

1 Attaining Millenium Development Goals (Mdg) Through Bus
2 Rapid Transit (Brt) System (A Case of Brt Ticketing System in
3 Lagos State, Nigeria)

4 Joseph Ayo Babalola University, Osun state, Nigeria.

5 *Received: 9 December 2011 Accepted: 1 January 2012 Published: 15 January 2012*

6

7 **Abstract**

8 Transportation in Lagos State, Nigeria is a major challenge that over the years had called for
9 serious attention. Every attempt at solution seems to compound it. We conducted a review of
10 the literature in the area of BRT systems to identify and subsequently classify their major
11 aspects, and determine their linkages and trade-offs. Also, we developed from a theoretical
12 point of view the basis of the BRT deployment planning framework, followed by collecting the
13 necessary data to exercise the framework in the context of a site-specific case study (Lagos
14 State). We adopted a system optimization approach in order to assist transit agency to decide
15 on optimal deployment strategy to employ. The study reveals that the deployment of BRT
16 systems relative to an array of factors ranging from large, small and sitespecific cases among
17 other things do not only ameliorate the challenge of transportation but also in a way
18 attempted to do justice to the first MDG agenda of attainment of low-pollution Green House
19 Gases (GHG). Also, reveals that ticketing system needs a radical approach to curb timeloss
20 occasioned by validation of purchased tickets.

21

22 **Index terms**— BRT system, decision-making, MDG,
23 innovations in vehicle design, including environmentally clean or green vehicles, such as diesel-electric vehicles
24 and compressed natural gas-fueled vehicles, dual mode operations in particular environments such as tunnels,
25 low-floor buses, additional as well as wider doors, and use of distinctive and dedicated bus rapid transit vehicles.
26 Service innovations include fare collection procedures, station design and location, and more attractive vehicle
27 designs. Intelligent transportation systems range from existing and more customary automatic vehicle locations
28 systems, transit signal priority systems, and passenger information systems to more advanced systems including
29 collision warning systems (frontal, side, and rear), and automation technologies including lane assist systems
30 -precision docking and automatic steering systems -and automatic speed and spacing control systems. E-mail :
31 kunle.magbagbeola@gmail.com ccording to Miller et al (2004), in U.S.A the transit industry nationwide has
32 developed significant interest in BRT as currently there are in excess of 200 transit agencies that at least
33 considering BRT alternatives and a few dozen properties are conducting planning exercises, utilizing planning
34 methods such as Major Investment Studies (MIS). Fares should be integrated with the rest of the bus system, but
35 they may not necessarily be the same. asserted that running ways for BRT include mixed traffic lanes, curbside
36 bus lanes, and median bus ways on city streets; reserved lanes on freeways; and bus-only roadways, tunnels, and
37 bridges. Most stations are located curbside or on the outside of bus-only roadways and arterial median busways.
38 Similarly, BRT stations have low platforms since many are already or will A ntroduction II.

39 **1 Materials and Method**

40 Source: World Bank Transport Forum: March 30th -April 1st 2009, "Transport: Invisible Force -Visible Impacts"
41 -A Presentation By Babatunde Raji Fashola (SAN) Executive Governor, Lagos State, Nigeria BRT elements

42 should be included in the system from the seven elements of any BRT systems namely Exclusivity of Running
43 Way, Advanced Bus Technologies, Improved Fleet Management Technology, Distinctive Aesthetics or Amenities,
44 Faster Fare Collection and Boarding, Integrating Transit Development with Land-Use Policy and Innovative
45 Project Delivery Methods. Subject to budgetary, institutional and other constraints associated with the corridor,
46 transit agencies have to cost-effectively configure their BRT systems, which must be tailored to site-specific
47 characteristics. To achieve this goal, we adopted systems optimization approach with adequate and realistic
48 objectives and constraints. A planning framework, reflecting this approach, was used to assist transit agencies
49 with this task.

