

1 Critical Exploration in the University Classroom: Implications 2 for Teaching and Teachers

3 Dr. Sabine Hoidn¹

4 ¹ University of St. Gallen, Switzerland and Harvard University (School of Education),
5 USA

6 *Received: 14 December 2013 Accepted: 5 January 2014 Published: 15 January 2014*

7

8 **Abstract**

9 The paper introduces an educational approach developed by Eleanor R. Duckworth named
10 Critical Exploration in the Classroom (section 1) and outlines the basic educational
11 components central to this approach (section 2). After that selected finding so far in-depth
12 case study conducted in Professor Duckworth's higher education classroom at Harvard
13 Graduate School of Education in the United States will be presented. The empirical case
14 study investigated how the learning environment in the classroom was designed to support
15 deep exploratory learning exploring both, curriculum design and pedagogy (section 3). As a
16 result, pedagogical implications on how educators can use their knowledge to help students
17 learn will be outlined (section 4).

18

19 **Index terms**— Critical Exploration, higher education, understanding, deep learning, teaching.

20 **1 What is Critical Exploration in the 21 Classroom?**

22 Critical Exploration is an approach that challenges the traditional role of the teacher as one who imparts
23 knowledge. Instead, it supports a move towards students' greater intellectual involvement by fostering student-
24 centered learning processes in the classroom. As a progressive approach to learning and teaching, Critical
25 Exploration puts learners and their understanding of the world center-stage. According to Piaget "to understand
26 is to discover, or reconstruct by rediscovery;" therefore, certain conditions must be complied with "if in the future
27 individuals are to be formed who are capable of production and creativity and not simply repetition" ??1972, p.
28 20). ??uckworth (1987 ??uckworth (/2006, p. 1) , p. 1) considers the development of intelligence to be a creative
29 affair and "the having of wonderful ideas" to be the essence of intellectual development. In order for these ideas
30 to arise it is necessary that teachers are willing to listen to students' ideas and that they provide educational
31 settings suggesting different ideas for different students so that each student can work on a challenging intellectual
32 problem (ibid., p. 7). "Wonderful ideas" can only flourish in an educational environment where students can
33 generate their own knowledge and where students and teachers are co-learners working alongside each other in
34 the educational process.

35 BärbelInhelder first introduced the term "Critical Exploration" for Piaget's clinical interviewing method as
36 she applied it to pedagogical contexts that included observing children as well as interviewing and interacting
37 with children who were experimenting and investigating a problem set by the researcher. When applied in an
38 educational context, Critical Exploration as a scientific method can have two levels of meaning, according to
39 ??uckworth (1987 ??uckworth (/2006, p. 159, p. 159): (1) exploration of the subject matter by the student
40 (instead of only words) and (2) exploration of the students' thoughts, i.e. striving to understand the meaning an
41 experience holds for the student, by the teacher. As a pedagogical approach Critical Exploration supports a move
42 toward students' greater intellectual involvement by considering the learner to be an active explorer building
43 her own understanding while the teacher acts as a facilitator to assist the learners' inquiries. The teachers'

2 I KNOW I CANNOT TEACH ANYONE ANYTHING,

44 responsibility is to develop explorable curricula and to create a classroom environment where learners' thoughts
45 generate the intellectual life of the classroom while the teacher provides some direction through environmental
46 resource selection (assignments, materials), activities and genuine questions to further students' engagement.
47 ??uckworth (1987 ??uckworth (/2006Duckworth (, 2009) stresses the following two major aspects that are
48 original about Critical Exploration as a pedagogical approach: I.

49 2 I know I cannot teach anyone anything,

50 I can only provide an environment in which he can learn. (C. Rogers)

51 a) The way teachers use their own subject matter knowledge, as curriculum planers and as teachers They plan
52 how to engage students' minds in exploring the subject matter, put students in direct contact with the subject
53 matter and keep them attending closely to the material. For example, the teacher thinks about what materials
54 he will use, how he proposes to begin the session, different ways in which the session might develop, and what he
55 might do in each case. He brings materials to the classroom that provide a source of feedback and against which
56 the students can test their ideas.

