

¹ Correlates of Residents' Response to Crime in Nigerian Cities

² Ladoke Akintola University of Technology

³ Received: 14 December 2012 Accepted: 5 January 2013 Published: 15 January 2013

⁴

⁵ **Abstract**

⁶ The paper examines the socio economic attributes of residents (SEC); building and
⁷ environmental features (BEF), residential crime magnitude, fear of crime events, fear of
⁸ neighbourhood and households? safety measures in Ibadan, Zaria and Owerri with a view to
⁹ establish a relationship between them. Four indices were developed. These are ?Residential
¹⁰ Crime Magnitude? (RCM), ?Fear of Crime Events Index? (FCEI), ?Fear of Neighbourhood?
¹¹ (FNI) and ?Household Safety Measures Index? (HSMI). The study observed a significant
¹² relationship between low attributes of BEF, low attributes of SEC, low attributes of RCM and
¹³ low attributes of HSMI, low attributes of FNI and low attributes of FCEI. Among SEC, BEF
¹⁴ and RCM, BEF was identified as the strongest dependent variable informing residents?
¹⁵ response to crime. Thus any meaningful intervention at crime control must first begin with
¹⁶ decision on building and environmental features that discourages crime incidence and reduces
¹⁷ fear of crime.

¹⁸

¹⁹ **Index terms**— residential area, residents, response, crime, socio-economic, building, environmental features,
²⁰ fear, safety measures.

²¹ **1 Introduction**

²² uman beings are created to respond to stimuli. The response could be internal or external. In the same vein
²³ residents respond to crime emotionally and physically. In this study fear is considered as the emotional response
²⁴ to crime while the use of household safety measures is taken as the physical response. Fear is the foremost
²⁵ response to experience or knowledge of crime incidence (Afon 2001), which under normal condition dictates the
²⁶ type as well as extent of household safety measures to be employed. It could also influence the preparation and
²⁷ the ardence of criminals thereafter. On the other hand the availability of targets in absence of capable guardian
²⁸ is a motivating factor for incidence of crime. Thus, crime incidence, fear of crime and physical response to
²⁹ crime together with other factors such as socio-economic and environmental features could constitute a cycle.
³⁰ Residents may build confidence on the strength of safety measures taken at household and neighbourhood levels;
³¹ thus affecting their level of fear.

³² Four notable categories of response to crime were identified in the literature: control through the convectional
³³ justice system (Walklate, 1996;Shaftoe, 2002), social crime prevention (Aguda, 1994;Shaftoe, 2002), African
³⁴ Traditional Protective Devices, ATPDs Authors ? ? : Department of Urban and Regional Planning, Ladoke
³⁵ Akintola University of Technology, Ogbomoso. E-mail : foadigun@lautech.edu.ng (Agbola, 1997) and Crime
³⁶ Prevention through Environmental Design (CPTED).

³⁷ Criminal Justice System is the most commonly used crime control measures. Yongcho ??1974) described
³⁸ this approach as one, which involves the entire array of government institution that functions as the instrument
³⁹ of a society in enforcing the standard of conduct needed for the protection, safety and freedom of individual
⁴⁰ citizens, and for the maintenance of order. The task involves detecting, apprehending, prosecuting, treating and
⁴¹ sanctioning the deviants. This method has been referred to as offender-centered strategy (Walklate, 1996).

⁴² The second measure is the social crime prevention which in the words of Shaftoe (2002) consist of "an
⁴³ interlocking series of interventions that enable people to lead a life where they do not have the inclination,
⁴⁴ motivation or need to offend against others, whether for expressive or acquisitive reasons". The next strategy

3 RESEARCH METHODOLOGY

45 is Crime Prevention through Environmental Design (CPTED) which is an environment-centered strategy. It
46 includes the specific targeting associated with situational crime prevention and the more general approach of
47 designing out crime. The pioneers of this approach are Jacobs (1995) and Jeffery (1977) but its famous exponent
48 is Newman ??1995) though ??oleman (1985) also worked extensively on it.