50 2 a) The Physical Environment

51 The physical presence of a BRT system may also raise institutional challenges. Many project areas, especially
52 in older city centres, may simply lack the physical space to easily accommodate certain BRT implementation
53 strategies. Bus rapid transit projects may also find themselves competing with other interests for high value
54 real estate, which may not only inflate costs, but also complicate institutional dealings. Thus, availability
55 and acquisition of right-of-way or physical space may be an issue. Image is also a strong marketing tool for
56 BRT. While station area improvements are a popular BRT strategy, these improvements are typically being
57 inserted into the existing urban design. Deng & Nelson (2010) in their findings that a high-quality BRT system
58 can offer accessibility advantage (specifically travel time saving) to adjacent properties, and thus increase their
59 attractiveness. Interviews with stakeholders, including government officials, developers and real estate agents,
60 and longitudinal analysis reveals that BRT line has positive development effects on adjacent properties, reflected
61 by higher property values and accelerated development. The results further suggests that the housing near BRT
62 stations enjoy a value premium, and development has been stimulated by the BRT opening. The findings also
63 provide evidence that accessibility enhancement, rather than the type of transit system, is a far more important
64 reason to influence land development. Organizations may find it a challenge to reach agreement or consensus to
65 develop station improvements that promote a strong image, while being acceptable to numerous local interests.

66 In the domain of environmental management or policy, it is probably safe to say that most developers of eco-
67 informatics tools or information hope that their work will be utilized in some form of rational decision-making
68 processes or that at the very least, their tools and information are used to help inform incremental decision-making
69 processes. For example, Tonn, et al. (2000) provide a framework to guide environmental decision-making in which
70 goals and values are agreed upon, planning is pursued, and then decisions are developed and implemented.

71 The proposed deployment-planning framework is depicted in Figure 1.2-1,

72 The activities and corresponding methodology for each step are described below. There are several combination
73 of BRT elements, this of course tells on the need for each cost. For this purpose, it must be borne in mind that
74 costs of BRT elements may vary based on the specific technology being used, integrated deployment of BRT
75 elements may save significantly and that operating and maintenance cost must be considered. We focused on
76 four aggregate performance measures and objective functions that may be used by agencies seeking to improve
77 overall level of service. The objective functions are relatively easy to quantify and represent the combined views of
78 passengers, the operator/transit agency and the community, which are the three primary stakeholders. However,
79 these objective functions are only concerned with cost-efficiency of BRT-element combinations for an existing
80 (known) passenger demand. In order to evaluate the cost-effectiveness, changes in ridership with respect to the
81 implementation of selected BRT elements should be forecasted. This can be achieved either by a "learning curve"
82 of an existing similar BRT system in operations, or via market research including potential system customers
83 and nonusers.

84 3 Global Journal of Human Social Science

85 4 b) ABMS and Traditional M&S Techniques

86 According to Oyatoye & Magbagbeola (2010), Agent-based modelling system (ABMS) can provide an overarching
87 framework for model based on other modelling techniques. For example, models may be composed of agents
88 whose decision-making behaviors are represented by formal optimization problems or by informal heuristics
89 decision. According to Tonn et al ??2000), heuristic decision, mean strategies that help produce correct solution.
90 Heuristics don't always produce a correct answer, sometimes they are the reason why people make wrong decisions.
91 Another example is agent behaviors represented as statistical models deriving agent behaviors from the agents'
92 input information. Agent-based modelling can also be used as a complement to other modeling techniques: for
93 example, an agent model that builds system behavior from the behaviors of the individual agents can be "docked"
94 (used in conjunction) with a more aggregate Systems Dynamics model of the system, to see whether the two
95 approaches yield similar results over a range of test cases. The goal of this study is to model a many-to-many
96 demand responsive transit service without predefined itineraries and schedules. In this case, the fleet has to
97 be dispatched exclusively on the basis of the list of requests, like in taxicab systems, the difference being the
98 possibility of serving customers with some detours in order to share the ride. We believe that this kind of service
99 is of particular interest for the possibility of offering a high quality service with an efficient allocation of the
100 resources. To achieve this, we have modelled a service in which time windows are associated with each pickup

101 and delivery point. The definition of time window is different from the notion of "time deadline" that can be
102 found in previous works, for