57 b) The way educators focus on the students' thoughts rather than their own

58 The teacher invites students to express their thoughts/ideas to come to understand how students are
59 seeing things. Critical Exploration in the Classroom constitutes a triangular, dynamic relation between three
60 pedagogical elements: the represented challenge, the teacher, and the students. These three elements create a
61 dynamic that offers the teacher a window into the ways in which different students go about making sense of the
62 represented challenge. The didactic triangle represents the basic structure of the teaching and learning process
63 and helps to analyze its main components and their relations (Figure 1).Moreover, this structure can help to think
64 more about what teachers can do with their knowledge if they do not simply tell it to the students. Although the
65 components will be tackled separately below they are interrelated and need to be closely aligned to allow for deep
66 learning to take place. In order to learn, students should be given opportunities to be in contact with phenomena
67 related to the area to be studied. A specific intellectual challenge is represented in concrete form (object), for
68 example, a poem, a painting, a case in economics, materials embodying a problem in physics or mathematics.
69 Thus, the students have something complex and authentic to look at and think about, instead of oversimplified,
70 artificial materials or just spoken words. This way, they can connect with the phenomena and make sense out of
71 it for themselves instead of being presented with the meaning somebody else is making. Duckworth argues: "[I]f
72 you want to help kids and teachers learn about the material world, like batteries and bulbs, or pendulums, or
73 earthworms, or butterflies, you give them batteries and bulbs, pendulums, earthworms, and butterflies. And you
74 let them look at them, notice them, figure out their questions, and come to be familiar with these things. You
75 don't give them words about these things, you give them these things. Now that's similar to the poem, too. You
76 don't give them somebody else's words about a poem, you give them the poem." ??Duckworth in Meek, 1991,
77 p. 32) These concrete representations or objects can fulfill several educational functions: ? The subject matter
78 itself instead of words allow students to act on material things so that they can discover the specifics of an object
79 for themselves.

80 This way, they can make a connection to the world and assimilate new experiences in ways that make sense
81 to them.

82 ? Students have reliable materials at their hands that are the proving ground against which they can develop
83 and assess their own ideas or upon which students and teachers can collaboratively assess each other's ideas and
84 claims to develop shared understandings. This way, the subject matter is the source of authority -without the
85 need for the teacher as intermediary.

86 ? Getting to know each other's ideas and seeing each other's confusions can help students and teachers to
87 understand as they might have similar confusions and ideas. However, sometimes students "see how each other's
88 ideas pass right over their heads, and they can't connect with them. Then six weeks later they hear exactly the
89 same idea; and they notice, well, now they can connect with it." (Duckworth in Meek, 1991, p. 31)

90 ? Students are given opportunities to work on topics and projects that interest them and often construct their
91 own objects. While working on something on their own, students come up with their own ideas as they make
92 sense out of the phenomena. They also pass through confusions and feelings as they cannot make sense out of
93 the phenomena yet. Finally, when they get their minds around their own puzzling questions and ideas and see
94 that their ideas can work out and can be of interest to other people, they can expand their connection to the
95 world and also develop feelings of self-confidence.

96 ? Interesting materials and activities can engage students' minds by providing occasions where surprise,
97 puzzlement, excitement, patience, caution, confusion, honest attempts and wrong outcomes are important
98 elements of intellectual development ??Duckworth, 1987 ??Duckworth, /2006).

99 b) The Role of the Student in the Learning Process In Piaget's view, intellectual development is a process of
100 equilibration where an individual interacts with the world based on two complementary processes: Assimilation
101 means "the integration of external elements into evolving or completed structures." The process of II.

102 not to influence what students say as they are saying it. This way, teachers can use their insights to inform
103 their teaching in terms of how next to call on their knowledge of the subject matter -what resources to provide,
104 what next questions to ask to engage the students' minds continually with the subject matter and to broaden
105 and deepen their understanding.

assimilation allows an individual to take external elements into previously constructed structures and thus, provides for continuity and sense-making in a person's cognitive development. Accommodation is "any modification of an assimilatory scheme or structure by the elements it assimilates" ??Piaget, 1976, pp. 170 and 172). The process of accommodation is responsible for the transformation of already existing structures and thus, for further cognitive development. Through the intrinsic process of equilibration, which Piaget considers to be the motive for cognitive growth, a learner actively constructs structures throughout his life while acting upon the world -either alone or in social collaboration. Hence, for students to connect to the world, they must construct their own "wonderful ideas," move their ideas forward via exploration, discuss them with each other and (collaboratively) assess them against materials which provide reliable grounds. In this process students share with the teacher the responsibility of making sure they understand each other. This way, they do not just recount other people's ideas and learn for the test but develop greater confidence in their own ideas instead ??Duckworth, 1987 ??Duckworth, /2006). Therefore, it is a valuable and important cognitive and emotional experience for students to come to their own understanding, not through being told answers, but through the power of their own minds -often in interaction with others. A student-centered learning process leads students to have or develop a great sense of confidence in their own minds; ? bring their prior expectations and knowledge about a subject matter to the learning experience and then make a connection from the subject matter to what they already understand to reach an understanding of the subject matter;