49 The manifestation of some these strategies in Nigeria are at different levels. Communities and individuals react
50 to crime in Nigeria mostly from the ineffectiveness (or otherwise) of the criminal justice system in combating crime
51 and insecurity in their areas (Agbola, 2002). Several studies have shown that residents' responses to crime in
52 Nigeria are of various forms including crime reporting to police (though decreasing in use), individual preventive
53 measure and collective activities against criminal occurrences (Agbola 1997; Afon, 2001, Agbola 2002; Abodunrin
54 2004; Oredein, 2006). Included among individuals' attempt at controlling crime are: construction of high walls
55 around residences; construction of high fencing walls, massive gates and strong locks; use of Close Circuit
56 Television CCTV; installation of lighting facilities at every corner of the residential environment; use of African
57 power called "juju" or charm and total reliance on God Almighty for protection. Others include the use of
58 dogs, guns, insurance schemes, special security door, burglar alarms, police patrol, window and door grills.
59 On the community or collective level, night watchmen are employed to keep watch on neighbourhoods, gates are
60 installed on streets, bumps or speed breakers are put on streets. Others include the use of warning signs to restrict
61 movement and the use of community security check points. Vigilante groups (a variant of night watchmen) are
62 used in some communities. These responses however vary among the three residential areas based on the diversity
63 in social and economic characteristics of the residents as well as level of crime incidences. It has been argued
64 that there are intricate connections and complex interrelationships between the environment in which urban
65 dwellers live, incidence of crime and, by logical extension, their response to crime (Abodunrin 2004; Adeboyejo
66 and Abodunrin 2005). Crimes occur not only within but are also influenced and may indeed be compounded by
67 a wide ranging socioeconomic and environmental context, summarized in urban residential patterns of various
68 cultural settings.

69 Therefore any study aiming at providing sufficient information to enable a solid conclusion useful for decision
70 making must take cognisance of the complexities between residents' socio-economic attributes, building and
71 environmental features typical of each residential area, crime incidence and residents' responses. Isolating a
72 single variable for any substantive explanation may be a minor task out of the whole gamut because of the
73 complexity of the relationship between these variables. Against this background this study examines the socio
74 economic attributes of residents; building and environmental features, residential crime magnitude, fear of crime
75 events, fear of neighbourhood and households' safety measures in Ibadan, Zaria and Owerri with a view to
76 establish the relationship between them. This is done with the aid of canonical correlation statistic-a statistical
77 tool which allows multiple dependent and independent variables in a single analysis. The three selected cities are
78 traditional urban centres with phenomena growth in population and area extent, increasing level of urbanization
79 and industrialization, as well as political and socio-economic prestige in the area. Zaria, Ibadan and Owerri (see
80 ??ig 1) are respectively one of the major Hausa-Fulani, Yoruba and Igbo cities and as such, they are capable of
81 reflecting the socio-economic and cultural attributes of the three regions selected.

82 2 II.

83 3 Research Methodology

84 The study utilized primary data obtained through questionnaire administered to residents. Information obtained
85 includes residents' socioeconomic characteristics (SEC); building and environmental features (BEF); residential
86 area crime experienced within six months (RCM); level of fear of crime events; level of fear of neighbourhood
87 and level of usage of household safety measures (or residents' physical response to crime). Five, two and three
88 local government areas in Ibadan, Zaria and Owerri respectively formed the sampling frame (see appendix 1).
89 Localities within the three distinct residential areas were identified. All the low density residential areas surveyed
90 in Owerri were selected from Owerri Municipal because areas that could be identified as low density areas fall
91 under the jurisdiction of Owerri Municipal Local Government area.

92 The study employed a multi stage sampling technique. The random and systematic sampling techniques were
93 used within the context of already stratified local government areas and the three residential zones. The first level
94 of stratification was done on the basis of the delineated local government areas. The second level of stratification
95 was based on identified residential areas. Localities with the features of the three residential areas were identified
96 in each local government area and purposively selected for the study.