103 **5 Determine combinations of BRT elements**

104 **6 Assess cost for each combination**

105 **7 Derive feasible and budget-compliant combinations**

106 **8 Evaluate all feasible combinations**

107 Conduct sensitivity analyses w.r.t. available budget, travel demand, cost, etc.

108 **9 Recommend optimal combinations**

109 example concerning hauling services Hall (1996). Although Daganzo (1987) modelled a distribution problem
110 considering time windows associated with each delivery point, the suggested methodology is not suitable when
111 temporal constraints are tight as in the case we are considering. Thus, we need a procedure that is not easily
112 derivable from existing methodologies. For example, comparing our problem to the previously discussed ones,
113 it can be observed that in our case, it is impossible to model it as a fixed-line service since we cannot define a
114 "path" or a "headway" between the vehicles. On the other hand, the joint need of avoiding transfers for any
115 pair of pickup and delivery points and of limiting the maximum ride time for every customer prevents us from
116 dividing the area into several service zones served by a single vehicle, hence, a "cluster-first, route-second" model
117 is not appropriate. This work may not include all the detailed procedures of deficit function theory and will
118 concentrate rather on estimating the minimum fleet size required for a fixed schedule (shifting of departure times
119 is not allowed), which will bring to focus the identified challenge of timeloss during ticketing and validation to
120 departure time of any trip in our case study (Lagos state). (SDM) under the background of BRT system to
121 realize "bus priority" by setting passing order of traffic streams at a cross. This was intended to allow for buses
122 to go through the cross much quickly than before, and congestion is avoided. In our case study, the delay as
123 expressed has other components as the ticketing is still manually handled. The validation of the tickets is left to
124 the checkers attached to the drivers of the BRT. This alone is envisaged to be bedeviled by several ills ranging
125 from the use of fake tickets to continuous delay in checking same and other attending vices. Our work shows
126 this disconnect and we thus proposed the use of our Modified Stopping-time Delay Model (MSD model) based
127 on the work of Zhuo et al (2009). To prevent the bus delay caused by the initial congestion of getting on and
128 off at bus station and its additional time-loss through ticket checking as validation, we build a model about
129 the number of passengers getting on and off to control the stopping time. Our newly introduced variable t_{wt}
130 (Time occasioned by ticket checking and validation) to the adapted model explains in clear term the otherwise
131 latent time-loss unaccounted for in our case study. Our study reveals attempt at addressing this abnormality
132 through deployment of relevant and timely model deployment and necessary suggestion(s) to ameliorate this
133 lacuna occasioned by the choice of partial deployment of the BRT system in Lagos state. Data presented in line
134 with real situation as obtainable in our case study (Lagos state), but based on successful experience of foreign
135 countries, the average stopping time of BRT system is 40 seconds according to Jun & Kangming (2007). So
136 for the existing public transport system, the stopping time is far too long, it will amount to inefficiency of this
137 system. By using $t_{st} = t_w + t_{wt} + t_p + t_{oc} + t_c$ then $(t_{st1} + t_{st2} + \dots + t_{stm})/m \leq 40$ seconds (m is
138 the number of stations for a route) Hence, we plugged in the related data to calculate stopping time and control
139 the number of passengers, and hence make the buses run more quickly and conveniently.

140 **10 III.**

141 **11 Result and Discussion**

142 **12 c) Institutional and Policy Issues**

143 This section has thus far focused on the more technical, design, and operational aspects of bus rapid transit
144 systems, ranging from system requirements, available technologies and practices, system architecture, and
145 simulation tools for system testing to evaluation. Miller (2001) and stated that the implementation of bus
146 rapid transit systems traverses numerous stages of system design, development, testing (simulation and field),
147 evaluation, and deployment culminating in a completed and fully operational system. Moreover, all these activities
148 take place in a context with organizational stakeholders participating at various levels. As each stage of BRT
149 implementation proceeds through its more technological, design, and operational aspects, questions may arise
150 concerning the impacts of actions to be taken or decisions to be made. These impacts are often of a non-technical
151 nature and are referred to as institutional issues. Such less technical or operational questions and issues resulting
152 from them need to be IV.

