

¹ Willingness to Pay For Water at Household Level in Ilorin Kwara
² State Nigeria

³ Dr. Ifabiyi, I.P¹

⁴ ¹ University of Ilorin, Ilorin Nigeria

⁵ Received: 12 January 2011 Accepted: 1 February 2011 Published: 12 February 2011

⁶

⁷ **Abstract**

⁸ The paper examines willingness to pay (WTP) at the level of household in Ilorin, Nigeria.
⁹ Ilorin was divided into four residential zones namely: Government Reservation Area (GRA),
¹⁰ Modern Area, Housing Estates, and Traditional Area. 50 questionnaires were administered in
¹¹ each of these zones; making a total of 200 questionnaires administered in the whole of the
¹² study area. Also, 37 socio-economic variables were generated from the questionnaire. Due to
¹³ multicollinearity problem, factor analysis method was used to reduce the 37 variables to
¹⁴ orthogonal factor defining variables. Multiple regression analysis was used to associate
¹⁵ willingness to pay (WTP) and the social economic variables. The result of factor analysis
¹⁶ showed that 3 factor defining variables (fdvs): income, demography and educational level, are
¹⁷ the most dominant factors having 98

¹⁸

¹⁹ **Index terms**— household in Ilorin, socio-economic

²⁰ **1 Introduction**

²¹ Water pricing is the price paid by a domestic user for water distribution, purification and treatment. It aims at
²² determining the amount of money a consumer will pay for the supply of water. For example, a price responsive
²³ consumer might reduce water usage according to rate of increase. Contrary to popular opinion water is not
²⁴ in-exhaustible gift of God. Indeed in view of the present state of water supply on the earth, the next world war
²⁵ may possibly not be caused by petroleum but by water. Water has high value which must be paid for.

²⁶ Two extreme views are often expressed as regard availability of water. First, that man is in his critical period
²⁷ of water consumption, because the demand for water has already overtaken its supply. The second view is that
²⁸ water is sufficiently available everywhere and in every part of the world. Indeed, both views may be acceptable in
²⁹ water resources. The world water resources and access to water shows that potable water is scarce. Meanwhile,
³⁰ anything scarce and in high demand commands a price. For example, water is scarce especially in the context of
³¹ drought and degraded quality. Hence, there is a need to price water.

³² The reserve generated through the purchase of water has been shown to equate to the cost of developing city's
³³ public water utility. Whittington's (1987) research on willingness to pay is the most popular because of its wide
³⁴ revelation in Onitsha; Nigeria, which illustrates how level of payment for water equate to the finance of urban
³⁵ water supply and infrastructural development. Valuing water is controversial; willingness to pay conceptualizes
³⁶ water as a commodity (i.e. good to be bought). The variations in perceptions of water are clearly wide ranging
³⁷ and it cannot be assumed that people attached the same value or cost to the provision of water at one time
³⁸ or in any one place. These variations are not always recognized by government organizations and development
³⁹ agencies consequently they tend to over or under estimate the levels of unwillingness to pay for a commodity
⁴⁰ when implementing water projects. Therefore, water supply project fail because the needs and requirement of
⁴¹ the community have not been met and their willingness to pay is not clearly signalled. Kessler (1997) observed
⁴² that free access to a resource leads to excessive use and that charging of water rates leads to sustainable water
⁴³ management. In the same vein, Rogerson (1996) observed that State or government tariffs rarely reflect a
⁴⁴ community's willingness to spend.

