

Theoretical Growth Model Space for Cities

Dr. Jos Reyes Bernal BellAn¹ and Dr. Jos Reyes Bernal BellAn²

¹ University of Colombia

Received: 4 February 2012 Accepted: 29 February 2012 Published: 15 March 2012

5

Abstract

This work raises a theoretical model of spatial growth for the cities in which makes explicit that the growth of population and income growth determined the city's expansion in terms of area built for business and the area destined for housing. At the same time, shows that local public policy can slow down the growth of the population in the cities by avoiding that generate an unbalanced growth and thus increase the housing deficit.

12

13 **Index terms**— City, dynamic urban, growth balanced space, population.

14 1 Introduction

15 The purpose of this paper is to propose a model of balanced spatial growth of cities. To this end, the paper is divided into five sections of which the first is this introduction. The second point is a brief presentation of the theoretical models of spatial growth while in the third and fourth presents the proposal of a balanced growth model together with its development and policy implications. In the fifth section draws the main conclusions.

19 2 II. Theoretical Proposals Growth Urban Space

20 The urban spatial growth can be understood as physical growth of the city and its people. Physical growth referred to the increase of housing, infrastructure and buildings for business within the urban area, while the 22 population growth accounted for as the rate at which expands people living within the city. Clearly this process can be understood as the dynamic behavior of the city. Understand what are the factors explaining this dynamic city, is what is known as a model of urban dynamics(MDU).

25 One of the first proposed to explain urban dynamics is based on the land transport systems. These systems are critical to the economy of a city and its planning because they can affect the location of families or households, the location of firms or companies, the paths of trade and because the levels of production and employment.

28 Micro theory is based on the individual consumer or consumers and was initially developed by Von Thunen. In this model we introduce transportation costs and their impact on the location and prices. After you were 30 making changes to improve it to the point that their solution is to maximize the usefulness and benefits and of course in land rents.

32 Author : Ph.D. in Economics sciences of the National University of Colombia. Professor at the Santo Tomás and la Salle Universities. E-mail : josebernal@unisalle.edu.co; josereyes@usantotomas.edu.co Krugman (1997) Krugman (1999) has driven research in urban and regional context with the main analysis focuses on explaining the emergence, development and collapse of urban structures from the principle of self organization.

36 In the past years has produced a series of works related to the study of urban dynamics. Examples are the works cited by Ontiveros, Cirelli and Cavdeville. In this vein, the work done by Ongulelis(1995), Batty(1995), Batty(2004), White and Engelen (1993), Clarke, K., S. Hoppen and L. Gaydos(1997). These works rescue the implementation of models to explain urban dynamics based on cellular automata theory. These 40 cellular automata classified urban space into cells which may contain specific areas of trade, industry or housing or because of specific social groups.

42 The models developed have allowed the explanation of the growth of cities and focused on the processes of 43 structuring of urban space and the quest for development.

5 PHYSICAL GROWTH IN DEVELOPABLE SPACE

44 Likewise, other applications of these cellular automata models relate to the dynamics of the real estate market
45 and urban ecology. Particularly Wegener and Spiekermann (2005) used cellular automata to model the diffusion
46 process of urban pollutants. Additionally, the cellular automata theory has been applied to different urban
47 transport systems as shown by Nagel and Schreckenberg (1992).

48 Other developments in urban dynamics models have been developed by Forrester (1969). This development
49 tries to find the internal forces that control the balance between population, housing and business structures in
50 urban areas.

51 The following is a specific growth model designed to Bogotá was originally based on urban dynamics models
52 proposed by Forrester (1969) but including a lot of changes. The original idea of the model is to show the factors
53 that control a hypothetical balance between population growth, housing and business. Therefore, this model will
54 try to show the factors that affect the physical growth of the city along with population growth and the possible
55 interactions that may occur to examine the balanced growth of the same.

56 3 a) Urbangrowth model

57 This model follows the logic of the city's growth is determined by population growth, the growth in physical units
58 for housing and the growth of physical units designed for business. It starts with the following assumptions: a) It
59 is assumed that there is a certain area of the city and part of that area can be designed to increase the supply of
60 housing or facilities whether they be commercial or industrial. b) It is considered that the remainder of the total
61 area for other uses but are essentially determined by the local government such as parks, gardens, roads, public
62 space and infrastructure in general. Based on the above factors arises strict population growth, growth of housing
63 and business growth.