97 The first building in each randomly selected street was chosen at the discretion of the researcher. Subsequent
98 selection was done at an interval of ten buildings. To cater for residents in landlocked portions of the core area
99 where buildings are not accessible by roads, buildings were selected at uniform interval of every five building off
100 the roads. The target population are the residents. A household was selected from each chosen building from
101 where a resident not less than 18 years either male or female was sampled. The selected residents were investigated
102 using a structured questionnaire. The structured questionnaire was distributed using a ratio of 3:2:1 in the high,
103 medium Previous research efforts identified three major categories of residential areas which are distinct in social
104 as well as physical attributes (Onokerhoraye & Omuta, 1986; Afon 2004). These are: low quality residential area
105 usually (high density residential zone); medium quality residential area (medium density residential zone) and high

106 quality residential area (low density residential zone). In modern urban centres residential density is described in
107 terms of floor area ratio and population. In traditional urban centre traditional/core, transitional and suburban
108 residential areas represent the three residential areas highlighted above (Onibokun 1972). According to Okewole
109 (1977) historically, the traditional core area is a pre-colonial development occupied by indigenous population
110 and or the early settlers. This area is often found in the heart of the city ??Onerkerhoraye & Omota, 1985).
111 The transitional residential area developed during the colonial era forms the next layer of development. The
112 sub-urban/low density residential area could be pre and post independence developments. In cities of this nature
113 socio-economic characteristics (such as level of education, occupation and income) and environmental quality are
114 considered to vary inversely with density. These features were used in identifying the three residential areas.
115 and low density residential zones in each selected city (see table 1). This is in line with the generally believed
116 pattern of population distribution among residential areas (Adeboyejo and Onyeonoru, 2003). A total of 1164
117 copies of the questionnaire out of the 1220 scheduled for distribution were considered useful for the analysis. This
118 represent 95.4 percent questionnaire recovery rate The first is the aggregate of crime experienced by households
119 while the second was used in measuring what residents fear most in criminal attack and public disorder. The
120 third: FNI was used in measuring fear of likelihood of crime incidences at certain period of time within the
121 residential neighbourhood. The fourth index was developed to assess residents' level of usage of household safety
122 measures HSMI (or residents' physical response to crime). Variables indicating FCEI and FNI were measured in
123 the ranking scale of Likert as "very high" (5), "high"(4), "moderate (3)", "low"(2) and "very low" (1). The FCEI
124 and FNI were obtained by dividing the summation of weighted value (SWV) by the total number of responses.
125 The SWV of each variable is the addition of the product of the proportion of responses to it and the weighted
126 value attached to each rating. This is done for each residential area. The mathematically expression is as follows:
127 i; and $Vi = \text{weight assigned to variable } i$ Some variables indicating HSMI were obtained in ranking scale of Likert
128 as "very often", "quite often", "often", "seldom" and "not at all". These include use of special door locks, alarm
129 system, burglar proofs on doors and windows, use of security dogs, sword/axe/club/stick, juju, gun and security
130 guard(s).

131 HSMI was obtained by dividing the summation of weighted value (SWV) by the total number of responses.
132 The SWV of each variable is the addition of the product of the proportion of responses to it and the weighted
133 value attached to each rating. This is done for each residential area. The mathematically expression is as follows:
134 $Vi = \text{weight assigned to variable } i$ Other safety measures assessed as nominal data include material used for door,
135 window, fence and tip of fence; and body responsible for neighbourhood security surveillance.

136 The variables in each of the groups highlighted above were summarized using factor analysis and their linear
137 composites were extracted. Nineteen factors emerged from the analysis out of which six were selected and others
138 regarded as residual because of their loading values and the fact that they are repetition of the selected ones
139 (see appendix 2). The loadings of the variables under each group are listed in the descending order of loadings
140 attached to them.

141 There after the relationship between all the groups was verified using canonical correlation analysis. Using
142 Statistical Package for Social Scientist the study employs canonical correlation analysis to explain the relationship
143 between the linear composites of socio-economic characteristics (SEC), building and environmental features
144 (BEF), residential crime magnitude (RCM), indices of fear of crime events (FCEI), fear of neighbourhood (FNI)
145 and households' safety measures (HSMI). The linearity of the relationship between The general canonical
146 model is given as:III.