5 THE STUDY AREA

45 Many factors affect household water demand and willingness to pay for improved water services. According
46 to a World Bank (1992) many of the water projects implemented over the last decades in developing countries
47 are considered as failures. This is because poor knowledge of the health benefits of improved water supplies,
48 affordability of tariffs, insensitivity by donors and central government to local customs and beliefs and the ability
49 to operate and maintain water systems by local and community participation and local involvement in design
50 and management (Brookshire, et. al., 1993). It also due to poor emphasis on the importance of improved project
51 identification, design and construction, the level of understanding of the institution providing water and their
52 tendency towards selecting capital intensive projects, the neglect of maintenance schemes and establishment of
53 strategic links between water, the investment sector and micro economic policies (Howe and ??ixon, 1993, Roger
54 et. al. 1993). Also, several studies such as Whittington, et. al (1990;1991), ??tlaf, et.al. (1993 ??tlaf, et.al. (,
55 1994)), , ??BWDRT (1993) showed that the Willingness to pay for improved services does not depend solely on
56 income but on both existing and improved supplies. Income elasticity of demand for access to improved water
57 services have been estimated to be low as 0.15 in Brazil, 0.4 in India and 0.07 in Zimbabwe. The report further
58 showed that, more educated households are willing to pay more for improved water supplies; while gender was
59 also statistically significant in WTP. Secondly demand for improved water supply also relate to the characteristics
60 of the existing water source, such as quality and reliability of supply. Finally, a third demand factor refers to
61 the attitude of government water supply and their inefficiencies ??BWDRT, 1993). In Brazil and India it was
62 reported that more educated households are willing to pay more for improved services, the characteristics of
63 existing water source in terms of quality and reliability of supply and the attitude of governments' water supply
64 and their purchasing power have also been fingered in the analysis of willingness to pay ??Asthana, 1999;Calkins;.

65 There are several approaches for studying willingness to pay but some of these methods have not yielded the
66 expected results particularly in the developing countries. Therefore, Merret (2002) had criticized these previous
67 methodologies because they do not take into account the multiple uses of water and their relationship to multiple
68 sourcing. He suggested that behavioural studies into the domestic demand for water and waste water services in
69 low income countries which should be based on semi structured interviews. This will be attempted in this study.

70 2 II.

71 3 Water Supply and Sustainable Development

72 Sustainable development with reference to man's environment is the ability to continue to support progressive
73 social and economic development with a view to providing many types of ecosystems services.

74 The need for water sustainability has been stressed extensively but has not been seriously examined ??Kimo, 75
2008). The problem of climate change, groundwater stress, extreme weather events and migration coupled with
76 demographics and increasing consumption due to rising per capital income has brought about global water crises.
77 As income increase, people consumed more; water demand for producing goods also increases. In addition,
78 as people move from one meal a day to two and people include meat in their diet the demand for water is
79 also increased. Changes in lifestyles, rural urban migration complicated by political conflict and environmental
80 crises will further stress water demand. Furthermore, pricing policies, subsidies on water, trade patterns, and
81 developments in science and technology patterns, evolution of policies and laws, social movements, global and
82 natural politics will affect water supply. Meanwhile, there is need to balance all these variants for sustainable
83 development of water resources. More importantly, the impact of lack of sustainable development will be mostly
84 felt in countries with low income levels per capita, widespread absolute poverty, high population growth and
85 rapid urbanization such as Nigeria.

86 Sustainable development is not complete without discussing sustainable financing. According to WHO
87 estimates returns of 3 to4 dollars is expected in form of economic growth depending on the level of technology
88 and region for each 2 dollar invested in drinking water and sanitation. For example, expanding safe drinking
89 water and sanitation services would drastically cut the loss of life from water related illnesses. Also, upgrading of
90 water supply and sanitation will improve education and in turn allow girls and young children to attend schools
91 rather than fetching water. Further, in industrial countries lots of cost redeemed from ecosystem restoration
92 efforts over 60 billions may be required for this purpose.

93 Indeed, WHO and UNICEF (2006) rightly conclude that without higher commitment the world may not achieve
94 ½ of the MDGs target by 2015, this call for greater commitment in sustainable water resource management in
95 Nigeria. This paper will examine sustainable water resources management as it relates to water pricing in Nigeria
96 growing city.

97 4 III.

98 5 The Study Area

99 Ilorin the Kwara state capital is located on latitude 80321N and longitude 40351 east. It covers about 1000km2.
100 The landscape ranges in elevation in the western part from 273m to 333m and in the eastern part from 273m to
101 364m. Sobi hill is the dominant landform, it is an inselberg, and it is the highest point in the city (394 m above
102 seal level.)

