12 X.

184 13 Concluding Remarks

185 Mining below the surface destabilizes the ground, while the process of mining particularly blasting causes vibration
186 of the surface structures and noise generation. The transfer of the raw coal, its beneficiation and handling
187 generates coal dust, whiles open burning of coal for steam or other usage release gaseous discharge to the surface
188 atmosphere. The movements of coal from the pit head to the loading, or consumption points in open trucks or
189 open wagons also add coal dust to the environment all along the routes. The air absorbing moisture from the
190 underground workings often reduces the suspended particulate matter but the fumes of explosives, methane, So2,
191 and Oxides of carbon are added to the general body of air. The concentration of these hostile gases often creates
192 negative impact over the surface and the population nearby. With the latest realization about the impact of
193 these green house gasses over the ozone layer has drawn the attention of the global community and efforts are
194 on to drain methane and put it use as a fuel. The bio -diversity and the local people are also disturbed by the
195 mining activities though they are mostly underground. ^{1 2 3}

¹See report of Prabha, J & Singh, G. 2005. "A Review on Emission factor Equations for Haul Roads: The Indian Perspective": The Indian mining and engineering Journal. 2 See Goswami, S "Coal Mining, Environment and Contemporary Indian Society" published in Global Journal of Human Social Science, U.S.A (B) (Volume 13 Issue 6 Version 1.0 Year 2013)

²© 2014 Global Journals Inc. (US)

³Residues of Mining: A Retrospective View

Figure 1:

1

Average Noise level dB (A)	
Near shearer	96
Transfer point	99
Tail end belt conveyor	89
Power pack pump	91
Drive head of AFC	96

Sources: CMPDI, Survey Report, 2010

[Note: 3Refer the report of Kumar, R, G, Singh and A, Pal .2004. "Assessment of coal and minerals related industrial activities in Korba Industrial belt of Chhattisgarh": Centre of Mining Environment, Indian School of Mines, Dhanbad]

Figure 2: Table 1 :

2

Type of mine	Machine points	Noise Level	Duration of Operation
Wholly manual	Drill	87dB(A)	1-2 hrs
	Tugger haulage	105Db(A)	4 hrs
Mechanized with CCM cutting	CCM	94Db(A)	1 hrs
	Drill	94Db(A)	1-2 hrs
	Auxiliary fan	93dB(A)	8hrs
Mechanized loading	Drill	88Db(A)	2 hrs
	LHD	98Db(A)	4-5hrs
	Chain conveyor	84Db(A)	4-5hrs

Sources: CMPDI, Survey Report, 2010 VII.

Figure 3: Table 2 :

3

Mine	Explosive type	Max, charge/delay	Air pressure at Distance-m	over Value Db(l)
		Total charge		
		Max, (kg)		
Ray	P1	kg	10.6 kg	50m 153.8
Bacha	P5	kg	2.4 kg	70m 144.5
	P3	12.5kg	12.5 kg	15m 150.1
Girmit	P5	6.4 kg	2.5 kg	30m 164.8

Sources: CMPDI, Survey Report, 2010

Figure 4: Table 3 :

5

Element	Impact/Effect
As	Toxic, possibly carcinogenic
Cd	Hypertension, kidney damage & toxic to biotic
Be	Acute toxicity, possibly carcinogenic
B	Toxic to plants
Cu	Toxic to plants and algae
Fl	Cause mottled teeth
pH	Toxic (Anemia, Kidney disease, nervous disorder)
Mn	Toxic to plants

Sources: CMPDI, Survey Report, 2010

Some of these elements served as nutrient to plants and aquatic life at lower concentration. There concentration in coal mine water are normally within permitted limit and required no special treatment. The survey result of two mines of Raniganj coalfield is summarized in the following table.

Figure 5: Table 5 :

6

Al	0.49	0.68
Mn	0.09	0.08
Zn	11	0.14
Mo	0.02	0.02
Cu	0.02	0.005
Bu	0.02	0.02

Sources: CMPDI, Survey Report, 2010

*Results in ppm.

Mines		
Micro elements	Benjemihary	Ghanshyaan
Cmol (P+)		
kg		
Ca	0.78	51.0
Fe	0.51	0.89

Figure 6: Table 6 :

7

Element	Concentration (µg / g -1) of trace elements in regions			
	Kunustoria	Parasia	Katras	Victoria
Antimony	1.35	-	3.5	3.33
Arsenic	14.9	4.8	6.8	16.8
Cadmium	2.89	0.2	-	0.2
Chromium	14.1	12.7	17.5	31.9
Fluorine	59.3	54.0	-	-
Lead	39.8	0.8	-	21.7
Mercury	0.21	0.07	0.42	0.22
Barium	113.8	146.0	-	21.7
Nickel	22.4	5.5	-	-

Sources: CMPDI, Survey Report, 2010

Figure 7: Table 7 :

196 [Chattopadhyay (1986)] *Atmospheric pollution in mining field-A critical review seminar on mine climate*, T
197 Chattopadhyay . 1986. July. Sindri. p. .

198 [Chari ()] K S R Chari . *Report of the Committee on Restoration of Abandoned Coal Mines*, 1989. (Sept)

199 [Cortis (1969)] *Coal mining and protection of surface structures are compatible*, S E Cortis . June 1969. Mining
200 Congress Journal.

201 [Bisare and Agarwal ()] *Environmental Impact Assessment for Developing countries*, A Bisare , S B C Agarwal
202 . 1992. Oxford: Butterworth aeinemann Ltd. p. 249.

203 [Chadwik ()] *Environmental impacts of coal mining and utilization*, M J Chadwik . 1987. Pergamon Press Oxford.
204 p. .

205 [Bose and Singh ()] *Environmental Problem in coal Mining areas, Impact assessment and Management strategies-
206 case study in India*, A K Bose , B Singh . 1989. 4 p. 243.

207 [Chaudhary (1995)] *Mineral Development in India and Review of Environmental Legislations*, S K Chaudhary .
208 1995. Dec. New Delhi: First World Mining Congress.

209 [Boliga ()] *Mining 2000 A.D. Challenges of environmental management*, 4th National Convention of Mining
210 Engineers, B P Boliga . 1989. March, Dhanbad.

211 [Briggs ()] *Mining Subsidence*, Briggs . 1929. Arnold and Co. London. p. 215.

212 [Bose ()] *Planning of Railway siding for Coal Mines*, S K Bose . 1998. New Delhi: New Age International
213 Publishers.

214 [Bryson ()] 'The future of coal production'. N Bryson . *International Mining* 1986. 3 (8) .