64 4 Population growth

65 The population growth (G_n) of the city is directly related to the net growth rate of births (G_{nac}) with the growth
66 rate of immigration (G_{nm}) and inversely with the growth rate of emigration (G_{mi}). In formal terms would have
67 the following: $G_n = f(G_{nac}, G_{nm}, G_{mi})$ (1)

68 Also, the growth rate of immigration is directly determined by the employment rate of the city (U_u) for the
69 wage gap between rural and urban (W_s) and other factors (F_s) in which are rural social conflicts, the demands
70 of higher education and so on. These considerations have their theoretical support in the postulates of Todaro
71 (1969), Lewis (1955) and Fay and Opal (2000). One of the initial relations that can be made between the
72 process of economic growth and expansion of the city, created with the Lewis model of development which posed
73 a structural change in production. He believed that in the rural labor was abundant with zero productivity which
74 should migrate to the city where higher wages were paid and where they could train to participate in a mostly
75 industrial area. The process should continue to generate a large industrialization to absorb the labor field, to
76 the extent that such excess is exhausted and wages go up in the traditional sector. Todaro shown through a
77 model of the impact of migration is generated in the labor market in the city. This whole process could involve
78 an expansion or growth of the city both economically and in terms of space. As the region's population continues
79 to increase, the pressures of urbanization increase and open spaces will be more appreciated and more expensive.
80 Formally it would: $G_{nm} = f_1(U_u, W_s, F_s)$ (2)

81 Mean while, the net growth rate of births, which is the difference between birth rate and death rate depends on
82 the rate of growth of income per capita (G_y) and the degree of education of women (G_{ed}). It is possible that these
83 two variables are correlated, but it is also true, on the theory of endogenous growth in fertility to the extent that
84 women are brought up the possibility of having a large number of children is also reduced. It is also possible to
85 find that with higher income levels is possible to increase the birth rate or otherwise access to higher education
86 and vice versa. Formally have the following: $G_{nac} = f_2(G_y, G_{ed})$ (3)

87 Under the second considerations it is then that the rate of urban population growth is an inverse function of the
88 emigration rate and directly related to urban employment, wage differences, socio economic factors, political
89 and cultural etc. of income per capita and level of education of women. Formally have the following: $G_n =$
90 $F(G_{mi}, W_s, U_u, F_s, G_y, G_{ed})$ (4) (-) (+) (+) (?) (?) (-)

91 Signs in parentheses indicate the relationship between each variable and the rate of population growth. It
92 is noted that the impacts of other factors and the rate of growth of income per capita on the rate of population
93 growth are not clear on the considerations above.

94 5 Physical growth in developable space

95 As noted above, the total urban area is the sum of space allocated for the expansion of the city in terms of
96 housing construction in the construction of facilities for business, plus the area for the city's infrastructure and
97 reserved area by the local government for different uses. Simplifying this division, the urban area is the sum of
98 developable area and the residue for which local government provides. In formal terms can have the following: A_u
99 $= A_{urb} + A_{UR}$ (5)

100 From where A_u is the total urban area, A_{urb} is the area A_{urb} and A_{UR} is developable and the remaining area of
101 the city designed specifically according to the guidelines and central government planning. If we divide equation
102 5 for A_{urb} must be developable are involving more participation from the rest of the area of the city show 100%

103 of urban space. The task now is to show the factors that determine the physical expansion of developable space,
104 expansion in the sense of the occupation of this space, both for use in housing construction and for construction
105 of facilities for the industry or trade. Therefore arises as follows: $A_{urb} = A_{bv} + A_{bn}$ (6)

106 Where A_{bv} developable are as intended for housing and A_{bn} is intended for the construction of commercial
107 and industrial establishments.