? explore challenging questions and to figure things out based on their own interests; ? wrestle with their own ideas about a subject matter with confusions and conflicts being seen as valuable aspects of learning;

? try to make sense by testing ideas and posing questions, by thinking out loud and explaining what they think and why in a convincing fashion, and in the light of the phenomena they are trying to understand;

? have the courage to submit an idea of their own to someone else's scrutiny. Students form their own ideas, share what they think, see how their ideas relate to the ideas of others and are open to the questioning of their peers ??Duckworth, 1987 ??Duckworth, /2006, p. 67), p. 67).

A student-centered learning process requires students to consider and discuss each other's thinking in relation to their own thoughts and to their ongoing observations and explorations of the material proving ground. Thus, they develop their understanding of the subject matter and their ability to think further and gain confidence in their own minds.

c) The Role of the Teacher in the Learning Process The student's learning is the focus of teaching; therefore, the teacher's role is to help students learn.

The teacher facilitates learn ersso that they can have wonderful ideas on their own and realize the power of their own minds. Understanding requires searching thought about the nature of the subject matter on the part of the students and avoiding technical words to open a variety of connections to the subject matter. A teacher cannot assume that students have understood something because he has led them through it very carefully (Duckworth, 1999). Telling is not effective, especially when it comes to promoting higher order thinking processes, as Duckworth (in Meek, 1991, p. 30) points out: "telling people what they ought to understand has very little impact on what they actually understand. You have to put them in a situation where they develop that understanding -it's not going to happen from your telling them." ??uckworth (1987 ??uckworth (/2006)) highlights two main aspects regarding the role of the teacher as critical explorer:

a) The teacher puts students in contact with the phenomenonthe real thing -related to the area to be studied and gives them the space to explore what is interesting to them. He engages the students and puts authentic materials in the students' hands so they will continue to think and wonder about the subject matter. A good teacher knows how to get students interested in a subject matter/problem and keeps them interested in it ??Duckworth in Meek, 1991).This brings the teaching and learning to life and sets up the subject matter as the source of authority. Students are attending to each other's thoughts and generate their own puzzles and questions while the teacher provides students with yet further elements of subject matter to help them to take charge of their own explorations of the subject matter and deepen their knowledge.

b) The teacher has the students explain the sense they are making and provides them with the time to create their own meaning while he is observing and listening. The teacher listens genuinely without trying to guide students' explorations asking, "What do you notice? What do you think? or How do you think about it?", for example. He keeps trying to find out and understand what sense the students are making and helps them to develop their ideas further offering new aspects for consideration while at the same time assessing and monitoring their progress. He attends to them with the neutrality of a researcher, that is, he reacts to the substance of their answers without judging them. The teacher invites students to talk and establishes their feeling of self-confidence instead of explaining things to the students and imposing his knowledge. In short, in the course of the educational process, engaging learners in phenomena and working to understand the sense they are making are the main aspects of teaching. This take on the educational process has further implications for the design of learning environments. The following Figure two summarizes important core tasks of a teacher(teachingresearcher) as outlined above: Designing Student-Centered Learning Environments that Support Exploratory Learning Processes

Exploratory learning has its roots in the works of John Dewey, Jean Piaget, Friedrich Fröbel and Maria Montessori. The learner is considered to be an active explorer and discoverer building his own understanding while the teacher acts as a "guide on the side" to assist the learners' inquiry and help him engaging the learning

2 I KNOW I CANNOT TEACH ANYONE ANYTHING,

169 environment. An exploratory learning environment "supports learners in constructing their understanding about
170 a specific subject through learner-driven reflective inquiry" ?? In order to make sense out of the world individuals
171 need to make intellectual connections between their prior knowledge (internal structures) and the subject matter.
172 Therefore, curricula need to provide occasions so that students can construct knowledge based on their own
173 repertoire of actions and thoughts as there are endless numbers of adequate pathways for students to encounter
174 and apprehend the material and make sense of the subject matter. Curricula must build on this diversity by
175 engaging students intellectually and inviting them to explore the subject matter. A learning environment that
176 provides a rich source of selected cultural, social and material resources can invite students to raise questions that
177 concern them and contributes to a democratic classroom. Lectures are rare in such classrooms and the instructor
178 does not talk too much in class but instead is mostly silent and listens very carefully to what the students are
179 saying while trying to avoid any (judging) comments on students' ideas.