147 4 Result and Discussion

148 The result of the correlation analysis is documented appendix 3. The correlation of set 1 (Ryy) comprises the
149 correlations between variables of fear of criminals events (FCEI), fear of Neighbourhood (FNI) and households'
150 safety measures (HSMI). These variables have positive correlation coefficients. This indicates that the correlation
151 is uni-directional. The higher the attributes of the composites the higher the scores they obtain. In this context
152 the higher the positive value of variables of fear of crime events index (FCEI), fear of neighbourhood index
153 (FNI) and households' safety measures index (HSMI), the higher their attributes in the model. Considering
154 the loadings in set 1, the absolute values of fear of neighbourhood FNI (.5804, .5737) is greater than fear of
155 crime events FCEI (.5804, .3330). The index with the least absolute values is household safety measures HSMI
156 (.3330, .5737). In order of importance the implication of this is that fear of neighbourhood is more crucial in
157 the canonical correlation analysis performed than fear of crime events and household safety measures. = Inverse
158 of correlation among composites of residential crime incidence (RCM), residents' socio economic characteristics
159 (SEC) and building and environmental features (BEF) (Independent Variables IVs) characteristics and, building
160 and environmental features on one side, and residents' response to crime (fear of neighbourhood, fear of crime
161 events and households' safety measures) on the other side places fear of neighbourhood as the prime response to
162 residential area crime incidence. In other words, residents' response to crime is first and majorly emotional in
163 respect of fear of the likelihood of crime occurring at certain period of time within the residential neighbourhood
164 (measured as FNI). The fear of crime events i. e. fear of what one could suffer during crime incidences is the
165 second foremost emotional response to crime. Finally these emotional responses manifested in physical household
166 safety measures employed.

167 The analysis produced three canonical variates. The correlation of the first pair of canonical variate (Root 1)

5 SETS CANONICAL VARIATE PAIRS

168 is .995 (see ??ig 2). The eigen value for the correlation is therefore .990. Eigen value is the square of correlation
169 $r^2=1$. The first pair of canonical variate have .995 correlation and overlap with .990 or 99.0% variance. The
170 correlation of the second pair of canonical variate (Root 2) is .695 (see ??ig 3). Similar to the procedure used
171 for Root 1, the eigen value for Root 2 is .482. This connotes that the second pair of canonical variate have .695
172 correlation and overlaps with .482 or 48.2% variance. Source : Author's, 2010

173 In order to know whether the remaining correlations are truly zero the Bartlet's test of significance was
174 computed and documented in table 2. For Root 1, X₂ is 70.455 with P value of 0.000 at 99.99 % confidence
175 limit. There is a significant overlap in the variability between variables concerned. This indicates that there is
176 a significant relationship between variables of residential crime magnitude RCM, socio-economic characteristics
177 SEC and building and environmental features BEF; and fear of crime events FCEI, fear of neighbourhood FNI
178 and households' safety measures HSMI. The X₂ for Root 2 is 9.346 with P value of 0.053 at 99.99 % confidence
179 limit. The P value for Root 2 is significantly different from zero. This implies that there is significant overlap
180 in the variability between the second pair of the canonical variates (Root 2). The X₂ for Root 3 is 0.448 with
181 P value of 0.503 at 99.99% confidence limit. This indicates that there is no significant overlap in the variability
182 of the variables concerned. In canonical analysis the first pair of canonical variate is the first canonical extract
183 and the strongest to be considered in the interpretation of the model (Tabachnick and Fidell, 2001) moreover the
184 third pair of canonical variate had no significant overlap in the variability between the variables concerned. Thus
185 the first and second will be interpreted in this study. 3 is the loading matrix of canonical correlation. For the
186 first pair of canonical variate, fear of crime events (FCEI) correlates -.225; fear of neighbourhood (FNI) correlates
187 -.722; households' safety measures (HSMI) correlates -.946 while residential crime magnitude (RCM) correlates -.
188 .046; socio-economic characteristics (SEC) correlates -.386; building and environmental features (BEF) -.697. The
189 correlation of the first pair of canonical variate is unidirectional because the coefficients carry negative signs. This
190 indicates that a low attributes of household safety measures (HSMI), a low attributes of fear of neighbourhood
191 (FNI) and low attributes of fear of crime events (FCEI) is associated with a low attributes of building and
192 environmental features (BEF), low attributes of socio-economic variables (SEC) and a very low attributes of
193 residential crime magnitude (RCM). In other words variable of building and environmental features is stronger
194 among the independent variable sets followed by socio-economic variables then residential crime magnitude. In
195 this order they influence first level of installation and usage of household safety