108 **6 Expansion of built-up area for housing**

109 Within the area of developable space, the space for housing may be determined by several variables that affect
110 the expansion and occupation of this space. The first factor affecting the rate of population growth than others
111 is not strictly necessary to consider the close and direct relationship. It is well

112 **7 Theoretical Growth Model Space for Cities**

113 Global Journal of Human Social Science known that a process of urbanization is accompanied by increases
114 in population and increases in housing construction. Normally, in most countries and especially in the
115 underdeveloped population growth is faster than the growth of housing, thereby causing housing shortage for
116 homes. In this regard, the population growth punctuates the expansion of the housing and if there is a shortage
117 of the same, will tend to which the expansion takes place faster.

118 An important factor in the expansion of the housing is credit constraints. This variable can be and indeed
119 it is, the variable after the population growth could impact positively on the expansion of housing, ie greater
120 availability of credit to higher demand for homeownership and therefore increased the constructed area.

121 Decisions made by local government on a given area can influence the expansion of built-up area for housing
122 and likewise to reduce it. Additionally, the local government can make investments in any specific area thereby
123 encouraging housing construction.

124 These factors affect the expansion of housing built area horizontally, but you can think of a vertical growth
125 of the constructed area would condition a bit in the horizontal expansion. This variable may be referred to as
126 the efficiency of utilization of the soil, so that to the extent that this factor increases land use horizontally is
127 reduced. In formal terms would have the following: $A_{bv} = f_3 (G_n, C_d, T_{dh}, D_p, T_{es}, P_s)$ (7) In this function
128 A_{bv} is the share of housing intended for developable area within the total city area, C_d is the domestic credit,
129 T_{dh} is the rate of housing deficits, D_p are the decisions of local government policy and T_{es} is the efficiency rate of
130 soil showing the vertical growth of the city and P_s is the price of the area designated for housing.

131 **8 Expansion of the built businesses**

132 Within this context of urban dynamics may be given multiple inter relationships between the variables being
133 studied, for example, one can argue that the very process of population growth leads to the generation of goods
134 and services essential to the survival and welfare. Under these considerations, it is possible to propose a direct
135 relationship between the expansion of built area for the operation of business goods and services between the rate
136 of population growth. Jones (1998) argues that population growth brings increased productivity because there
137 are more individuals who can generate innovations that lead to the creation of new economic sectors and therefore
138 the creation of new businesses. Also, changing economic conditions may cause a transformation of the space used
139 for housing in an area for business, in this sense, there may be a rate of demolition of houses to be replaced by
140 commercial and industrial establishments. Of course, this process will take place in all areas of the city, but in
141 areas where there are certain kinds of economic changes together with a large mass of the population but mostly
142 because the displacement of the population of outlying areas is expensive. Formally have the following: $A_{bn} = f_5 (G_n, T_{dv}, G_y, O_f)$ (8) In the equation 8 A_{bn} is the ratio of built area for business within the total developable
143 area, G_n is the rate of population growth, T_{dv} is the rate of demolition of houses to be transformed into business,
144 G_y is the growth rate income that positively impacts the construction of new space for business and "of" are other
145 factors that may affect the growth of built area business such as land prices, policy decisions of local government,
146 etc..

148 **9 b) Dynamics of the model**

149 The basic idea of the model is the fact that any factor that affects the population growth alter either developable
150 space for housing construction or construction business. For example, if you increase the level of education of
151 women, then this will lead to a decrease in the rate of population growth by the negative effect on the net
152 birth rate and therefore will reduce the pressures on the use of developable space. Undoubtedly, that because
153 of the lack of planning in the early rapid expansion of the city, provided the rate of population growth resulted
154 in a greater housing shortage. The model could show a balance where possible balanced growth among the
155 population, housing and business. This could be illustrated through a graph that relates the population growth
156 along with the occupation of the developable area of the city. It is necessary to note that it is just an exercise to
157 illustrate the possible balance through curves that reflect the growth of population and developable space. For
158 this purpose the three equations that reflect urban growth, but can be reduced to two since the developable space
159 is the sum of space used for more housing used for business. Formally have the following: $G_n = F (G_{emig}, W_s,$
160 $U_u, F_s, G_y, G_{ed})$ $A_{bv} = f_3 (G_n, C_d, T_{dh}, D_p, T_{es}, P_s)$ $A_{bn} = f_5 (G_n, T_{dv}, G_y, O_f)$ Putting together the last

12 CONCLUSIONS

161 two equations could be expressed by the following hypothetical equilibrium chart (No.1) that relates the spatial
162 growth along with population growth:(D D D D) Gn Gráfico No. 1 a Gn 0 c Aurb 0 b Aurb

163 At point b of the graph relates the total developable area of the city but this can be increased by local
164 government regulations or because they increase efficiency in land use or decreases in the rate of population
165 growth.