103 Ilorin has a tropical wet and dry climate. Wet season is experienced from May to November and dry season
104 from November to March. Days are hot during the dry season from November to January when temperature
105 ranges from 330 to 34.60. Between February and April, temperature values are frequently between 34.60C to
106 370C. Mean monthly temperature is high in the city in dry season. Mean temperature is 140C in dry season
107 and 80C in the wet season. Rainfall condition in Ilorin exhibits greater variability both temporarily and spatial.
108 Relative humidity varies seasonally with an average of 79.7%. The vegetation in Ilorin falls within the derived
109 Savannah. The city is underlain by Precambrian Basement complex; comprising mostly gneiss, granite, schist,
110 undifferentiated metasediments rocks and overburden that are composed mainly of clay, sand and silt soils.
111 The drainage system of Ilorin is dendritic in nature, and is dominated by Asa River, which flows from south
112 to north and divides the city into two parts, the western and eastern parts. The western part represents the
113 indigenous area. The eastern part coincides with the modern layout. Major rivers draining the city are: Asa,
114 Agba, Alalubosa, Okun, Osere, Aluko. Aluko.

115 Ilorin is one of the fastest growing urban centers in Nigeria. There has been a colossal increase in the population
116 of Ilorin since it became the state capital in 1976. The population growth rate is much higher than other cities
117 at 2.5 percent of the national growth. The 1991 census put the population of Ilorin city of about 572,172 (NPC,
118 1991 provisional results).

119 6 IV.

120 7 Methodology

121 Willingness to pay is a behavioural attribute of water consumers, and the data required include: information on
122 the socio-economic characteristics of respondents such as level of education, employment status, income level,
123 size of household, uses of water, and quality of water demand e.t.c. Information is also required on the pricing
124 options employed by government, and consumer's willingness to pay, ability to pay for water of household level
125 e.t.c. A list of this is presented in Table 1.

126 These information and others were obtained through primary sources with the use of structured questionnaire
127 and interviews. Ilorin city was categorized into four major zones, namely GRA, modern layouts, traditional
128 layout, and housing estates. In each of these, 50 questionnaires were administered each: Demarcation into these
129 four zones is to allow the sampling of the different patterns of water resource characteristics among the various
130 segments of the city such as the elite, uneducated etc.

131 V.

132 8 Analytical Procedure

133 In view of the nature and the number of socioeconomic variables employed multico-linearity is expected in the
134 data set. Hence, factor analytical approach was used to re-write the 37 variables to a few orthogonal ones which
135 best explained the variance multiple regression and stepwise analyses were also used to establish relationships
136 between willingness to pay and the orthogonal factors.

137 9 VI.

138 10 RESULTS AND DISCUSSION

139 11 1) Primary attributes of households a) Size of Household

140 According to Table 1 large family size is common in the traditional area as much as 19 people and least in the
141 modern area sometimes as low as 2 persons.

142 12 b) Educational Status

143 The modern area has the highest number of educated people at primary and tertiary level. High percentage of
144 people within the modern area has tertiary education. Hence, overall literacy level is highest in the modern area.

145 13 c) Monthly Income of Respondents

146 Income level is generally low. Income is least in the traditional area as 42% earn less than 5000 per month. A
147 high percentage of the highest paid workers are found in the GRA 20% earns #17,000 and above.

148 2) Water Supply Characteristics a) Accessibility to Water 32% of residents in GRA are connected to improved
149 water system (pipe borne water). This is followed closely by the traditional area (25%), while a high percentage
150 of residents of modern area have higher access to hand dug wells.

151 14 b) Quantity of water Demanded

152 The amount of water demanded has no bearing on the household sizes as the residents of modern areas uses
153 more water than GRA and residents of traditional area despite their higher family sizes and even the higher level
154 of education in the GRA.

155 **15 c) Water Pricing**

156 Majority of the respondents want to control usage of water mainly due to economic reasons and are not really
157 bothered about environment problems.

158 **16 d) Individual attitude towards improved services**

159 All categories of respondents with the exception of residents of Housing Estates are willing to pay for improved
160 services with a large majority in the GRA willing to pay more for improved services. Residents of housing estates
161 appeared to have lost confidence in the public supply service system. e) Response to Privatization Majority of
162 residents of modern layout wants privatization of water supply, while most residents in GRA do not want water
163 services to be privatized. This is expected in view of the irregular supply in the modern area, as privatization is
164 envisaged to bring improved services.

165 **17 3) Factors controlling willingness to pay**

166 After vari-max rotation only 3 factors dominated the explanation of the variance. Variables with loadings greater
167 than 0.80 were selected as defining variables.

168 **18 a. Factor 1**

169 Factor 1 has the highest number of loadings, with high loadings on about 50% of the variables. The strongest
170 loadings were recorded on income levels and water use control variables. This factor contributed 64.5%
171 explanation to the variance. It is tagged House Hold Income Factor.