196 The correlation for set 2 comprises of the correlation between the factors of residential area crime incidence
197 (RCM), building and environmental features (BEF) and residents' socio-economic characteristics (SEC). The
198 correlation coefficients of these are both positive and negative that is bidirectional. This implies that the higher
199 the attributes of the factors the higher the scores they obtain. In this regard the higher the positive value of
200 the composites of fear of crime events (FCEI), fear of neighbourhood (FNI) and households' safety measures
201 (HSMI), the higher their attributes in the model. Among the loadings of factors in set 2, the absolute value of
202 building and environmental features BEF (-.6842, .5500) is greater than that of residential crime magnitude RCM
203 (-.3593, -.6842) while the least is socio-economic characteristics SEC (-.3593, .5500). This implies that residents'
204 response to crime is first influenced by building and environmental features then residential crime magnitude and
205 socio-economic characteristics.

206 5 Sets Canonical Variate Pairs

207 Variable set First Second Third measures, residents' level of fear or dread of likelihood of crime incidence in their
208 neighbourhood and lastly fear of events associated with magnitude of crime within residential areas.

209 With the second pair of canonical variate fear of crime events (FCEI) correlates -.021; fear of neighbourhood
210 (FNI) correlates -.552; households' safety measures (HSMI) correlates -.296 while residential crime magnitude
211 (RCM) correlates -.984; socio-economic characteristics (SEC) correlates .518; building and environmental features
212 (BEF) .708. The correlation of the second pair of canonical variate is bidirectional because the coefficients carry
213 either positive or negative signs. This indicates that a low attributes of fear of neighbourhood (FNI), high
214 attributes of household safety measures (HSMI), and a very low or insignificant attributes of fear of crime events
215 (FCEI) is associated with a very low attributes of residential crime magnitude (RCM), high attributes of building
216 and environmental features (BEF) and, a high attributes of socio-economic characteristics (SEC). Variables of
217 building and environmental features are stronger among the independent variable sets followed by variables
218 of socio-economic variables then residential crime magnitude. In this order they influence first households'
219 safety measures then fear of crime events and lastly fear of neighbourhood. This implies that households in the
220 high socio-economic class with high building and environmental features employed a high usage of households'
221 safety measures, inhibiting crime incidence (low residential crime magnitude) thus resulting in low fear of crime
222 events and fear of likelihood of occurrence of crime in the neighbourhood. This implies that residents with
223 high socioeconomic profile with high building and environmental features could afford the installation of more
224 household safety measures. This acts as deterrence to crime thus inputting confidence in households evidenced
225 in low fear of neighbourhood and crime events.

226 The implication of the results of the first variate pair is that households with low building and environmental
227 features, low socio-economic attributes, had low experience of crime as a result of high usage of household safety
228 measures dictating a low usage of household safety measures then low level of fear of likelihood of crime incidences
229 in the neighbourhood and low fear of what to suffer if crime occurs. Further implication is that residents with low

230 feelings of fear of crime in their neighbourhood had lower fear of crime events because they experience low crime
231 incidences and are in the low socio-economic rung with low building and environmental features thus utilizes
232 household safety measures minimally. Practically, when building and environmental features are poor and the
233 residents are poor while crime magnitude in the area is relatively low, it follows that: household safety measures
234 would be close to nil, fear of neighbourhood will be very low and the fear of crime events will be very low too.

235 It is important to interpret this correlation with the communalities which loads highly in each of these
236 composite. A residential environment with low proportion of buildings used solely for residential purpose and
237 low street lights with low proportion of residents with monthly income of #25,000: 00 -#70,000: 00; 1-4 persons
238 per building, monthly income greater than #70,000:00, public service and vehicle ownership of 1-2 vehicles had
239 low experience of crime of assaults, white collar crime and stealth/pretence. This scenario necessitated low use
240 of barb wire on the fence, burglar proof on doors, alarm system etc. Then there is low worry of going out in the
241 dark, risk of women going out in the dark and fear of women getting raped in the dark. Principal example of
242 this scenario is the situation of the high density residential areas sampled in this study.