166 It is clear that the model can be used at the city or disaggregation by localities or blocks or specific sectors of
167 the city. If you are thinking of implementing this model to the block level to be submitted only drawback is the
168 lack of information on population per acre because the rest of the information would be available.

169 Overall and in every model is expected to have high explanatory power, which is simple, applicable to the
170 information available, etc.. Urban growth patterns as those based on cellular automata are very complicated but
171 mostly costly in time for calibration and money for the software to be acquired for simulation and implementation;
172 example is a model applied to the city of St. Francis whose cost amounted to two million dollars because its
173 calibration takes a little over two years. Therefore, it would not be feasible for the time adapt a model for urban
174 growth like this, but it would be appropriate to start thinking about implementing it to be important benchmarks
175 for policy decision-making planning even local government.

176 10 IV.

177 11 Determination of Model of Urban Growth

178 For calibration of the model of urban growth will take first the equations that make up the model and the analytical
179 solution of the same. The equations comprising the model are as follows: $Gn = f(Gnac, Gnm, Gemig)$ (1)

$$180 Gnm = f_1(Uu, Ws, Fs) Gnac = f_2(Gy, Ged) \quad (2)$$

181 The solution of the first block of equations leads to the equation of population growth in terms of exogenous
182 variables in parentheses and the signs reflect the expected relationship between the behavior of the variation in
183 population growth and behavior of each of variables. $Gn = F(Gemi, Ws, Uu, Fs, Gy, Ged)$

$$184 Abn = f_5(Gn, Tdv, Gy, Of)$$

185 Overall and in every model is expected to have high explanatory power, which is simple, applicable to the
186 information available, etc.. Urban growth patterns as those based on cellular automata are very complicated but
187 mostly costly in time for calibration and money for the software to be acquired for simulation and implementation;
188 example is a model applied to the city of St. Francis whose cost amounted to two million dollars because its
189 calibration takes a little over two years. Therefore, it would not be feasible for the time adapt a model for urban
190 growth like this, but it would be appropriate to start thinking about implementing it to be Theoretical Growth
191 Model Space for Cites Global Journal of Human Social Science The figure shows a hypothetical equilibrium
192 equilibrium if the rate of growth of the population so that this curve to shift down and this crossing point c. The
193 conditions are that an increased level of education of women, socio-political conditions be improved and public
194 order in the region or country, or to the extent that the government promotes employment in the rural sector.
195 between the rate of population growth and the developable area reflected in paragraph a. The reality is that the
196 city is at the point c, where the rate of growth is not compatible with the built-up area for housing and businesses.
197 Thus it is possible to achieve a reduced hypothetical important benchmarks for policy decision-making planning
198 even local government.

199 The reduced form of this model of urban growth in terms of population growth and physical expansion of the
200 city may be reflected in the following equations: $Grcd F G F Gemi Grcd F G F F F W F U F dG Grcd Y GY$
201 $Grcd Y GY S FS S WS V V N ? + ? + ? + ? + ? + ? + ? + ? = 2 2 2 2 1 1 0 1$

202 Where the sign of the coefficients are as follows: Where the sign of the coefficients are as follows: $GN F 3 > 0$
203 ; $cd F 3 > 0$; $tdh F 3 > 0$; $Dp F 3 > / < 0$; $TES F 3 < 0$; $Gy F 5 > 0$; $of F 5 < / > 0$.

204 The last two coefficients are also positive because higher GDP growth of a city the greater the area designated
205 for business.

206 The intention now is to try to find the coefficients more robust for making some kind of simulation in some
207 cities that lead to consistent results in terms of population growth and growth in the use of the urban area
208 whether for business or housing.

209 V.

210 12 Conclusions

211 We have proposed a theoretical model of spatial growth for cities in which it is made explicit that the growth of
212 population and income growth determine the expansion of the city in terms of built area for business and the
213 area allocated for housing. It also plays a key role local public policy to curb population growth in cities leads
214 to unbalanced growth generating increases in residential housing shortage.