180 The instructor is the one who orchestrates exploratory activities, carries out demonstrations (modeling) and is
181 mainly in charge of moderating large class discussions (including, for example, students' reflections on activities).
182 Students explore and do the talking and explaining using artifacts as testing-grounds for their ideas and thus, as a
183 source of authority. The teacher retains a focal role presenting engaging problems and attending to how students
184 figure them out. She is continually tracking the students' investigations (observing, listening) to gain information
185 about what to do next and she often provides queries and materials to take the students' thoughts further
186 and keep them connected to the subject matter. By talking to students and engaging them with phenomena,
187 instructors can prompt students to start thinking and to express their thoughts, and subsequently instructors
188 can use their understanding to attend to the learner's sense making. The following characteristics and related
189 roles of the instructor emerged from the analyzed data presenting implications for the creation of exploratory
190 learning environments:

191 ? Establishing a positive classroom climate and a productive learning culture

192 The overall atmosphere in the classroom both during class meetings and sections was described as "quite
193 relaxing," "quite friendly," "lively," "fun," "fantastic," "positive" and "inclusive" by the interviewees, because
194 "you could talk about everything that was on your mind." Students (and the instructor) sat in a big circle,
195 called each other by their first names and students were activeconstructing knowledge ("doing"), participating in
196 exploratory activities and discussions (involvement/interaction), and reflecting on the subject matter as well as
197 on their learning processes. Students had the freedom to make choices with what and how to engage and they
198 shared responsibilities with the instructor to make sure that everyone understood each other within a comfortable,
199 responsiveand productive environment.

200 ? Constructing knowledge through student-driven explorations and discussions It was the students who actively
201 constructed meaning -individually and collectively inside and outside of the classroom. Thus, students shared
202 responsibility and were held accountable for their own as well as for others' learning leading to increased autonomy
203 on part of the students. The instructor provided space for student thinking and validated that thinking by making
204 it auditable and visible to the entire group (e.g., students wrote on chalkboards, presented their solutions).
205 Working on their questions and having some choice around what and how to explore helped students to come up
206 with their own ideas, make more connections, deepen their understanding and get more engaged with the subject
207 matter they were learning about (e.g., mathematical problem, poem).Class activities were designed to allow for
208 individual or joint explorations and discussions orchestrated and facilitated by the instructor.

209 It was the students' work to figure out how to do the problem while negotiating different viewpoints and
210 perspectives that could illuminate each other. Students also used a variety of resources to keep track of their
211 thinking as a group. Confusions and conflictsheld students' minds to the problem, nourished their thinking
212 and were seen as a positive indication that real learning was taking place: While learning, students felt at
213 times both "excited," "surprised," "engaged," "inspired," and "a little bit frustrated," "awful," "confused" or
214 "bored."Because of their active involvement in and responsibility for knowledge construction in class, students
215 experienced the power of their thinking understanding what other students said and building on each other's
216 ideas and thus, positioning themselves as capable and independent. Her constructivist pedagogical viewpoint
217 and respect for others' ways of understanding led the instructor to shift the power from teacher to students and
218 to share responsibility for the direction the learning in the classroom had taken.

219 ? Shaping and maintaining positive social relationships in a safe environment The instructor created a space
220 where people felt safe and accepted and where they were encouraged to feel free to explore and talk. She modeled
221 inclusive an appreciative instructional behaviors and flexibly structured the course to account for students'
222 interests, ideas and questions. This way, students could feel that their ideas were worthwhile having and were
223 motivated to following through. The class was a "very positive experience" for the students and a place where
224 positive as well as negative emotions, like surprise, excitement, confusion and frustration, involved in the process
225 of joint knowledge construction, were accepted. Students experienced the community as "incredibly supportive,"
226 were invested in each other's learning, and concerned about how others or the group as a collective was thinking
227 about things. Students felt free to say something that they were not sure of and felt their ideas valued by the
228 instructor and thus, could further develop their self-confidence as learners and thinkers.