243 Since the strongest of the independent composite in this relationship is building and environmental features,
244 thus policies or programmes targeted at addressing criminality in areas of low socioeconomic attributes with
245 low residential crime incidences must pay careful attention to variables of building and environmental features.
246 Such variables include use of buildings, use of street light in neighbourhoods, building type, access type, use of
247 restriction signs within neighbourhood etc. Summarily a significant relationship has been established between
248 socio economic attributes of residents; building and environmental features, residential crime magnitude, fear of
249 crime events, fear of neighbourhood and households' safety measures. Thus, the third hypothesis set initially in
250 this study is rejected.

251 **6 a) Redundancy Analysis**

252 The redundancy analysis reveals how much variance is extracted by each canonical variate from its own side and
253 the other side of the equation.

254 **7 3**

255 .209 (20.9) .007

256 The three canonical variates pairs were considered here in order to ascertain the extent of the variance extracted
257 from both the dependent and independent sides of the equation. This is done in order to account for total (100%)
258 variance. The proportion of variance extracted by variables used is documented in table 4. The first, second and
259 third canonical variates pair from the dependent composites extracted 48.4%, 6.3% and 1.2% respectively of the
260 independent composites. Thus the dependent composites extracted a total of 55.9% variance of the independent
261 composites. Likewise from its own side i.e dependent composites the first, second and third canonical variates
262 pairs extracted 48.9%, 13.1% and 38% variance respectively. This produced a total of 100% variance. From
263 the independent composites, first, second and third canonical variates pairs extracted 21.2%, 57.9% and 20.9%
264 (totalling 100%) of the variance in favour of the independent side. On the other hand the first, second and
265 third canonical variates pair extracted 21.0%, 28.0% and 0.7% respectively from the dependent composites. The
266 independent composite thus extracted 49.7% variance from the dependent composites. This implies that 49.7
267 percent of the variation observed in residents response to crime i.e. fear of crime events, fear of neighbourhood and
268 households' safety measures is extracted by variables of residential crime magnitude, building and environmental
269 features and socio-economic characteristics.

270 IV.

271 **8 Conclusion**

272 The study employed the use of a robust statistical technique: canonical correlation analysis in determining
273 the relationship between attributes of building and environmental features (BEF), socioeconomic characteristics
274 (SEC), residential crime magnitude (RCM) and household safety measures (HSMI), fear of neighbourhood (FNI)
275 and fear of crime events (FCEI). The relationship between incidence of crime, socio-economic characteristics and,
276 building and environmental features on one side, and residents' response to crime (fear of neighbourhood, fear
277 of crime events and households' safety measures) on the other side places fear of neighbourhood as the prime
278 response to residential area crime incidence. In other words, residents' response to crime is first and majorly
279 emotional in respect of fear of the likelihood of crime occurring at certain period of time within the residential
280 neighbourhood (measured as FNI). The fear of crime events i. e. fear of what one could suffer during crime
281 incidences is the second foremost emotional response to crime. Finally these emotional responses manifested in
282 physical household safety measures employed.

283 This study therefore posits that there is significant relationship between low attributes of BEF, low attributes
284 of SEC, low attributes of RCM and low attributes of HSMI, low attributes of FNI and low attributes of FCEI. The
285 confirmation of a significant relationship between these six indices is an indication that crime control cannot be
286 properly handled until all these aspects are taken care of. However BEF was identified as the strongest dependent
287 variable informing residents' response to crime thus any meaningful intervention at crime control must first begin
288 with decision on building and environmental features that discourages crime incidence and reduces fear of crime.

289 This is not to undermine other factors which show a relationship with response to crime. According to the result
290 of this analysis when this is taken care of the feedback will be observed first on residents' perception of their
291 vulnerability within their neighbourhood (FNI).

292 9 Global Journal of Human Social Science

Volume XIII Issue V Version I ^{1 2}

Figure 1:

1

Source : Author's 2010.

Data analysis was both descriptive and inferential. Four indices were developed in this study. These are 'Residential Crime Magnitude' (RCM), 'Fear of Crime Events Index' (FCEI), 'Fear of Neighbourhood' (FNI) and 'Household Safety Measures Index' (HSMI).

Figure 2: Table 1 :

293

¹© 2013 Global Journals Inc. (US)

²© 2013 Global Journals Inc. (US)

one who goes out before dawn likely to be attacked .803; risk of attack when out in the area in dark .779; afraid being alone anytime at home .721; afraid being alone in the night .717; afraid being alone in the morning .493; afraid being alone in the afternoon .423; afraid being alone in the evenings .279.