172 The role of income is clearly shown in willingness to pay. Most residents of high income area are willing to
173 pay for improved water services. ??sante et.al. (2002) established a relationship between household income and
174 willingness to pay for water in Ghana. Briscoe and de Ferranti (1988) has also established that an increase of
175 10% in household income increase water consumption by 4% in Zimbabwe. In a similar survey of household
176 willingness to pay for water in Mali, ??alkins et.al (2002) also reported that purchasing power of daily food
177 expenditure turned out to be significant at a level of significance of 6% which is slightly higher than the usual
178 5%. They concluded that, purchasing power has a positive effect on the probability of adoption.

179 **19 b. Factor II**

180 Factor II contributed 22.4% explanation to the variance in the equation. This factor loaded highly on all the
181 demographic variables of age and sex variables. This factor is tagged demographic factor.

182 The role of age and sex are very significant in willingness to pay. Young respondents are likely to pay more
183 for water compared to the elderly ones, while females may wish to pay more for water than male depending on
184 the culture and tradition of the respondents. The WBWDRT (1993) in a survey of different parts of the world
185 observed that demographic variables of age and sex play important role in willingness to pay. For example, they
186 concluded that increasing the numbers of children by one from the mean increase the probability of purchase
187 from 74 to 85% on gender. They also concluded that gender was statistically significant in the determination of
188 willingness to pay for improved water. In the same vein, Briscoe and de-Ferranti (1988) in a study in Zimbabwe
189 observed that women are willing to pay 40% more for access to public taps than their husband in order to free
190 themselves for more fulfilling and remunerative handicraft or small commercial activity. In terms of the social
191 characteristics of the household, while the number of women of all ages increases the likelihood of using a more
192 distant or less reliable sources will also increase, also a higher dependency ratio for example age, infirm, student
193 or infant members of the household to fulfilling active members reduces the likelihood of using an inconvenient
194 source. c. Factor III Factor three contributed 11.3% to the variance. It has the highest loadings on educational
195 variables. This shows that the higher the level of education the higher the willingness to pay for water. This
196 popular observation agrees with several reports on willingness to pay for water in the less developed countries.
197 For example, WBWDRT (1993), showed that more educated households are willing to pay for improved water
198 supplies

199 The role of these three factors has been stressed in literature. Another study conducted in India clearly linked
200 gender and education. For example, in Zimbabwe Briscoe and de-Ferranti observed that the higher the level of
201 education of women, the greater the demand for clean water. Similarly, female literacy and perception of benefit
202 were also found to be relevant. In a similar study, Asthana (1991) (in India) and Jayasundra et.al. (1999) (in
203 Bangladesh) reported the importance of gender and education in willingness to pay. This is simply because the
204 level of education will affect identification of water sources, perception of water quality and reliability of sources
205 of water.

206 **20 4) Predicting Willingness to Pay In Ilorin**

207 The 3 factors were related to willingness to pay using multiple regression, the result is presented in Table 3. The
208 3 factors contributed 98% of the explanation to willingness to pay for improved services in Ilorin. Based on this
209 association, willingness to pay in Ilorin can be predicted using equation 1.

210 WTP=36.800+28.239HINC+7.123DEMO+10.773EDU C??????.. (eq. 1) (R=98%; SE=2.79) In a further
211 analysis using stepwise regression, it was observed that income is the dominant factor affecting household
212 willingness to pay for improved water services in Ilorin.

213 Conclusively therefore, willingness to pay for improved water services in Ilorin can also be defined with equation
214 2. WTP= 36.80 + 28.24 HINC????? (eq. 2) (R² = 83.0%; SE=15)

215 The above shows that income of respondents contributed 83.0% explanation to the discussion of household
216 willingness to for improved water services in Ilorin. The result is expected in view of the nature of the study area.
217 The levels of respondent income are generally low. This factor is clearly supported with Table 1 which shows
218 that in the modern layout and the government reserved areas where levels of education are highest respondents
219 are willing to pay more improved water .

220 This agrees with the findings of Asante (2002), WBWRT (1993) and several others. In the study area, the
221 areas of high income also doubles as areas where level of education and awareness are also higher or need for
222 improved and hygienic water. Hence, this again explained reasons for the expected results.