13 Conclusion and Recommendation

153 Fare collection system should facilitate multiple door boarding, at least at major stops during busy periods.
154 Off-board collection (preferred) or on-board multipoint payment should be encouraged to alleviate the challenge
155 occasioned by poor ticketing option currently adopted in our case study. Even the recently proposed newly
156 introduced e-ticketing payment system into the public BRT, which is supposed to put end to the current use
157 of paper payment system will not help to put to abeyance this challenge of time-loss occasioned by validation
158 of tickets. Marketing should emphasize the unique features of BRT such as speed, reliability, service frequency
159 and span, and comfort. We therefore recommend that the adopted deployment which is partial in nature should
160 be revisited with a view to revisit the ticketing regime. We hereby recommend as a way out of the time-loss
161 challenge the need for deployment and full implementation of e-ticketing that allows for the tickets to be obtained
162 without stress to the commuters and also reduce drastically the queue generated by this exercise and the need
163 for checking officers on board to carry out their traditional role of inspection of the tickets to ascertain if valid
164 for the trip or not. ^{1 2}

Figure 1: VolumeFigure 1

165

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US) Observed Data.

Figure 2:

Figure 3:

1

Volume XII Issue IX Version I
D D D D) F
(
Global Journal of Human Social Science

Figure 4: Table 1 :

166 (N be is the number of people at this station when this bus is there, N af is the number of people at the station
167 after this bus leave this station, N in is the number We collected some data,

168 [Tonn et al. ()] 'A Framework for understanding and Improving Environmental Decision Making'. B Tonn , M
169 & English , C Travis . *Journal of Environmental Planning and Management* 2000. 43 (2) p. .

170 [Oyatoye and Magbagbeola ()] 'A Transportation Model for Demand Responsive Fleet Operation in a Manufac-
171 turing Firm'. E O Oyatoye , J A O Magbagbeola . *International Business & Economics Research Journal*
172 2010. 9 (8) p. . The Clute Institute

173 [Miller and Buckley ()] 'Bus Rapid Transit Institutional Issues: The Route from Research to Experience'. M A
174 Miller , S M Buckley . No. 1760. *Transit: Bus Transit and Maintenance, Paratransit, and New Technology*,
175 (Washington, D.C) 2001. 2001. National Academy Press. p. . Transportation Research Board National
176 Research Council

177 [Miller (2001)] 'Bus Rapid Transit: Institutional Issues and Strategies for Resolution'. M A Miller . *Proceedings
178 of the 8th World Congress on Intelligent Transport Systems*, (the 8th World Congress on Intelligent Transport
179 SystemsSydney, Australia) 2001. October 2001.

180 [Deng and Nelson (2010)] 'Can BRT Stimulate Land Development? Evidence from Beijing Southern axis BRT
181 line 1'. T & Deng , J Nelson . *European Transport Conference* 2010. 2010. 25/07/2011. (paper presentation
182 on sustainable land use and transport. www.etcproceedings.org/paper/ canabu)

183 [Daganzo ()] C F Daganzo . *Modeling distribution problems with time windows"; Part I. Transportation Science*,
184 1987. 21 p. .

185 [Miller et al. ()] *Framework for BRT Development and Deployment Planning, California path program institute
186 of Transports Studies*, M A Miller , Y Yafeng , T Balvanyos , A Ceder . 2004. p. . University of California,
187 Berkeley

188 [Miller and Buckley (2001)] 'Institutional Aspects of Bus Rapid Transit Operation'. M A Miller , S M Buckley
189 . UCB-ITS-PRR-2001-09. *California PATH Research Report* 2001. April 2001. California PATH Program,
190 University of California, Berkeley

191 [Zhuo et al. ()] *Mathematical Model of Solving Urban Traffic Congestion*, X Zhuo , Z & Liao , J Xu . 2009. p. .

192 [On calculation method of capacity of Bus Rapid Transit system, urban transport Jun Feng Kangming Xu ()]
193 'On calculation method of capacity of Bus Rapid Transit system, urban transport'. *Jun Feng & Kangming
194 Xu* 2007. p. 9.

195 [Hall ()] 'Pickup and delivery systems for overnight carriers'. R W Hall . *Transportation Research A* 1996. 30 p. .

196 [Transport: Invisible Force -Visible Impacts" -A Presentation By Babatunde Raji Fashola (SAN) Executive Governor (2009)]
197 'Transport: Invisible Force -Visible Impacts" -A Presentation By Babatunde Raji Fashola (SAN) Executive
198 Governor, March 30th -April 1st 2009. Lagos State, Nigeria.