4. Building and Environmental Features (BEF): This

factor extracts 43.377% of the total variance of the Cities data set. The variables concerned and their Residential Areas Total Retrieved

Low Medium High 111 224 336 669 58 116 174 348 33 67 101 201 202 407 611 122 0 for analysis loadings is as follows: percentage residential use Ibadan 654 Zaria 319 Owerri 191 Total 1164 .835; percentage street lights .829; percentage flats .657; percentage duplex/bungalow .619; percentage access road .541; percentage security checking points .330; percentage first-floor .079; percentage restriction signs -.103; percentage ground-floor -.110; percentage street-bumps -.703; percentage residential/commercial uses -.889; percentage accessed by footpath -.902; percentage traditional/roomy building -.954. 5. Household Safety Measures Index (HSMI): This factor extracts 42.741% of the total variance of the data set. The loading of the variables under this component is thus: percentage barb wire 0.082; percentage burglar proof on doors 0.080; alarm system 0.079; iron/steel window 0.076; percentage iron/steel door 0.071; security dogs 0.063; security guard 0.061; barbwire fence 0.056; percentage burglar present 0.055; door locks 0.052; vigilante responsible for neighbourhood 0.051; percentage hedges as fence 0.048; percentage police responsible for neighbourhood security 0.033; sword/axe/club/stick 0.032; percentage glass panes/flush doors 0.022; burglar proof on windows 0.022; percentage concrete fence 0.020; percentage broken bottles on fence -0.084; percentage wooden window -0.78; percentage wooden doors -0.075; percentage hired security guard responsible for neighbourhood security -0.074; gun -0.064; percentage no fence -0.061; juju -0.052; percentage no burglar -0.012; percentage louver blades glass -0.007. 6. Socio-economic Characteristics (SEC): This component extracts 37.550% of the total variance of the

organized private sector .101; percentage landlord -.097; percentage less than 10 years -.230; percentage unemployed -.461; percentage with no formal education -.473; percentage single -.491; percentage 18 - 30 years -.598; percentage female -.606; percentage indigene -.616; percentage less than #6,000:00 -.763; percentage no vehicle -.794; percentage greater than 10 persons/building -.882;

The variables measuring fear of crime events loaded thus: female member of household raped .926; female household member tortured or beaten .909; destruction of car .894; self tortured or beaten .872; kidnapping .871; self raped .862; burning of cars .839; loss of one's life .833; burning of houses and properties .799; contacting HIV AIDS or venereal disease .754; killing of household member .698; money stolen .653; destruction of window/door locks/ burglary proof .647; shock or psycho imbalance .616; property carted away .554. 3. Fear of Neighbourhood Index (FNI): This

2

Root	X2	P value R
Root 1	70.455	0.000
Root 2	9.346	0.053
Root 3	0.448	0.503

Figure 4: Table 2 :

3

Source : Author's, 2010
Documented in table

Figure 5: Table 3 :

4

Year 2013
2 44
Volume XIII Is-
sue V Version I
() F
Global Journal Canonic Proportion of Variate Proportion of Variate Variate Pairs extracted from extra-
of Human Social
Science

Independent side	3	.012 (1.2 .380) (38.0)
	1	.212 (21.2) .210 (21.0)
	2	.579 (57.9) .280 (28.0) (0.7)

Source : Author's, 2010

Figure 6: Table 4 :

Correlates of Residents' Response to Crime in Nigerian Cities

6

Total

Zaria72 a. 2 components extracted. High

7

Sabon48 24 102 .699 .884 .249 .573 Comp
Gari
RR_security
dogs
RR_burglar
on
doors
RR_burglar
win-
dows
RR_sp
door
locks

RR_gun FCEI_loss of one's life RR_swordaxeclubs tick FCEI_killing of hsd memb RR_alarm syst RF

2 FCEI_female memb of hsd raped -.580 RR_juju FCEI_self raped FCEI_kidnappg FCEI_self tortured

46

Year

2013

2

20

2

48

Year

2013

294 [Wikipedia Free Encyclopedia .Owerri (Accessed (2013)] , *Wikipedia Free Encyclopedia .Owerri (Accessed 14th*