223 The results obtained in this work, agree with popular opinion on studies of WTP but rather the report
224 WBWRT (1993) Briscoe and de Ferranti (1988) where demographic variables dominant. It also disagrees with
225 the work of Calkins, et. al. (2002) in Mali, where distance to the planned new sources of water was dominant in
226 the determination of willingness pay. The paper also agreed with ??ngel, et.al. (2005) where he reported that
227 quality perception, relative distance to improved and unimproved sources, prices and income level are important
228 to the explanation of willingness to pay for improved services.

229 drinking water and sanitation target: the urban and rural challenge of the decade. New York UNICEF,
230 Geneva.

231 **21 World**

232 1 2 3 4

¹©2011 Global Journals Inc. (US) ©2011 Global Journals Inc. (US)

²©2011 Global Journals Inc. (US)

³©2011 Global Journals Inc. (US)

⁴©2011 Global Journals Inc. (US)This page is intentionally left blank

Figure 1:

1

projects: The Banks experience, 1967-1989".
Rep 10789:137. Oper. Eral. Dep. Washington
Dc:

Bank (1992) "Water supply and sanitation
The WorldBank.

Figure 2: Table 1 :

2

Variable	Variable Description	Factor I	Factor II	Factor III
1.no of people per household (1-5)	Household size .94	.20	.24	
2.,, (6-10)	," "	.91	.40	.18
3. " " "		.71	.40	.50
>10				
4. age	18- 25	.35	-.90	-.30
5.	25- 34	-.15	-.97	-.17
6.	35- 40	-.31	-.90	-.40
7.	41- 45	-.86	-.43	-.12
8.	>50	-.41	-.90	-.27
9.male		.19	.97	-.13
10. female	sex	.70	.70	-.05
11. First school leaving certificate.		.70	0.07	.70
12.secodary school education	Level of education	.78	.50	.40
13. tertiary institution		.93	.30	.22
14. other forms of education		-.18	-.51	-.80
15. monthly income		.81	.26	.51
16. 5000-8000	Monthly income	.84	-.30	.50
17. 8000-12,000		.94	.30	.14
18. 12000-17,000		.90	.44	.05
19. .17,000		.93	.40	-.05
20. private service	Sources of water	.94	.22	.24
21. bore hole		.85	.45	.17
22. hand dug well		.81	.40	.40
23. stream		.83	.12	.52
24. 60 litres	Volume of water use by	.91	.18	.32
25. 61-120litres		.95	.30	.14
26. 121-180 litres	household	.90	.44	.19
27. >180 litres		.95	.26	.17
28. economic value	Value attached to water use	.82	.40	.42
29. environmental value		.91	.23	.35
30. willingness to pay		.90	.40	.20
31. % household not willing to pay	Indices of Willingness to pay	.89	.40	.23
32. % able to pay		.91	.09	.40
33.% not able to pay		.93	.30	.24
34.% willing to pay		.80	.45	.36
35. % not willing to pay		.90	.15	.41
36. % able to pay	Indices of Willingness to pay	.89	.41	.15

3

Constant/variable		coefficients	Standard error	t-test	Significance level	R 2
constant		36.800	1.25	29.41	.022	
1.	Household income	28.239	1.399	20.109	.022	
factor (HINC)	Demographic	7.123	1.399	5.09	.123	98
2.	factor (DEMO)	Education fac-	10.773	1.399	7.7	.082
3.	tor					

Figure 4: Table 3 :

4

Constant/variable	Regression	coefficient	Standard error	t-test	R 2 (%)
Intercept		36.80	-	5.48	83
1.	income	28.24	15.00	3.76	

Figure 5: Table 4 :

233 [Quarterly Journal of Internal Agriculture (special issue on Agricultural Water Management and land use in relation to future Water Supply) 41 p. .

234 , *Quarterly Journal of Internal Agriculture (special issue on Agricultural Water Management and land use*

235 *in relation to future Water Supply)* 41 p. .

236 [Atlaf] , M A Atlaf , Whittington .

237 [Water Resources Research] , *Water Resources Research* 29 p. .

238 [Suffolk] , U K Suffolk .

239 [Whittington et al. ()] 'A study of water vending and willingness to pay for water in Onitsha'. D Whittington ,
240 D J Lauria , X Mu . *World Development* 1991. 19 (2/3) p. .