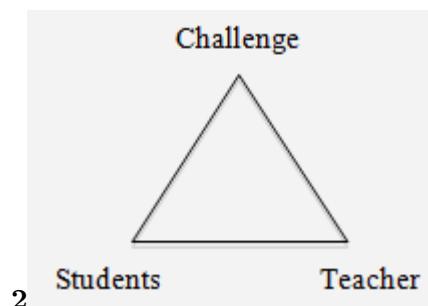
229 Discussion and Conclusions: What to do With the Teacher's Knowledge?

230 Critical Exploration in the Classroom is an approach to teaching and learning that puts the students at the
231 heart of the learning process. It is a fairly progressive approach involving two important roles that the instructor

232 plays: Engaging the learner with the phenomena (the real thing) or activity, and trying to understand students'
233 explanations to help them learn. In order to learn and to make sense out of the world, the learners need to make
234 intellectual connections between their prior knowledge (internal structures) and the subject matter by acting
235 in the world ??National Research Council, 2000Piaget, 1985). Teaching is then thought of as helping students
236 to learn, i.e. to understand, so that they are empowered to realize their full potential ??Duckworth, 1987
237 ??Duckworth, /2006). Instead of teaching students what to think, the instructor teaches students how to think
238 and the teacher becomes a facilitator of the relationship between the learner and the world. This combination of
239 a researchers' and teachers' stance provides a window into the development of human minds for the teacher and
240 at the same time helps the student to advance his understanding of the subject matter.

241 Based on the theoretical concept of Critical Exploration (section 2) and the empirical findings in the context
242 of an empirical case study in the higher education classroom (section 3) the following features stand out in
243 exploratory learning environments that bring Critical Exploration to life in the classroom: ? Practicing teaching
244 by listening rather than by explaining: Instructors lecturing and trying to present the subject matter in a certain
245 way by telling or explaining it to students can never be sure that the meaning they want to convey seems equally
246 clear to individual learners. Thus, learners need to have the opportunity to reach out to the world, discover
247 intellectually challenging problems, express their thoughts, raise questions, and construct knowledge based on
248 their own repertoire of actions and thoughts. Students are asked to explain what they think and why and in
249 trying to make their thoughts clear for others they achieve greater clarity for themselves.

250 ? Engaging students intellectually and actively:


251 Instead of over-simplifying curricula and expecting students to thoughtlessly memorize a given absolute
252 knowledge, learning situations should engage students intellectually and invite them into figuring out ways of
253 creating meaning and solving problems. Instructors need to think about how to develop challenging problems
254 to engage students' minds with the subject matter and put the learners into the forefront -letting them do the
255 thinking, talking, explaining and discussing. Such pedagogy provides students with occasions to express their
256 thoughts and understandings and to make their own connections.

257 ? Creating a culture valuing lifelong learning with understanding: Deeper learning can be promoted or hindered
258 depending upon whether social norms value the search for understanding, whether confusions are honored or
259 whether students are encouraged and given the time to try out their ideas, for example. Therefore, it is crucial to
260 create occasions where everyone has the opportunity to develop his or her potential to the fullest. A safe learning
261 environment that provides a rich source of cultural, social and material resources invites the students to explore
262 and raise questions that concern them and thus, learn deeply. In order to know whether students understand a
263 given phenomenon or are on their way to understand and figure a problem out, teachers need to give them space
264 to think on their own, choose their own path, and explain the sense they are making without forcing them to
265 follow them jointly on their road. Instead of telling students what they know, teachers have to search for new
266 strategies helping the students to build (jointly) on their knowledge and understanding taking their own thoughts
267 further ??Duckworth, 1987 ??Duckworth, /2006).