295 July 2013.

296 [Okewole ()] *An Approach to Integration between the Tradition and Contemporary Areas of Ogbomoso*, I A
297 Okewole . 1977. Zaria, Nigeria. Department of Urban and Regional Planning Ahmadu Bello University
298 (Unpublished Master thesis)

299 [Oredein ()] *An Assessment of Residents Response to Crime in Abuja., FCT. (Unpublished B.Tech Dissertation)*,
300 Department of Urban and Regional Planning, Simisola Orediein , A . 2006. Ladoke Akintola University of
301 Technology. Ogbomoso

302 [Agbola ()] *Architecture of Fear, Urban Design and Construction Response to Urban Violence in*, Tunde Agbola
303 . 1997. Lagos, Nigeria. Ibadan. IFRA.

304 [Aguda (ed.) ()] *Area Ecological Analysis of Crime. A Case Study of a Nigerian City*, A S Aguda . Albert, I.O,
305 Adisa, J Agbola T. and Herault, G. (ed.) 1994. Urban.

306 [Walklate (ed.) ()] *Community and Crime Prevention*, S Walklate . McLaughlin, E. and Mumic, J. (ed.) 1996.
307 London. Sage Publication.

308 [Jeffery ()] *Crime Prevention through Environmental Design* Beverly Hills, C R Jeffery . 1977. Sage publications
309 Inc.

310 [English Dictionary et al. (ed.) ()] *Defensible Space. Crime Prevention through Urban Design*, New English
311 Dictionary , Thesaurus , Grosset Geddes , O Newman . Stein, Jay M, (ed.) 1995. Mc Graw-Hill, Inc. p.
312 . ((ed) Classic Readings in Urban Planning USA)

313 [Tech] *Dissertation, Department of Urban and Regional Planning*, M Tech . Ladoke Akintola University of
314 Technology

315 [Federal Republic of Nigeria 2006 Population and Housing Census National Population Commission ()]
316 'Federal Republic of Nigeria 2006 Population and Housing Census'. *National Population Commission*
317 2010. Federal Government Press.

318 [Onibokun ()] 'Nigerian Cities'. A G Onibokun . *Their Rehabilitation and Residential Redevelopment Journal of*
319 *Royal Town Planning Institute* 1972. 58 (2) p. .

320 [Yongocho ()] *Public Policy and Urban Crime*, Hyo Yongocho . 1974. Ballinger Publishing Company USA.

321 [Afon ()] 'Resident Diversity Factor in the Perception of and Response to Fear of Crime in Nigeria'. A Afon .
322 *Paper presented at the International Conference on Security, Segregation and Social Networks in West Africa*
323 *Cities 19'th -20th centuries, held at the International Centre for African Studies*, 2001. IFRA) University of
324 Ibadan

325 [Adeboyejo and Onyeonoru ()] 'Residential Density and Adolescent Reproductive Health Problems in Ibadan'. A
326 T Adeboyejo , I P Onyeonoru . *Nigeria. African Population Studies* 2003. 18 (1) .

327 [Shaftoe ()] 'Social Crime Preventions to Reduce the Motivation to Offend'. Henry Shaftoe . *Synopsis of*
328 *Presentation at Tallin City Council 15th April*, 2002.

329 [Adeboyejo and Abodunrin ()] 'Spatio -Temporal Variations in Urban Crime in Ogbomoso'. A T Adeboyejo , F
330 O Abodunrin . *Nigeria. Journal of Environmental Sciences* 2007. 6 (1) p. .

331 [Abodunrin ()] *Spatio-Temporal Variation and Residents Response to Crime in Ogbomoso*, F O Abodunrin .
332 2004.

333 [Tunde ()] *Urban Violence, Urban Security and the Challenges of Governance. The Evolving Disturbing Scenario*
334 *from Abuja Nigeria*, Agbola Tunde . 2002. p. . (Paper Presented at the 33" Annual Conference of Nigeria
335 Institute of Town Planners held at Ilorin)

336 [Mabogunje ()] *Urbanization in Nigeria*, A Mabogunje . 1968. London University Press.

337 [Tabachnick and Fidell ()] *Using Multivariate Statistics, Fourth Edition*, Ally and Bacon, B G Tabachnick , S L
338 Fidell . 2001. 1.