241 [Rogerson (ed.) ()] *A World Bank Technical Paper No. 386. The International Bank for Instructional Development*, C Rogerson . Direr A and Subramanian, A. (ed.) 1996. 1997. Washington, D.C. USA: The World Bank.
242 (water pricing experience: an internal perspective)

243 [Whittington et al. ()] 'An assessment of water vending activities in developing countries in developing countries'.
244 D Whittington , D Lauria , D Okun , X Mu . *Working Papers No* 1987. 185.

245 [Kessler et al. (ed.) ()] *Economics Instruments in water management*, P Kessler , F N Demand , Spon . Kay M,
246 Frans, T. Smith, L.C (ed.) 1997. 1997. (Water: Economics, Management)

247 [Whittington et al. ()] 'Estimating the Willingness to pay for water services in developing countries; A case study
248 of the use of contingent valuation surveys in southern state'. D Whittington , Briscoe , W Mu , Barron .
249 *Economic Development and Cultural Change* 1990. 38 (2) p. .

250 [Howe ()] 'Inefficiencies in water project design and operation in the third world an economic perspective'. Dixon
251 Howe . *Water Resources Research* 1993. 29 (7) p. .

252 [Winpenny (ed.) ()] *Managing Water as an Economic Resource*, J T Winpenny . Routledge. London (ed.) 1994.

253 [Jamal and Kerry ()] 'Rethinking ground water supply polay in payab'. H S Jamal , V Kerry . *Pakistan. Water*
254 *Resource Research* 1993. 29 (7) p. .

255 [The demand for water in rural areas determinants and policy implications ()] *The demand for water in rural*
256 *areas determinants and policy implications*, 1993. 18 p. . WBWDRT (World Bank Water Demand Research
257 Team

258 [Atlaf ()] 'The economics of household (s1993) response to inadequate water supplies'. M A Atlaf . *Third World*
259 *Planning Review* 1994. 16 (1) p. .

260 [Briscoe ()] *The use of public resources for water supply and sanitation projects in developing countries*, J Briscoe
261 . 1987. p. .

262 [Briscoe et al. ()] 'Toward equitable and sustainable rural water supplies: A contingent valuations study in
263 Brazil'. J Briscoe , P , Funtado De Castro , C Griffin , J North , O Olsen . *World Bank Economic Review*
264 1990. 4 (2) p. .

265 [Merizen-Dick R and Segent ()] 'water as an economic Good: In Centuries, Institutions and infrastructure'. Ro
266 Merizen-Dick R , M W Segent , FN . *Water: Economics management*, M Kay, T Franks, L Smith (ed.)
267 (Saffolk, u.k) 1997. 1997.

268 [Briscoe and De Ferranti ()] *Water for rural communities: Helping people help themselves*, J Briscoe , D De
269 Ferranti . 1988. Washington, Work Bank.

270 [Brookshire and Whittington ()] *Water resources issues in the developing countries*, D Brookshire , D Whittington . 1993.

271 [Roger et al. ()] 'Water Resources planning on a strategic context: looking the water sector to the national
272 economy'. P C Roger , N Hurst , Harshadeep . *Water Resources Research* 1993. 29 (7) p. .

273 [Asante et al. ()] *Water security on the chairman Volta Basin: Patterns, determinants*, F Asante , T Berger , S
274 Engel , M Iskandarani . 2002. (and consequences)

275 [Asthana ()] 'where the water is free but the bucket are empty: demand analyses of drinking water in rural
276 India'. A N Asthana . *Open Economies Review* 1997. (8) p. .

277 [WHO (World Health Organization) and UNICEF (United Nations Children's Fund) (2006) Joint monitoring programme ()]
278 *WHO (World Health Organization) and UNICEF (United Nations Children's Fund) (2006) Joint monitoring*
279 *programme*, 2006. (Meeting the MDG)

280 [Joyasundara et al. ()] 'Willingness to pay for drinking water'. J Joyasundara , H Kotagama , J Weenshewa .
281 *Tropical Agricultural Research* 1999. 11 p. .

282 [Calkins et al. ()] *Willingness to pay for Drinking Water in the Sahara: the case of Decientza in Mali" Cahiers*
283 *d'economic et Sociologies Rural No*, B Calkins , B Larue , M Vezina . 2002. 64 p. .