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

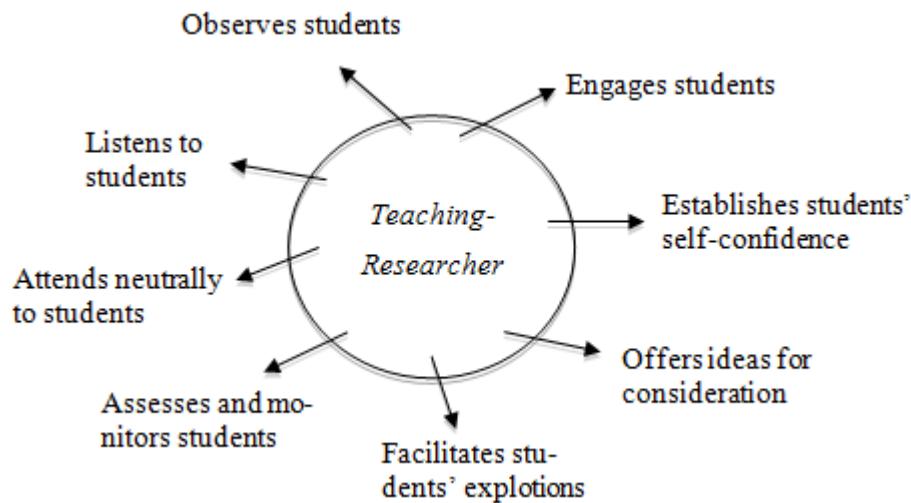


Figure 3:

Basic Components of Critical
Exploration in the Classroom to
Support Deep Conceptual
Understanding

Figure 4:

2 I KNOW I CANNOT TEACH ANYONE ANYTHING,

viewpoints and pathways (students as co-designers);

? designs diverse class activities (exploratory activities, discussions, demonstrations) and related open-ended assignments aligned with assessment tasks;

? presents students problems

challenge them, and spark their interest;

? organizes teaching and learning as an interactive process explorations, discussions and reflections requiring high student involvement as well as shared responsibilities;

? supports artifacts/objects in order to carry certain activities out, to make it easier for students to think about a problem and visualize their thoughts, and to use the material as the source of authority to test their ideas;

? is open to self-evaluation listening to students' feedback (e.g., course evaluations) and looking at what students are learning as a result of the classroom interaction to continuously improve her teaching.

b) Student-Centered Pedagogy

with interesting/stimulating and materialsthat engage

encouraging (joint)student-driven

classactivities withdifferent

[Note: diverse ways into a subject matter, and has to find out what her students know about it trying to engage with students at their level of understanding; ? provides a fluent and flexible course structure/syllabus that can adapt to changes and incorporate a variety of students' ideas, questions,]

Figure 5:

268 [Duckworth ()] 'Engaging learners with their own ideas: An interview with Eleanor Duckworth' E R Duckworth
269 . *The Active Learner* 1999. 4 (1) p. .

270 [Cambridge] *Harvard Graduate School of Education*, M A Cambridge .

271 [Duckworth ()] 'Helping students get to where ideas can find them' E R Duckworth . *The New Educator* 2009.
272 5 p. .

273 [How students learn: History, mathematics, and science in the classroom ()] *How students learn: History, math-*
274 *ematics, and science in the classroom*, 2005. Washington, D.C.: The National Academies Press. National
275 Research Council

276 [Rick and Lamberty ()] 'Medium-based design: Extending a medium to create an exploratory learning environ-
277 ment' J Rick , K K Lamberty . *Interactive Learning Environments* 2005. 13 (3) p. .

278 [Meek ()] *On thinking about teaching: A conversation with Eleanor Duckworth*, A Meek . 1991. 2000. (How
279 people learn: Brain, mind, experience, and school)

280 [Papert ()] S Papert . *Mindstorms: Children, computers, and powerful ideas*, (New York) 1993. Basic Books. (nd
281 ed.)

282 [Piaget ()] 'Piaget's theory' J Piaget . *The process of child development*, P B Neubauer (ed.) (New York) 1976.
283 New American Library. p. .

284 [Resnick et al. ()] *Pianos not stereos: Creating computational construction kids*, M Resnick , A Bruckman , F
285 Martin . 1996. 3 p. .

286 [Piaget ()] *The equilibrium of cognitive structures*, J Piaget . 1985. Chicago: University of Chicago Press.

287 [Hoidn ()] *The Having of Wonderful Ideas*, S Hoidn . 2010. (Case study I)

288 [Duckworth ()] *The having of wonderful ideas' and other essays on teaching and learning*, E R Duckworth .
289 1987/2006. New York. Teachers College, Columbia University (3 rd edition)

290 [Piaget ()] *To understand is to invent*, J Piaget . 1972. New York: The Viking Press.

291 [Bruner ()] *Toward a theory of instruction*, J S Bruner . 1966. Cambridge, MA: Harvard University Press.