Figure 1: AuAbv = f 3 (

12 CONCLUSIONS

215 [Theoretical Growth Model Space for Cities] , *Theoretical Growth Model Space for Cities*

216 [Von Thunen ()] , J Von Thunen . *El Estado Aislado* 1820.

217 [Krugman (ed.) ()] , Paul Krugman . Geografia y comercio, Antoni Bosch editor (ed.) 1992. p. 152.

218 [Nagel and Schreckenberg ()] *A Cellular Automaton Model for Freeway traffic*, K Nagel , M Schreckenberg . 1992.

219 (in Journal physique I)

220 [Batty ()] 'A chronicle of scientific planning -The Anglo-American modelling experience' M Batty . *Journal of the American Planning Association* 1994. 60 (1) p. .

222 [Todaro ()] 'A Model of Labor Migration and Urban Unemployment in Less Developed Countries' Michael P Todaro . *American Economic Review* 1969. 59 p. .

224 [Clarke et al. ()] *A selfmodifying cellular automaton model of historical urbanization in the San Francisco Bay area*, *Environment and Planning B: Planning and Design*, K Clarke , S Hoppen , L Gaydos . 1997. 24 p. .

226 [Batty ()] 'Agents, cells and cities: new representational models for simulating multiscale urban dynamics' M Batty . *Environment and Planning A* 2005. 37 p. .

228 [Alberti and Waddell ()] 'An Integrated Urban Development and Ecological Simulation Model' M Alberti , P Waddell . *Integrated Assessment* 2000. 1 (3) p. .

230 [White and Engelen ()] 'Cellular Automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns' R White , G Engelen . *Environment and Planning A* 1993. 25 p. .

232 [Couchelis ()] 'Cellular worlds: a framework for modelling micro-macro dynamics' H Couchelis . *Environment and Planning A* 1985. 17 p. .

234 [Batty ()] *Dissecting the streams of planning history: technology versus policy through models*, *Environment and Planning B: Planning and Design*, M Batty . 2004. p. .

236 [Krugman (ed.) ()] *La organización espontánea de la economía*, Paul Krugman . *The selforganizing economy*, Antoni Bosch editor (ed.) 1997. p. 167.

238 [Spiekermann and Wegener ()] 'New timespace maps' K Spiekermann , M Wegener . *Proceedings of the 4th International Conference on Computers in Urban Planning and Urban Management*, R Wyatt, H Hossain (ed.) (the 4th International Conference on Computers in Urban Planning and Urban ManagementMelbourne. Melbourne) 1995. 2 p. . Department of Geography and Environmental Studies, University of Melbourne

242 [Krugman et al. ()] 'On the evolution of hierarchical urban systems' Masajisa Krugman , Fujita , Mori . *European Economic Review* 1999. 43 p. .

244 [Jones ()] 'Population and Ideas: A Theory of Endogenous Growth' I C Jones . Inc. 46. *Departments of Economics. NBER Working Papers* 1998. 6285. (National Bureau of Economic Research)

246 [Wegener et al. ()] 'Sustainable Lifestyles? Microsimulation of Household Formation, Housing Choice and Travel Behaviour' M Wegener , P Waddell , I Salomon . *Social Change and Sustainable Transport*, W Black, P Nijkamp (ed.) (Bloomington, IN) 2002. IndianaUniversity Press.

249 [Berry and Garrison ()] 'The functional Bases of the Central Place Hierarchy' Brian Berry , Willian Garrison . *Readings in Urban Geography*, Mayer and Kohn editores, 1958. The University of Chicago Press. p. .

251 [Von Newmman ()] *Theory of selfreproduction automata*, J Von Newmman . 1966. University of Illinois Press.

252 [Forrester ()] *Urban Dynamics*, J Forrester . 1969. Cambridge, MA: MIT Press.

253 [Fay ()] *Urbanization without Growth: A Not-so-Uncommon Phenomenon*, M Fay , C . 2000. Washington DC, World Bank Policy Research WP 2412.

255 [Waddell ()] 'UrbanSim: Modeling Urban Development for Land Use Transportation and Environmental Planning' P Waddell . *Journal of the American Planning Association* 2002. 68 (3) p. .